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In 1957 Kurzweil [1] proved some theorems concerning a generalized type
of differential equations by defining a Riemann-type integral, but he did not study
its properties beyond the needs of that research. This was done by R. Henstock
[2, 3], who named it a Riemann-complete integral. He showed that the Riemann-
complete integral includes the Lebesgue integral and that the Levi monotone
convergence theorem holds. The purpose of the present paper is to give a necessary
and sufficient condition for a function to be Riemann-complete integrable and
to establish a termwise integration theorem for a uniformly convergent sequence
of Riemann-complete integrable functions.

Throughout this paper, all functions considered are real-valued and defined
in a closed interval [a, b].

DEFINITION 1. A division D of [a, b] consists of two finite sequences {x;}]_,
and {z;}}- with conditions:

a=xo<X1<"'<x,,=b

and
Xi £z;2x; (j=1,---,n).

DErFINITION 2. A division ® of [q, #] is said to be compatible with 6(z)} > 0
defined in [a, b] if, foreachj = 1, - -, n, |x;—2z;| < 8(z;) and |z;—x;_4| < 6(z;).

It should be noted that there is at least a division ® of [a, b] which is
compatible with a given function (z) > 0 defined in [a, #)] [3, p. 83].

DEerINITION 3. A function /' is Riemann-complete integrablein [a, b] withintegral
I(f) if there is a real number I(f) such that to each ¢ > 0 there corresponds a
function 6(z) > O defined in {a, ] with

l_zlf(zj)(x,-—x,-_l)—l(f)l <&
j=
for all sums over divisions 2 of {a, b] compatible with §(z).

In the sequel, we shall simply use the terms ‘integrable’ and ‘integral’ for
21
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‘Riemann-complete integrable in [a, #]’ and ‘Riemann-complete integral in
[a. bY respectively. Also, for simplicity, we shall replace the words ‘sum over a
division of [a, ] compatible with 5(z)’ by ‘sum over (D, 8).

LemMMA 4. If f and g are integrable and o, § are real numbers, then af +-Bg is
also integrable and I(af+ Bg) = ol(f)+BI(g).

PROOE. Let ¢ > 0 be given. If o # 0, since f is integrable, there corresponds a
function 6,(z) > O defined in [a, 5] such that

[S,~1(F)l < &/(2lal)
for all sums for f over (D, §;). Clearly we have, for any «,
[Sap—al (f) = la 1S, —I(f) < ¢&/2

for all sums for af over (D, d,). Similarly, there also corresponds a function
0,(z) > 0 defined in [a, b] such that

Isgg—BI(g)| < &/2
for all sums for Bg over (D, J,).
Let d(z) = min {6 ,(z), 3,(z)} for all z in |a, b]. Thus
1Sas+8g— (I (f)+BIG)| < |Ser— oI (f)+1Sp,~BI(g)l < &
for all sums for af+ Bg over (D, §). The proof is completed.
DEFINITION 5. Let 2 be the set of all pairs (D, §), where d is a positive function

defined in [a, b], and D is a division of [a, b] compatible with J. For each function
f, define S; : Z — R by setting S(D, 6) to be the sum for f over (D, 9).

DEFINITION 6. Let (D;,6,)€ Z, i = 1,2. We shall say (9, 8,) < (D,, d,)
if 6, < 6,. Clearly, this is a partial ordering of &.

LeMMA 7. For any f, S; : & — R is a net.

PROOF. We need only show that {Z, <} is a directed set. Let (D;,d;) € Z,
i = 1,2, be given. Define &, by 4(z) = min {J,(z), d2(2)} for all z € [a, b]. Then
for any division ®, compatible with 54, (Dq, o) € Z and (D;, 6;) < (Dy, o),
i=1,2.

For a function f, we consider the following

ConpITION 8. To each ¢ > 0 there corresponds a function §(z) > 0 defined
in [a, b] with |S'—S"| < ¢ whenever §’ and S" are sums for f over divisions
compatible with d(z).

LeMMA 9. Condition 8 is necessary and sufficient for the net S; : % — R to be
Cauchy.

Proor. Sufficiency: Let & > 0 be given. Consider the function 6(z) > 0
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stated in condition 8, it is immediate that [S,(T;, §;)—S;(D,, 8,)] < & for any
(24, 6;) € Z such that (D, 8) < (D, §;), i = 1, 2, where D is an arbitrary division
compatible with §(z) > 0. The proof for necessity is similar.

Since R is a complete uniform space, a Cauchy net S, : 2 — R has a limit
in R [4, pp. 193-194]. Thus we obtain the following Cauchy criterion:

THEOREM 10. A function f is integrable if and only if it satisfies condition 8, or
equivalently, if and only if the net S; : & — R is Cauchy.

THEOREM 11. If { f,} is a sequence of integrable functions and converges uniform-
ly to fin [a, b, then f is integrable with integral I(f) = lim,.,,, I(f,).
PRrOOF. Let ¢ > 0 be given, choose a positive number n < ¢/(4(b—a)). By
hypothests, there is an #, such that
1/,(z2)—1(z)] < 5 for every z € [a, b] and every n = ng.
Since f,, is integrable, there exists (D*, 6*) € Z such that
1S£o(D15 01) = S£o (D32, 85l < €/2 whenever (D, 6%) < (D, 6),
i = 1, 2. Thus we have
1S,(Dy, 61)—SH(D2, 6,)l
S 1Sy, 00)=S£o (D15 S H1S£0 (D15 1) = S (D2, 85)
+ 180 (D2, 8,) = SH(D2, 82)| < n(b—a)+e/2+n(b—a) <e
whenever (D%, 6*) < (D;,8), i=1,2
It follows from theorem 10 that f is iantegrable.
It remains to show that lim,_, , I(f,) = I(f). For this purpose, let ¢ > 0 be

given and f,  be the same as above. Since f and all f, are integrable, there exist
(Dy, 00) and (D,, 8,) for each n such that

1SH(D, 8)—I(f)| < &/4 whenever (T, 8,) < (D, d)
and
IS;(®, 8)—I(f,)| < &/4 whenever (D,,9,) < (D,9), for each n.

Evidently, for n = n, and (D, 6) € Z, we have
H(L) = 1) S ()= S (D, N +IS (D, 6)—SAD, ) +1S (D, 8)—I(f)I
< e[4+|SHD, 8)—I(f) +1S, (D, 8)— I(f.)I

and the last two terms can be made less than ¢/2 by choosing (D, §) in & with
(Do, 8p) < (D, 8)and (D,, 3,) < (D, 8). The proof is completed.

COROLLARY 12. If E < [a, b) is a Lebesgue null set and {f,} a sequence of
integrable functions which converges to f uniformly on [a, b]—E, then f is integrable
with integral I1(f) = lim,_, , I(f,).
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Proor. For each n let g, and #, be functions defined by

gn(z) = f;l(z) for Z€ [05 b]_E,
=0 for ze E,

and
hn =f;|_gn

Similarly, we define g and 4 by

g(z) = f(z) for z € [a, b]—E,
=0 forzekFE

and
h=f-g.

It is trivial from the hypothesis that the sequence {g,} converges uniformly to g
on [a, b] and that the functions / and all /4, are Lebesgue null. Since the integral
considered here includes the Lebesgue integral, /# and all 4, are integrable with
I(h) = I(h,) = O for all n. Since for each n g, = f,—h, and by hypothesis f, is
integrable, in view of lemma 4, each g, is integrable and I(g,) = I(f,). By theorem
11, g is integrable with I(g) = lim,_, I(g,). By lemma 4 again, f = h+g is
integrable and I(f) = I(g) = lim,_, , I(g,) = lim,. ., I(f,).

It is worth while noting that the above corollary is not true for Riemann
integrals.

The author is deeply grateful to Dr. H. H. Pu for her valuable suggestion.
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