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Abstract. The equivalent charge of photons in dense unmagnetized and magnetized
Fermi plasmas is determined through the plasma physics method. This charge
is associated with the polarization of the medium caused by the ponderomotive
force of the electromagnetic waves. Relations for the coupling between the electron
plasma density perturbation and the radiation fields are derived for unmagnetized
andmagnetized plasmas, taking into account the quantum force associated with the
quantum Bohm potential in dense Fermi plasmas. The effective photon charge is
then determined. The effects of the ion motion are also included in the investigation.

Astronomical [1–3] and experimental [4] methods allow one to set limits on the
hypothetical electric charge of photons. The existence of a small photon charge
would result in charge asymmetry of the Universe and would contribute to the
observed cosmic microwave background (CMB) anisotropy [5], for example. How-
ever, it is possible to define an equivalent electric charge for an intense laser pulse
propagating in a plasma [6,7]. The laser pulse can be thought as a packet of photons,
each moving with the group velocity of the laser and possessing an effective mass
meff = �ωpe/c2 , where � is the Planck constant divided by 2π, ωpe is the electron
plasma frequency, and c is the speed of light in vacuum. This is possible due to the
fact that electromagnetic radiation with a large spectral width can be described
as a gas of photons; in this case, phase effects are negligible and the photons
moving through the plasma can be considered as point-like particles. The photon
electric charge is associated with the ponderomotive force (radiation pressure) of
the photons, which pushes the electrons out of the region occupied by the pulse and
causes the polarization of the medium. In a homogeneous plasma, this equivalent
charge induces a time-dependent electric field which moves with the photon group
velocity and can eventually be measured. There is also evidence that intense mag-
netic fields are produced during the laser–plasma interactions [8], which can affect
the propagation of photons and the transport of energy in plasmas.
During the last few decades, there has been a great deal of interest in investigating

the nonlinear interactions between powerful lasers and plasmas in the hope of
producing a particle accelerator at the highest energies [9]. Recent experimental
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results have reinforced this idea [10, 11]. The plasma waves generated during the
laser–plasma interaction can also be used to accelerate photons [12, 13]; here the
frequency of the radiation is continuously upshifted, in analogy with the energy
gain of the trailing electrons in the original concept of plasma accelerators. The
coupling between electromagnetic waves and plasmas occurs due to the effective
charge that photons acquire during their propagation through the medium. The
radiation–plasma coupling is also important in space and astrophysical scenarios,
such as in solar and stellar atmospheres, as well as in pulsar interiors (neutron
stars) and in magnetospheres. Specifically, in the interior of compact objects such
as neutron stars and white dwarfs the plasma is extremely dense and highly de-
generate, and the plasma’s properties differ significantly from those of a classical
Maxwellian plasma. In such a plasma, quantum effects caused by the tunnelling
of electrons/positrons must be taken into account. In dense quantum plasmas, the
equilibrium particle distribution function obeys the Fermi–Dirac statistics, and the
quantum effects can be described by a quantum Bohm potential. The interest in
quantum plasmas has increased during the last few years, motivated by research
in micro- and nano-scale objects, such as microplasmas [14] and nanowires [15],
as well as in ultrasmall semiconductor devices [16]. Haas et al. [17] presented a
multistream model for an ultracold Fermi plasma which accounts for the quantum
force associated with the quantum Bohm potential [18]. By using the quantum
hydrodynamical model, Shukla and Stenflo [19] investigated stimulated scatter-
ing instabilities of electromagnetic waves in an ultracold Fermi plasma. Recently,
Glenzer et al. [20] presented the first collective X-ray scattering measurements of
plasmons in the warm dense matter regime.
As mentioned before, the nonlinear photon–plasma couplings [21] are possible

due to the effective charge that photons acquire during their propagation through
the plasma. Mendonça et al. [6] derived an expression for the equivalent charge of
photons using a classical approach where low-intensity photons were considered.
Tsintsadze et al. [7] presented a kinetic theory for the induced charge of intense
photons in an unmagnetized warm plasma. Shukla et al. [22] considered the in-
fluence of an external magnetic field on the induced charge of the photons. In the
present work, we determine the equivalent charge of photons propagating in a
dense unmagnetized/magnetized Fermi plasma. The electron–ion Fermi plasma is
described by a quantum hydrodynamical model which accounts for the quantum
statistical pressure law and the quantum force involving the quantum Bohm poten-
tial. We obtain expressions for the electron number density perturbations driven
by the ponderomotive force of the electromagnetic wave envelope, and derive the
induced charge for the photons. We compare our results with previous expressions
obtained for classical plasmas, and also discuss the influence of the ion motion on
the equivalent photon charge.
The dynamics of electrostatic oscillations driven by the ponderomotive force

of photons in a non-relativistic electron–ion Fermi plasma are governed by the
following linearized equations

∂ni1
∂t

+ n0∇ · ui = 0, (1)

mi
∂ui
∂t

= −e∇φ, (2)

∂ne1
∂t

+ n0∇ · ue = 0, (3)
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me
∂ue
∂t

= e∇φ − TF
n0

∇ne1 +
�

2

4n0me
∇2∇ne1 + Fe, (4)

and

∇2φ = 4πe(ne1 − ni1). (5)

where ne1 (ni1) and ue (ui) are the electron (ion) density and fluid velocity perturb-
ations created by the ponderomotive force of the electromagnetic wave envelopes.
Here, ne1 (ni1) � n0 , where n0 is the equilibrium electron number density. The
second term in the right-hand side of (4) is the force due to the pressure of a
zero-temperature Fermi–Dirac plasma, where TF = π2

�
2n

2/3
0 /4me is the Fermi

temperature (in energy units) and me is the electron rest mass. The third term
in (4) is the quantum force associated with the Bohm potential [17], and Fe is the
ponderomotive force due to the high-frequency field. The electrostatic ambipolar
potential φ generated due to the nonlinear polarization effects is given by the
Poisson equation (5). We consider only electrostatic modes on timescales that
are either comparable to or shorter than the electron plasma period, so collisions
between the electrons and ions are neglected (ωpe � νei, where νei is the collision
frequency). For an unmagnetized dense Fermi plasma, the ponderomotive force is

Fe =
me

2
∇|ve|2 ≡ e2∇|E0 |2

2meω2
0

, (6)

where ve = e|E0 |/meω0 is the electron quiver velocity [21], E0 is the amplitude
of the electric field associated with the electromagnetic wave packet, and ω0 is the
frequency of the photons, which is related to the wave-vector k0 by ω2

0 = k2
0c2 +ω2

pe,
where ωpe = (4πn0e

2/me)1/2 .
We now investigate the response of the electrons to the high-frequency electro-

magnetic fields and consider the ions at rest. Equations (1) and (2) can then be
neglected, and (5) becomes ∇2φ = 4πene1 . From the latter and (3)–(4) we then
derive [

∂2

∂t2
+ ω2

pe +
(

�
2∇2

4m2
e

− TF
me

)
∇2

]
ne1 =

n0e
2

2m2
eω

2
0

∇2 |E0 |2 , (7)

which shows the coupling between the electron density fluctuations and the photon
field. Fourier transforming (7) and using the definition of the number density
of photons as np = |E0 |2/8π�ω0 , we can deduce the following expression for the
radiation pressure driven electron density perturbations

ne1 =
�ω2

pek
2np

meω0(ω2 − ω2
pe − k2C2

se − k2C2
Qe)

, (8)

where Cse = (TF/me)1/2 ≡ vF is the Fermi electron thermal speed and CQe =
�k/2me. We can establish the relation −ene2 = qpnp, where qp is the equivalent
photon charge. Then, we obtain from (8)

qp = −
e�ω2

pek
2

meω0(ω2 − ω2
pe − k2C2

se − k2C2
Qe)

. (9)

We observe that the equivalent photon charge is greater in a Fermi plasma than
in a classical plasma in view of larger values of ωpe. If we assume

ω � (ω2
pe + k2C2

se + k2C2
Qe)

1/2 ,
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and that the phase speed vφ of the ponderomotive force driven density perturbation
is close to c (vφ = ω/k ≈ c), expression (9) then reduces to

qp ≈ −
e�k2

pe

meω0
, (10)

where kpe = ωpe/c. This expression agrees with the previous results obtained for
classical plasmas in the same regime [6, 7, 22]. The equivalent photon charge is
negative because the ponderomotive force associated with the photon distribution
tends to push the plasma electrons.
We now investigate the influence of the ion motion on the effective photon

charge. Actually, the ions are coupled with the electrons through the space charge
field, and respond on a time-scale comparable to the ion plasma period, ω−1

pi =
(4πn0e

2/mi)−1/2 . The equations governing the plasma dynamics are (1)–(5); com-
bining (1), (2) and (5) we obtain

∂2ni1
∂t2

− ω2
pi(ne1 − ni1) = 0, (11)

and neglecting the electron inertia in (4), and using (5) and the definition (6) we
have

ω2
pe(ne1 − ni1) +

(
�

2∇2

4m2
e

− TF
me

)
∇2ne2 =

n0e
2

2m2
eω

2
0

∇2 |E0 |2 . (12)

Fourier transforming (11) and (12) and using the definition of the number density
of photons, we obtain

ne1 =
�ω2

pek
2(ω2

pi − ω2)np
meω0 [ω2

peω
2
pi − (ω2

pi − ω2)(ω2
pe + k2C2

se + k2C2
Qe)]

. (13)

Using the relation−ene2 = qpnp, we immediately obtain the effective photon charge
in the presence of the ion motion, i.e.

qp = −
e�ω2

pek
2(ω2

pi − ω2)
meω0 [ω2

peω
2
pi − (ω2

pi − ω2)(ω2
pe + k2C2

se + k2C2
Qe)]

. (14)

Considering the low-frequency limit where ω � (k2C2
se+k2C2

Qe)
1/2 and ωpe, we obtain

from (14)

qp =
e�

meω0(λ2
De + λ2

Qe)
, (15)

where λDe = Cse/ωpe is the Fermi plasma Debye radius and λQe = CQe/ωpe. The
expression (15) has the same form as in [7,22] for an unmagnetized classical plasma
in the limit k2λ2

De � 1, but now the quantum term λQe due to the quantum Bohm
potential in the Fermi plasma appears in (15).
Next, we investigate the effect of the external magnetic field on the equivalent

charge of photons in a dense Fermi plasma. Let us consider a right-hand (left-
hand) circularly polarized electromagnetic (CPEM) wave propagating parallel to an
external magnetic field B0 = B0 ẑ. The electric field of the CPEM wave is written as

E0 = E0 [x̂+ (−)iŷ]ei(k0 z−ω0 t) + c.c., (16)

with ω0 and k0 related by ω2
0 = k2

0 c2 + ω0ω
2
pe/[ω0 − (+)ωce], where ωce = eB0/mec

is the electron gyrofrequency. The electron dynamics in the presence of the pon-
deromotive force in a magnetized plasma is governed by the continuity equation
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(3) and by

me
∂ue
∂t

= e∇φ − e

c
(ue × B0) +

(
�

2∇2

4n0me
− TF

n0

)
∇ne1 + Fe, (17)

where Fe is the ponderomotive force due to the high-frequency CPEM field [23].
Here we consider only field-aligned perturbations associated with the slow plasma
motion. Therefore, we can write Fe = F ẑ, with [23,24]

F =
1

8πn0

{
(ε − 1)

∂|E|2
∂z

+
k

ω2

∂[ω2(ε − 1)]
∂ω

∂|E|2
∂t

}
k=k0 ,ω=ω0

, (18)

where ε ≡ k2c2/ω2 = 1 + ω2
pe/ω[ωce − (+)ω] is the refraction index.

First, we analyse the electron plasma response by considering stationary ions.
Considering only the perturbations in the z-direction, we have

∂ne1/∂t + n0(∂uez /∂z) = 0

for the continuity equation, and (for right-hand circularly polarized photons)

∂uez
∂t

=
e

me

∂φ

∂z
+

(
�

2

4n0m2
e

∂2

∂z2 − TF
n0me

)
∂ne1
∂z

−
ω2
pe

8πn0meω0(ω0 − ωce)

[
∂

∂z
− k0ωce

ω0(ω0 − ωce)
∂

∂t

]
|E0 |2 , (19)

with ∂2φ/∂z2 = 4πene1 . From the above equations, we obtain[
∂2

∂t2
+ ω2

pe +
(

�
2

4m2
e

∂2

∂z2 − TF
me

)
∂2

∂z2

]
ne1

=
n0e

2

2m2
eω0(ω0 − ωce)

[
∂

∂z
− k0ωce

ω0(ω0 − ωce)
∂

∂t

]
∂|E0 |2

∂z
, (20)

which shows the coupling between the electron density fluctuations and the photon
field in the presence of the external magnetic field. Fourier transforming (20) and
using np = |E0 |2/8π�ω0 and the relation −ene2 = qpnp, we derive the following
expression for the equivalent photon charge in a magnetized dense Fermi plasma

qp = −
e�ω2

pek
2(1 + αek0/k)

me(ω0 − ωce)(ω2 − ω2
pe − k2C2

se − k2C2
Qe)

, (21)

where αe = ωωce/ω0(ω0 − ωce). In the absence of the magnetic field, (21) reduces
to the expression (9), as expected. In the limit ω2 � ω2

pe + k2C2
se + k2C2

Qe and with
vφ = ω/k ≈ c, kpe = ωpe/c and k/k0 � αe, expression (21) becomes

qp = −
e�k2

pe

me(ω0 − ωce)
. (22)

For the right-hand circularly polarized photons, the magnitude of the induced
electric charge increases in the presence of the external magnetic field (for the left-
hand circularly polarized waves, it decreases [22]). Once more, qp attains a large
value due to the extremely high value of ωpe in a dense Fermi plasma.
Second, we investigate the influence of the ion motion on the effective photon

charge in a magnetized dense Fermi plasma. For this purpose, we have also to
consider the ion continuity and momentum equations in the z-direction. Neglecting
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the electron inertia in (17) and combining the equations for the electrons and ions,
with ∂2φ/∂z2 = 4πe(ne1 − ni1), we derive (11) and

ω2
pe(ne1 − ni1) +

(
�

2

4m2
e

∂2

∂z2 − v2
F

)
∂2ne1
∂z2

=
n0e

2

2m2
eω0(ω0 − ωce)

[
∂

∂z
− k0ωce

ω0(ω0 − ωce)
∂

∂t

]
∂|E0 |2

∂z
. (23)

Fourier transforming (11) and (23) and combining the resultant equations, we ob-
tain

qp = −
e�ω2

pek
2(ω2

pi − ω2)(1 + αek0/k)
me(ω0 − ωce)[ω2

piω
2
pe − (ω2

pi − ω2)(ω2
pe + k2C2

se + k2C2
Qe)]

. (24)

In the limit where the phase speed of the excited wave is much smaller than the
electron thermal speed and k/k0 � αe, we can write (24) as

qp =
e�

me(ω0 − ωce)(λ2
De + λ2

Qe)
. (25)

To summarize, we have calculated the equivalent charge of photons in an un-
magnetized/magnetized dense Fermi plasma by using the plasma physics method.
The electromagnetic wave packet propagating in the plasma is described as a gas
of photons, and a quantum hydrodynamical model, including the effects of the
quantum statistical pressure and the quantum force, is used to describe the Fermi
plasma particle dynamics. The radiation pressure of the photons creates space
charge electric fields, which cause the plasma polarization and induced charges.
Explicit expressions for the latter are given for dense plasmas without and with the
ion dynamics. Our results show that in the high-frequency limit the induced charge
is significantly larger due to higher values of ωpe in a dense quantum plasma. Fur-
thermore, in the low-frequency limit the influence of the quantum Bohm potential
is to reduce the magnitude of the induced photon charge. It has also been found that
the presence of an external magnetic field enhances (reduces) the induced charge of
right-hand (left-hand) circularly polarized photons in a dense Fermi plasma. These
results can be important for the study of photon charges in degenerate astrophysical
plasmas, such as those in the interior of dense neutron stars and white dwarfs, as
well as for dense quantum plasmas in intense laser–solid density plasma interaction
experiments and other practical systems.
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