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Abstract

Background. Posttraumatic stress disorder (PTSD) has been associated with advanced epigen-
etic age cross-sectionally, but the association between these variables over time is unclear. This
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study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were
associated with changes in two metrics of epigenetic aging over two time points.
Methods. We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in
epigenetic age acceleration/deceleration (age-adjusted DNAmethylation age residuals as per the Horvath and GrimAgemetrics) using data
from 7military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD EpigeneticsWorkgroup (total N = 1,367).
Results. Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was
significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath
age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta
p = 0.05). No associations were observed for GrimAge residuals.
Conclusions. Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time
evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that
PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a
beneficial effect on the aging methylome.

Introduction

DNA methylation (DNAm)-derived epigenome-wide scores have
emerged as leading biomarkers of biological age and death (e.g.,
Horvath, 2013; Lu et al., 2019) and are referred to as “DNAm age.”
Estimates of DNAm age may differ from chronological age, such
that some individuals evidence advanced DNAm age relative to
chronological age. Advanced DNAm age has been linked to age-
related disease and adverse health outcomes, including metabolic
syndrome, inflammation, neuropathology, and mortality (Chen
et al., 2016; Christiansen et al., 2016; Gassen, Chrousos, Binder, &
Zannas, 2017; Hillary et al., 2021; Levine et al., 2015; Marioni et al.,
2016, 2015; Meier, Mitchell, Karadimas, & Faul, 2023; Miller &
Sadeh, 2014; Reed, Carroll, Marsland, & Manuck, 2022), highlight-
ing the applied significance of DNAm age as a biomarker of
biological aging and its potential for identifying individuals at risk
for early onset of age-related diseases.

Two of the DNAm age algorithms that have received the most
attention to date are the Horvath (Horvath, 2013) marker of
biological age and the Lu et al. (2019) index of time until death,
referred to as “GrimAge.” Both algorithms were trained through
machine learning approaches to select a set of CpG sites from the
epigenome that optimize prediction. The regression coefficients of
the selected CpG sites are then used as weights in novel datasets to
calculate the respective DNAm age estimates. Age-adjusted DNAm
age is commonly defined as the residuals from regressing DNAm
age on chronological age where negative values represent slowed
epigenetic age and positive values represent advanced epigenetic
age relative to chronological age.

Several studies have examined psychiatric diagnoses and symp-
toms in association with advancedDNAm age in blood using cross-
sectional methods, including studies of depression (Liu et al., 2022)
and alcohol use disorders (Rosen et al., 2018). Posttraumatic stress
disorder (PTSD) has received particular attention in this regard,
with numerous individual studies (Jovanovic et al., 2017; Katrinli
et al., 2020; Roberts et al., 2017; Wolf et al., 2016; Wolf, Logue et al.,
2018) and a meta-analysis (Wolf, Maniates et al., 2018) providing
support for cross-sectional associations between PTSD and
advanced DNAm age. Specifically, in the meta-analysis which
was based on cross-sectional data from 9 cohorts contributing to
the Psychiatric Genomics Consortium (5 of which contributed
longitudinal data to these analyses), we previously found that the
lifetime PTSD severity, but not PTSD diagnosis, and childhood
trauma exposure (when measured with a consistent trauma meas-
ure across studies) were associated with increased epigenetic age
(Wolf, Maniates et al., 2018). This is consistent with the hypothesis
that the cumulative burden of PTSD symptom severity across the

lifespan, including the chronic toll of physiological reactivity, poor
sleep, anger, and arousal, may be most relevant for understanding
risk for accelerated aging. Some studies have further linked PTSD-
related advanced DNAm age with biomarkers of inflammation,
metabolic pathology, and neuropathology (Morrison et al., 2019;
Wolf et al., 2023), suggesting that individuals with PTSDmay be at
greater risk for developing early onset of these conditions. However,
cross-sectional designs cannot address questions concerning the
directionality of associations between PTSD and advanced DNAm
age or the temporal stability of estimates of advanced epigenetic age
over time, nor can they track how PTSD-related changes in epi-
genetic age accumulate and contribute to long-term health out-
comes. Therefore, studying the longitudinal relationship between
epigenetic aging and PTSD is crucial for understanding how
trauma-related disorders contribute to premature aging and long-
term health decline over time, as well as for developing targeted
interventions that are matched to the pathophysiology that con-
tributes to early onset of these health conditions.

To date, only a few studies have examined the relationship
between PTSD and advanced DNAm age longitudinally, and the
approach to modeling changes in DNAm age estimates over time
has varied across studies, as have results. In a longitudinal cohort of
96 male Dutch soldiers assessed prior to war zone deployment and
six months post-deployment, intervening combat trauma was
found to be associated with an increase in raw (i.e., not accounting
for chronological age) estimates of Horvath DNAm age over time
(Boks et al., 2015). However, increased PTSD symptoms post-
deployment were negatively associated with the change in raw
DNAm age between time points (Boks et al., 2015), suggesting
potential differential effects of trauma exposure versus PTSD.

Using an alternative analytic design, a study of 40 paramedicine
students assessed twice (pre- and post-work-related trauma expos-
ure) found that baseline Horvath DNAm age residuals were posi-
tively associated with PTSD severity at follow-up 12 months later
(about 1–2 months following trauma exposure; Mehta et al., 2022).
However, all participants reported trauma histories at baseline,
raising the possibility that baseline DNAm age was advanced due
to this and/or associated pre-existing psychiatric symptoms. Con-
sistent with this possibility, the same study found that baseline
PTSD severity was associated with greater Horvath and GrimAge
DNAm age residuals at follow-up (Mehta et al., 2022). Most crit-
ically, the analyses did not account for baseline DNAm age accel-
eration, masking the extent to which DNAm age changed from
baseline to follow-up. Another study (Yang et al., 2021) modeled
change in DNAm age estimates through the use of correlated
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change scores between GrimAge residuals and PTSD symptom
severity scores among trauma-exposed male military Veterans
assessed twice. Among those who had PTSD at baseline, change
in PTSD severity across 3 years was correlated positively with
change in GrimAge residuals, but this was based on just 26 partici-
pants. Concerns about small sample size (and associated limitations
to statistical power and representativeness) apply to all the longi-
tudinal studies of PTSD and epigenetic aging to date.

Other studies have addressed the challenges of modeling the
relationships betweenDNAm age and time between assessments by
examining the rate of change in rawDNAmage estimates relative to
the time between assessments. One study (Sumner et al., 2023)
followed a group of 171 children and adolescents over 2 years and
found that the rate of change in DNAm age was greater (more
positive) among those who experiencedmore negative impact from
intervening stressful life events. Two other studies of the rate of
change among Veteran cohorts with chronic PTSD found that
baseline PTSD symptom severity and diagnosis predicted an
increased pace of Horvath DNAm age over the course of approxi-
mately 2 (Wolf et al., 2019) and 5.5 (Hawn et al., 2023) years,
respectively. Collectively, these studies, with sample sizes ranging
from 26 to 179, highlight the challenges in modeling change over
time in DNAm age and raise the possibility that different analytic
strategies may be necessary to best address questions concerning
how new-onset PTSD diagnoses versus chronic symptoms relate to
changes in DNAm age over time.

Aims and hypotheses

This study sought to investigate the health correlates of PTSD in
terms of changes in epigenetic aging over time. We examined the
relationship between PTSD and future changes in epigenetic age
acceleration over time using meta-analysis of longitudinal data from
seven cohorts contributing to the Psychiatric Genomics Consortium
(PGC) PTSD Epigenetics Workgroup (Ratanatharathorn et al.,
2017). The variedmethodological structures of these datasets allowed
us to ask multiple questions about the relationship between PTSD
and epigenetic age. Specifically, our first aim was to evaluate if the
association between Time 1 (T1) and Time 2 (T2) DNAm age
residuals was altered by the development of new-onset PTSD
between two time points. We expected that the association between
DNAm age residuals across two time points would be more positive
among those with new-onset PTSD at follow-up. Our second aim
was to examine whether the association between DNAm age resid-
uals at two time points varied as a function of change in PTSD
symptom severity (T2–T1). We also hypothesized that the associ-
ation between DNAm age residuals at two time points would be
stronger as the change in PTSD symptom severity increased. Both
hypotheses were tested bymodeling the association between DNAm
age residuals at T2 with the T1 DNAm age residuals × new-onset
PTSD and T1 DNAm age residuals × change in PTSD symptom
severity interaction terms, respectively, while adjusting for theirmain
effects and other covariates. These aims were addressed in a total of
1,367 individuals derived from 7 cohorts who were each assessed for
DNAm twice. The cohorts spanned both civilian and military sam-
ples and included research methods that were focused on pre/post
military deployment or pre/post trauma exposure, and those focused
on chronic PTSD symptoms. The former design allowed for the
examination of new-onset PTSD diagnoses over timewhile the latter
design allowed us to examine changes in PTSD symptom severity
over time in association with changes in DNAm age residuals. We
were unable to examine the changing rate of epigenetic aging over

time (e.g., Wolf et al., 2019) due to the structure of the contributing
datasets, which included many cohorts defined by pre/post trauma
exposure.

Analyses focused onHorvath age (Horvath, 2013) andGrimAge
(Lu et al., 2019) as they represent the most widely used and robust
metrics of biological age and time to death, respectively (sometimes
referred to as first- versus second-generation clocks). In addition,
these are the only DNAm age indices previously associated with
PTSD in small longitudinal studies (Boks et al., 2015; Hawn et al.,
2023; Mehta et al., 2022; Sumner et al., 2023;Wolf et al., 2023; Yang
et al., 2021). We also sought to limit the number of tests to reduce
the burden of multiple testing corrections and thus chose to limit
analyses to the strongest epigenetic age metrics with prior evidence
of longitudinal associations with PTSD.

Methods and materials

Participating studies

Seven participating cohorts were included in the meta-analysis.
The mean time between assessments within each study ranged
from 5.7 months to 5.6 years. The cohorts included: (1) The
Longitudinal National Center for PTSD (NCPTSD) cohort
(Wolf et al., 2023), a study of trauma-exposed Veterans (many
with chronic PTSD), who were assessed twice, an average of
5.6 years apart; (2) the Translational Research Center for TBI
and Stress Disorders (TRACTS) cohort (McGlinchey, Milberg,
Fonda, & Fortier, 2017), which consisted of post-9/11 Veterans
(many with chronic PTSD) who completed two assessments an
average of 1.9 years apart; (3) the Army Study to Assess Risk and
Resilience in Servicemembers (Army STARRS) (Ursano et al.,
2014), a study of military service members assessed pre- and
post-deployment to Afghanistan over an average of 9.6 months;
(4) the Marine Resiliency Study (MRS) cohort (Baker et al., 2012;
Nievergelt et al., 2015) of male USMarines assessed pre- and post-
deployment to Iraq or Afghanistan over a mean interval of
12.4 months; (5) the Prospective Research in Stress-related Mili-
tary Operations (PRISMO) cohort (Eekhout, Reijnen, Vermetten,
& Geuze, 2016; Reijnen, Rademaker, Vermetten, & Geuze, 2015)
of Dutch soldiers who were assessed pre- and post-deployment to
Afghanistan over an average of 14.4 months; (6) the Detroit
Neighborhood Health Study (DNHS) cohort (Goldmann et al.,
2011; Uddin et al., 2010) which consisted of trauma-exposed
Detroit residents (some with chronic psychiatric symptoms)
who completed two assessments an average of 16.3 months apart;
and (7) the Advancing Understanding of Recovery after Trauma
(AURORA) Study (McLean et al., 2020), which included individ-
uals evaluated at the emergency department following trauma
exposure who were reassessed an average of 5.7 months after
emergency department treatment. Table 1 lists the demographic
and clinical characteristics of each cohort. Each study site
obtained local IRB approval, and all participants provided written
informed consent. The IRB of the VA Boston Healthcare System
approved the meta-analyses of the summarized data. Individuals
interested in obtaining access to the data should contact the
principal investigator of each individual cohort to determine
availability.

DNA and DNAm procedures

DNAwas extracted from buffy coat from peripheral blood samples.
DNAm was measured using Illumina Infinium EPIC BeadChip at
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Table 1. Cohort characteristics

Study Description
Total Na

(% male) IT (Months)

Mean age (SD) N PTSD cases (%)
Mean harmonized PTSD
symptom severity (SD)

Measure of PTSD DX
and PTSD severity

T1 T2 Ancestry T1 T2
New
onsetb T1 T2 △b T1 T2

Longitudinal
NCPTSD1

Trauma-exposed Veterans
from mixed war eras

171 (87.13) 66.95 (46.42) 53.50 (11.60) 59.15 (12.13) EUR 71.93%
AAM 16.96%
LAT 1.17%
OTH 9.94%

83 (48.54) 82 (47.95) 26 (15.20) 0.31 (0.19) 0.28 (0.17) �0.03 (0.16) CAPS8 & CAPS–59 CAPS–59

TRACTS2 Post–9/11 Veterans assessed
twice following
deployment to Iraq and/or
Afghanistan

404 (89.36) 23.46 (11.09) 34.54 (9.47) 36.47 (9.36) EUR 64.85%
AAM 12.13%
LAT 7.43%
OTH 15.59%

223 (55.20) 201 (49.75) 31 (7.67) 0.36 (0.21) 0.34 (0.22) �0.01 (0.15) CAPS8 & CAPS–59 CAPS8 &
CAPS–59

Army STARRS3 US Army soldiers deployed to
Afghanistan

184 (100) 9.58 (1.65) 24.47 (4.84) 25.52 (4.98) EUR 67.93%
AAM 10.87%
LAT 11.41%
OTH 9.79%

0 (0) 92 (50.00) 92 (50.00) 0.03 (0.05) 0.22 (0.26) 0.19 (0.25) PCL10c & CIDI-SC11 PCL10

MRS4 US Marines deployed to Iraq
or Afghanistan

127 (100) 12.44 (2.69) 22.04 (2.22) 23.07 (2.18) EUR 69.29%
AAM 3.94%
LAT 11.03%
OTH 15.74%

0 (0) 64 (50.39) 64 (50.39) 0.12 (0.09) 0.33 (0.24) 0.21 (0.21) CAPS8 CAPS8 & PCL–513e

PRISMO5 Dutch Veterans deployed to
Afghanistan

112 (93.75) 14.39 (1.38) 27.04 (8.96) 27.86 (8.82) EUR 78.57%
AAM 3.57%
OTH 17.86%

0 (0) 32 (28.57) 32 (28.57) 0.16 (0.12) 0.30 (0.27) 0.14 (0.26) SRIP12 SRIP12

DNHS6 Trauma-exposed Detroit
residents

166 (37.35) 16.32 (6.22) 56.54 (14.68) 57.93 (14.79) EUR 10.84%
AAM 81.93%
OTH 7.23%

11 (6.63) 4 (2.41) 1 (0.60) 0.12 (0.24) 0.19 (0.25) 0.04 (0.32) PCL-C10 PCL-C10

AURORA7 Individuals who presented to
the ED within 72 hours
after exposure to
psychological trauma

203 (25.62) 5.71 (0.32) 40.47 (14.36) 40.94 (14.36) EUR 33.00%
AAM 64.04%
LAT 2.46%
OTH 0.50%

57 (28.08) 58 (28.57) 19 (9.36) 0.41 (0.19) 0.29 (0.22) �0.06 (0.23) PCL–513d PCL–513

Note: Superscripted numbers refer to the references for each cohort and PTSDmeasure: 1. Wolf et al. (2023); 2. McGlinchey et al. (2017); 3. Ursano et al. (2014); 4. Baker et al. (2012); Nievergelt et al. (2015); 5. Eekhout et al. (2016); Reijnen et al. (2015); 6. Goldmann et al.
(2011); Uddin et al. (2010); 7. McLean et al. (2020); 8. Blake et al. (1995); 9. Weathers et al. (2018); 10. Weathers et al. (1993); 11. Kessler et al. (2013); 12. Hovens, Bramsen, and Van Der Ploeg (2002); 13. Blevins et al. (2015).
Abbreviations: NCPTSD, TheNational Center for PTSDStudy; TRACTS, The Translational Research Center for TBI andStress Disorders Study; Army STARRS, The Army Study to Assess Risk andResilience in Servicemembers; MRS, TheMarine Resilience Study; PRISMO, The
Prospective Research in Stress-related Military Operations; DNHS, The Detroit Neighborhood Health Study; AURORA, The Advancing Understanding of RecOvery afteR traumA Study; IT, Intervening time; PTSD, posttraumatic stress disorder; DX, diagnosis; T1, time 1; T2,
time 2; ED, emergency department; EUR, European ancestry; AAM, African American ancestry; LAT, Latino ancestry; OTH, Other ancestries; PCL, PTSD Checklist for DSM-IV; PCL-5, PTSD Checklist for DSM-5; PCL-C, PTSD Checklist Civilian Version; DSM, Diagnostic and
statistical manual of mental disorders; CIDI-SC, Composite International Diagnostic Interview screening scales; CAPS, Clinician-Administered PTSD Scale for DSM-IV; CAPS-5, Clinician-Administered PTSD Scale for DSM-5; SRIP, Self-Report Inventory for PTSD;
△ = change in harmonized PTSD symptom severity (T2-T1); SD, standard deviation.
aSample sizes for computing cross-sectional and longitudinal correlations among DNAm age, DNAm age residuals, and DNAm-based cell type proportions.
bSample sizes for the new-onset PTSD diagnosis analysis and change in symptom severity analysis can be found in Figures 1 and 2. Compared to the total N, the sample size for the new-onset PTSD diagnosis analysis was reduced due to exclusion of PTSD cases at
baseline and missing values in PTSD diagnosis and covariates. The sample size for the change in symptom severity analysis was reduced due to missing values in PTSD symptom severity and covariates.
c6-item screening version of PCL.
dAbbreviated (six-item) civilian version of PCL-5.
eCAPS was used for determining PTSD DX and PCL-5 was used for assessing PTSD severity.
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two time points. DNAm data were processed following a quality
control (QC) pipeline developed by the PGC PTSD Epigenetics
Workgroup (Ratanatharathorn et al., 2017; and its updated version at
https://github.com/PGC-PTSD-EWAS/EPIC_QC). Details of QC
procedures are included in the Supplementary Materials. DNAm is
cell type-specific and thusDNAm levelsmay vary as a function of the
composition of the cell types the DNA was extracted from. Given
this, it is important to include proportional estimates of white
blood cell types as covariates in analyses (as is standard in DNAm
analyses). Proportions of six cell types (B cells, CD4+ T cells, CD8
+ T cells, natural killer cells, monocytes, and neutrophils) were
estimated directly from theDNAmdata using a reference library of
CpG sites aligned with sorted cells, as implemented in the Biocon-
ductor package EpiDISH (Teschendorff, Breeze, Zheng, & Beck,
2017). Of these, B cells, CD4+ T cells, CD8+ T cells, natural killer
cells, and monocytes were included as covariates in the analysis
(neutrophils are excluded because the proportional nature of the
estimates makes them colinear when all other cell types are
included in themodel). Because blood-basedmethylation is strongly
influenced by smoking, we computed aDNAm-based smoking score
based on 39 smoking-associated CpGs (Li et al., 2018;
Supplementary Material). As our outcome of interest is epigenetic
age acceleration at T2, the DNAm smoking score from T2 was
included as an additional covariate in a sensitivity analysis to
determine if our findings were driven by the effects of concurrent
smoking, which can co-occur with PTSD.

Genotyping was conducted on various arrays. Genotype data
cleaning was completed at each site according to the procedures
previously described in the original publications for each study
(Table 1). Ancestry was determined based on genotype data
(where available) using the pipeline developed by the PGC PTSD
(Nievergelt et al., 2019). Ancestry-based principal components
(PCs) were computed from 100,000 randomly selected common
single nucleotide polymorphisms (SNPs) with minor allele fre-
quency (MAF) > 0.05. When genotyping data were unavailable
(e.g., DNHS), methylation probes within 1 base pair of SNPs
for determining ancestry were used to generate a set of DNAm-
based ancestral PCs as proxies for genotype-based PCs (Barfield
et al., 2014). As noted from our previous meta-analysis study, the
DNAm-derived PCs are significantly correlated with genotype-
based PCs (Ratanatharathorn et al., 2017; Wolf, Maniates, et al.,
2018). Either the first three genotype-based PCs 1–3 or, when
genotype-based PCs were unavailable, the DNAm-based PCs 2–4,
were used as covariates in the analyses to account for ancestry.

Measures

PTSD measures
Current PTSD diagnosis and symptom severity were assessed using
various measures as listed in Table 1. Following a previous PGC
publication (Sumner et al., 2021), we harmonized PTSD symptom
severity across these different measures by scaling the raw current
PTSD severity score to a range from 0 to 1, representing the score as
a percentage of themaximumpossible score on eachmeasure (i.e., 1
represents an individual having all symptoms at the most severe
level and 0 indicates an individual having no symptoms). For this
study, we examined both new-onset PTSD diagnosis (e.g., no PTSD
at T1 and PTSD positive at T2 versus no PTSD at T1 and T2) and
changes in PTSD symptom severity (T2–T1) using the harmonized
PTSD score. For the new-onset PTSD diagnosis analyses, we only
included individuals who were negative for PTSD at T1, which

resulted in reductions in sample size in some of the studies that
included participants with chronic PTSD (Table 1). For the change
in PTSD severity analyses, we included all participants with PTSD
symptom severity data across all cohorts, regardless of PTSD
diagnostic status at baseline.

DNAm age indices
The Horvath DNAm age and GrimAge estimates were computed
by uploading the DNAm data to Dr. Horvath’s website (https://
dnamage.genetics.ucla.edu/) when permitted or by running the
scripts supplied by Drs. Horvath and Lu if methylation data were
not allowed to be uploaded per local regulations (Horvath, 2013; Lu
et al., 2019). Horvath’s algorithm has its own normalization and
imputation step, so rawDNAmvalues were used as the input for the
Horvath age calculation. Values from 353 probes were used to
generate Horvath age (Horvath, 2013). However, 17 (4.8%) of the
353 CpGs are missing from the EPIC chip (Dhingra et al., 2019).
A small number of additional missing probes from each cohort
were identified as summarized in the Supplementary Materials.
GrimAge estimates were generated using normalized and imputed
DNAm data. 30,084 probes were used as input for GrimAge cal-
culation (Lu et al., 2019).

Both Horvath age and GrimAge residuals were computed by
saving the unstandardized residuals from a linear model regressing
the raw DNAm age on chronological age. This was done for each
cohort at two time points separately, so the age residuals have a
mean of 0 for each cohort at each time point. An R script was
developed by the first author, tested with co-authors, and then sent
to the data analyst at each participating cohort site so that identical
calculation and analytic approaches would be applied in each
cohort. Summary statistics from each cohort were then meta-
analyzed to combine the results across studies.

Statistical analyses

We first examined the Pearson correlations between Horvath age
and GrimAge with chronological age at each corresponding time
point. We then assessed the correlations among Horvath age,
GrimAge, Horvath age residuals, and GrimAge residuals over time.
Correlations among cell types over time and between the two
DNAm age residuals and cell types were also evaluated. The cor-
relation coefficients collected from each group were meta-analyzed
using the metacor (Laliberté, 2022) package in R.

We conducted two primary regression analyses. The first focused
on examining how new-onset PTSD diagnosis at T2 (versus remain-
ing negative for PTSD at both time points) alone and in interaction
with T1 DNAm age residuals predicted T2 DNAm age residuals,
covarying for T1 DNAm age residuals and covariates. The second
analysis replaced new-onset PTSD diagnosis with change in PTSD
symptom severity over time. In both analyses, we first performed a
regression model without the interaction term to capture the main
effects of all predictors (all main effect coefficients reported are from
this initial model) and then added the interaction term into the
model. The interaction term examined the extent to which the
association between T1 DNAm age residuals and T2 DNAm age
residuals differed as a function of change in PTSD (diagnosis or
severity). A positive interaction term would indicate T2 DNAm age
residuals become more extreme than what would be predicted from
T1DNAm age residuals alone, as a function of the moderating effect
of changes in PTSD status. Thismore extreme alteration could occur
at both ends of the DNAm age residuals. In the primary linear

Psychological Medicine 5

https://doi.org/10.1017/S0033291725000558 Published online by Cambridge University Press

https://github.com/PGC-PTSD-EWAS/EPIC_QC
http://doi.org/10.1017/S0033291725000558
http://doi.org/10.1017/S0033291725000558
https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
http://doi.org/10.1017/S0033291725000558
https://doi.org/10.1017/S0033291725000558


regression models predicting T2 age residuals, the predictors in the
model wereDNAmage residuals at T1, new-onset PTSDdiagnosis at
T2 (or separately, change in PTSDsymptom severity), the interaction
between T1 DNAm age residuals and new-onset PTSD diagnosis
(or change in PTSD severity), and the following covariates: sex
(excluded if there was no variability in sex in a given sample), three
ancestry PCs, and five cell type proportion estimates at T2. Signifi-
cant associations were further examined in sensitivity analyses,
including DNAm-based smoking scores at T2 as an additional
covariate. Follow-upmodels evaluated the association between child-
hood trauma (predating T1) and changes in epigenetic age over time
(Supplementary Materials).

Meta-analysis of each unstandardized parameter estimate in the
regressionmodels (except ancestry PCs)was conducted in an inverse
variance-weighted random-effects model using the metafor package
in R (Viechtbauer, 2010). Results for each term were corrected for
multiple testing via the false discovery rate (FDR) adjustment
(Benjamini & Hochberg, 1995) across the two age algorithms.

Results

Associations between chronological age, DNAm age, and DNAm
age residuals

Chronological age was strongly correlated with both Horvath age
and GrimAge at each time point (meta rs = 0.86–0.89, meta
ps < 0.001; Supplementary Table S1). At the individual cohort level,
lower correlations were observed in ArmySTARRS and MRS
(Supplementary Table S1), which was likely due to the smaller
variance in chronological age in these cohorts (Table 1). Raw
Horvath age and GrimAge were also strongly associated with each
other at each time point (meta rs = 0.80 and 0.78 at T1 and T2,
respectively; Supplementary Table S1). However, Horvath age and
GrimAge residuals were weakly correlated with each other at each
time point (both meta rs = 0.09; Supplementary Table S1). Meta-
analysis revealed a strong correlation between the raw Horvath
age and GrimAge estimates with themselves across T1 and T2
(meta rs = 0.91 and 0.96, meta ps < 0.001; Table 2). The residuals
were also consistent over time: T1 versus T2 Horvath DNAm age
residuals meta-r = 0.65 and GrimAge residuals meta-r = 0.88
(Table 2).

Cell type proportions and their associations with DNAm age
residuals

Estimated cell type proportions were strongly related to themselves
over time. The estimated proportion of B cells showed the strongest
correlation over time (meta r = 0.75, meta p < 0.001), followed by
CD8+ T cells (meta r = 0.71, meta p < 0.001), natural killer cells
(meta r = 0.61, meta p < 0.001), CD4+ T cells (meta r = 0.61, meta
p < 0.001), and monocytes (meta r = 0.55, meta p < 0.001; Table 2).
Additionally, the cell type estimates were weakly correlated with
both Horvath age residuals and GrimAge residuals at each time
point, with meta-correlations ranging from �0.08 to 0.11 for
Horvath age residuals and from �0.21 to 0.05 for GrimAge resid-
uals (Supplementary Table S2).

New-onset PTSD diagnosis and change in DNAm age residuals
over time

We examined how T1 DNAm age residuals, new-onset PTSD diag-
nosis (between T1 and T2), and their interaction predicted T2
DNAm age residuals (n = 745). Meta-analysis revealed a significant
effect of T1 age residuals on T2 age residuals for both the Horvath
algorithm (meta β = 0.63, meta SE = 0.05, meta p = 3.63 × 10�37) and
GrimAge algorithm (meta β = 0.85, meta SE = 0.02, meta
p < 2.23 × 10�308; Table 3). New-onset PTSD diagnosis was not
associated with either T2 Horvath age residuals (meta β = �0.26,
meta SE = 0.24, meta p = 0.27) or T2 GrimAge residuals (meta
β = 0.22, meta SE = 0.13, meta p = 0.10; Table 3). Meta-analysis also
revealed that the T1 Horvath age residuals × new-onset PTSD
diagnosis interaction term was significantly associated with T2 Hor-
vath age residuals, after FDR correction for multiple testing across
the two algorithms (meta β = 0.16, meta SE = 0.07, meta p = 0.02, p-
adj = 0.03, I2 = 0; Table 3 and Figure 1). This means that the positive
association betweenHorvath age residuals at the two time points was
greater among those with new-onset PTSD diagnosis. When add-
itionally covarying for the smoking score, the interaction effect
remained significant (meta β = 0.17, meta SE = 0.07, meta
p = 0.02) while the smoking score was not associated with T2
Horvath age residuals (meta p = 0.11). This interaction association
was not significant for the GrimAge algorithm (meta p = 0.99;
Table 3). The association between the interaction term and T2

Table 2. Longitudinal correlations (T1 to T2) among DNAm age, DNAm age residuals, and cell type proportions

Cohort

DNAm age DNAm age residuals Cell type proportion estimates

Horvath Grim Horvath Grim CD8+ T CD4+ T NK B Cell Mono

Army STARRS 0.87 0.93 0.59 0.81 0.58 0.44 0.38 0.75 0.48

DNHS 0.96 0.98 0.78 0.92 0.84 0.72 0.72 0.81 0.69

Longitudinal NCPTSD 0.93 0.95 0.66 0.87 0.80 0.58 0.70 0.76 0.52

MRS 0.77 0.91 0.61 0.88 0.65 0.65 0.52 0.70 0.42

PRISMO 0.91 0.95 0.66 0.87 0.66 0.62 0.51 0.72 0.36

TRACTS 0.94 0.97 0.67 0.89 0.78 0.69 0.71 0.78 0.63

AURORA 0.91 0.98 0.48 0.89 0.58 0.51 0.64 0.71 0.65

Meta R
95% CI

0.91
0.87–0.94

0.96
0.94–0.98

0.65
0.57–0.71

0.88
0.85–0.90

0.71
0.62–0.79

0.61
0.53–0.68

0.61
0.51–0.70

0.75
0.72–0.78

0.55
0.45–0.63

Note: Correlations represent the Pearson correlation coefficients calculated between the same variable at T1 and T2. The 95% confidence intervals were computed for the meta-analytic
correlations. All meta-analytic correlations were significantly different from zero at a p-value threshold of 0.001, as determined by a t-test.
Abbreviations: CD8+ T, CD8+ T cell; CD4+ T, CD4+ T cell; NK, natural killer cell; Mono, monocyte; CI, confidence interval; Army STARRS, The Army Study to Assess Risk and Resilience in
Servicemembers; DNHS, The Detroit Neighborhood Health Study; NCPTSD, The National Center for PTSD Study; MRS, The Marine Resilience Study; PRISMO, The Prospective Research in Stress-
related Military Operations; TRACTS, The Translational Research Center for TBI and Stress Disorders Study; AURORA, The Advancing Understanding of RecOvery afteR traumA Study.
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Horvath DNAm age residuals was not driven by differences in the
baselineHorvath age residuals betweennew-onset PTSDcases versus
those who did not develop PTSD (meta p = 0.16; Supplementary
Table S3). This implies that those who developed PTSD at T2 did not
simply have higher DNAm age residuals at baseline. Full results for
each individual cohort can be found in Supplementary Tables S4 and
S5. Follow-up analyses revealed that childhood trauma was not
related to T2 DNAm age residuals (Supplementary Materials).

Change in PTSD symptom severity and change in Horvath DNAm
age residuals over time

We next examined if the relationship between Horvath DNAm age
residuals over time was moderated by change in PTSD symptom
severity over time (n = 1191) as a follow-up to the new-onset PTSD
diagnosis analysis. We included the main and interactive effects of
baseline Horvath age residuals and change in PTSD symptom

Meta (N = 745)

−0.5 0 0.5 1
β

AURORA (N=61)

TRACTS (N=179)

Longitudinal NCPTSD (N=87)

PRISMO (N=107)

MRS (N=127)

Army STARRS (N=184)

0.02 [−0.46, 0.50]

0.27 [−0.03, 0.56]

0.17 [−0.36, 0.70]

0.31 [−0.08, 0.69]

0.11 [−0.16, 0.39]

0.11 [−0.13, 0.35]

0.16 [ 0.03, 0.30]

Cohort (Sample Size) Estimate [95% CI]

Figure 1. Forest plot for the effect of the interaction term reflecting T1 Horvath DNAmage residuals by new-onset PTSD diagnosis on T2 Horvath DNAmage residuals (controlling for
all other main effects in the model).

Table 3. New-onset PTSD diagnosis as a predictor of T2 DNAm age residuals: main and interactive meta-analytic results

Variable

T2 Horvath age residuals T2 GrimAge residuals

Beta SE p p-adj Beta SE p p-adj

Intercept 1.082 0.687 0.115 NA 2.531 0.385 4.689 × 10�11 NA

Sex �0.604 0.854 0.479 0.959 �0.008 0.360 0.983 0.983

CD8+ T 3.549 2.664 0.183 0.183 �5.251 1.508 5.000 × 10�4 9.940 × 10�4

CD4+ T �0.603 2.590 0.816 0.816 �7.485 1.430 1.670 × 10�7 3.340 × 10�7

NK 0.081 4.475 0.986 0.986 �2.851 3.201 0.373 0.746

B cell �15.153 6.836 0.027 0.053 �5.771 5.099 0.258 0.258

Mono �5.916 5.216 0.257 0.257 �5.508 3.882 0.156 0.257

T1 DNAm Age residuals 0.626 0.049 3.631 × 10�37 3.631 × 10�37 0.854 0.022 <10�100 <10�100

New-Onset PTSD DX �0.264 0.238 0.268 0.268 0.216 0.130 0.098 0.196

T1 DNAm Age Residuals ×
New-Onset PTSD DX

0.164 0.068 0.016 0.033 �0.001 0.043 0.990 0.990

Note:Meta-analytic results from the individual cohort multiple regression linear models. Meta-analytic main effects are derived from the main (and covariate) effect only models in each cohort.
Meta-analytic interaction effects are derived from the models with the main and interaction effects. The top three ancestry principal components from each cohort were also included in the
model.
Abbreviations: CD8+ T, CD8+ T cell; CD4+ T, CD4+ T cell; NK, natural killer cell; Mono, monocyte; DX, diagnosis; SE, standard error; NA, not applicable; p-adj, p-value adjusted for multiple testing
across the two age algorithms using the false discovery rate (FDR) procedure.
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severity over time as a predictor of T2 Horvath age residuals (along
with covariates). The association between T1 and T2 Horvath age
residuals was significant (meta β = 0.63, meta SE = 0.05, meta
p = 6.42 × 10�31), but the change in PTSD symptom severity score
was not associated with T2 Horvath age residuals (meta β = 0.47,
meta SE = 0.63,meta p= 0.46). The interaction between T1Horvath

age residuals and change in PTSD symptom severity over time was
significantly associated with T2 Horvath DNAm age residuals
(meta β = 0.24, meta SE = 0.12, meta p = 0.05, I2 = 0; Table 4 and
Figure 2). The relationship between DNAm age residuals over time
became stronger (a steeper slope) among those with the greatest
increase in PTSD symptom severity from T1 to T2. The interaction
effect remained significant when further adjusting for the smoking
score (meta β = 0.25, meta SE = 0.12, meta p = 0.04), while the
smoking score was not associated with T2 Horvath age residuals
(meta p = 0.28). The association between the interaction term and
T2 Horvath age residuals was not accounted for by baseline differ-
ences in T1 Horvath age residuals as a function of change in PTSD
symptom severity (meta p = 0.41; Supplementary Table S3). Full
results for each individual study are listed in Supplementary
Table S6. Althoughwe did not find a significant interaction between
GrimAge residuals and new-onset PTSD diagnosis, we conducted
the change in PTSD severity analysis for GrimAge residuals for
completeness and report the (null) result in the Supplementary
Materials.

Discussion

The major goals of this study were to first test if individuals who
developed new-onset PTSD between two measurements showed
greater epigenetic aging than would be expected based on their
epigenetic aging at baseline from a time at which they did not meet
criteria for PTSD. The second aim was to examine if changes in
PTSD symptom severity moderated the strength of the association
between epigenetic aging at two time points among individuals with
and without PTSD. We expected that individuals with new-onset
PTSD and those with increased PTSD symptom severity over time

Table 4. Change (T2–T1) in PTSD severity as a predictor of T2 Horvath DNAm
age residuals: main and interactive meta-analytic results

Variable Beta SE p

Intercept 0.970 0.531 0.068

Sex �0.657 0.431 0.127

CD8+ T 4.195 2.156 0.052

CD4+ T �3.443 1.835 0.061

NK �2.352 3.604 0.514

B cell �11.567 4.119 0.005

Mono �3.070 4.344 0.480

T1 Horvath DNAm age residuals 0.629 0.054 6.415 × 10�31

△ PTSD severity 0.469 0.634 0.459

T1 Horvath DNAm age residuals ×△
PTSD severity

0.243 0.124 0.049

Note:Meta-analytic results from the individual cohortmultiple regression linearmodels. Meta-
analytic main effects are derived from the main (and covariate) effect only models in each
cohort. Meta-analytic interaction effects are derived from the models with the main and
interaction effects. The top 3 ancestry principal components were also included in the meta-
analysis. Δ = change (T2–T1).
Abbreviations: CD8+ T, CD8+ T cell; CD4+ T, CD4+ T cell; NK, natural killer cell; Mono,monocyte;
SE, standard error.

Meta (N = 1191)

−1.5 −0.5 0 0.5 1 1.5
β

AURORA (N=113)

DNHS (N=111)

TRACTS (N=401)

Longitudinal NCPTSD (N=166)

PRISMO (N=107)

MRS (N=127)

Army STARRS (N=166)

 0.12 [−0.60, 0.84]

 0.15 [−0.48, 0.77]

 0.35 [−0.19, 0.90]

−0.45 [−1.38, 0.48]

 0.60 [−0.22, 1.41]

 0.21 [−0.39, 0.82]

 0.37 [−0.15, 0.88]

 0.24 [ 0.00, 0.49]

Cohort (Sample Size) Estimate [95% CI]

Figure 2. Forest plot for the effect of the interaction term reflecting T1 Horvath DNAm age residuals by change in harmonized PTSD symptom severity on T2 Horvath DNAm age
residuals (controlling for all other main effects in the model).

8 Xiang Zhao et al.

https://doi.org/10.1017/S0033291725000558 Published online by Cambridge University Press

http://doi.org/10.1017/S0033291725000558
http://doi.org/10.1017/S0033291725000558
http://doi.org/10.1017/S0033291725000558
http://doi.org/10.1017/S0033291725000558
https://doi.org/10.1017/S0033291725000558


would show higherDNAmage residuals at follow-up thanwould be
expected based on DNAm age residuals at baseline. We evaluated
this question via meta-analysis of 7 cohorts. We found that, for
every one-year of advanced Horvath DNAm age at baseline, new-
onset PTSD cases evidenced an additional 0.16 years of epigenetic
aging per the Horvath algorithm at T2 compared to longitudinal
controls who did not develop PTSD at T2. In other words, those
with new-onset PTSD aged faster by an extra 1.9 months over the
time interval, which was on average approximately 18.9 months.
Furthermore, an individual experiencing a maximum possible
symptom severity change (from having no symptoms at all to
having all PTSD symptoms at the most severe level) would have
an additional 0.24 years of Horvath age acceleration at T2 com-
pared to an individual with no change in symptom severity score.
This implies that this group aged faster by an extra 2.9 months over
the time interval, which was on average approximately 21.3 months
for the symptom severity analyses.

To further facilitate the interpretation of our findings, we also
estimated the pooled standarddeviationof the change inharmonized
PTSD symptom severity scores across cohorts (SDpooled = 0.23).
This allows for the following interpretation of the interaction
term: for every one-year increase in Horvath age residuals at
baseline, an individual experiencing a pooled SD (23%) increase
in PTSD symptom severity at T2 would have an extra 0.68 months
of Horvath age acceleration over the average time interval of
21.3 months compared to an individual with no change in symp-
tom severity across the two time points. Although the observed
effect sizes were relatively small, the cumulative impact of PTSD
on epigenetic aging could become substantial over the course of a
lifespan given the inclusion of a large number of young Veterans
in their early 30s in thismeta-analysis (e.g., ArmySTARRS,MRS, and
TRACTS cohorts).

These results are consistent with our hypotheses that age accel-
eration is increased among individuals with new-onset PTSD and
increased symptom severity. No prior studies have examined inter-
actions between new-onset PTSD (or change in symptom severity)
by baseline age acceleration, however the structure of these data,
with numerous cohorts defined by pre- and post-trauma exposure,
made it critical to ask questions regarding hownew-onset diagnoses
would impact change in metrics of advanced DNAm age. It would
not be possible in these cohorts to use baseline PTSD diagnoses to
predict change in DNAm age residuals (or the rate of DNAm age
change per intervening year) as most individuals were negative for
PTSD at the pre-exposure timepoint.

Prior studies have found that PTSD symptom change is associ-
ated with changes in DNAm loci that also contribute to Horvath
DNAm age and could partially relate to the changes in Horvath
DNAm age observed in this study. Specifically, Katrinli et al. (2022)
modeled the association between post-deployment DNAm and
change in PTSD symptom severity (PTSS) conditioned on pre-
deployment DNAm and found 15 differentially methylated regions
(DMRs) associated with change in PTSS. The guanine nucleotide-
binding protein, alpha-stimulating activity polypeptide (GNAS)
complex locus was one of 15DMRs associated with PTSD symptom
changes and that locus includes a CpG site, cg14597908, which
also contributes to the Horvath age calculation (Horvath, 2013).
Differential methylation at GNAS has been linked with maternal
stress (Vangeel et al., 2015) and anxiety (Alisch et al., 2014, 2017),
suggesting that it may be sensitive to traumatic stress as well. In a
pig model,GNASwas also associated with cellular senescence (Jeon
et al., 2012). Thus, PTSD-related alterations in GNAS DNAm over
time could potentially influence the broader changes in advanced

epigenetic age observed in this study. Katrinli et al. also reported
that PTSS was associated with change in DNAm in genes involved
in immune processes and oxidative stress (Katrinli et al., 2022).
Alterations in these biological pathways, which also have known
associations with accelerated aging (Cevenini, Monti, & Franceschi,
2013), could impact the aging process and potentially contribute to
the effects observed in this study.

Our primary interaction effects suggested PTSD modulated the
slope of age acceleration over time, raising the question of whether
PTSD treatment could slow cellular aging and reduce the risk of
early onset of age-related disease. However, important challenges
exist when attempting to address this question. First, the strongest
predictor of follow-upDNAmage accelerationwas baselineDNAm
age acceleration, so after accounting for this effect, there may be
only a small amount of variance remaining to be predicted by
treatment. This would suggest that effects of PTSD treatment on
cellular aging would be small and sample sizes would need to be
large (possibly larger than most intervention trials) to observe an
effect. Second, DNAm age estimates may not be sensitive enough to
reflect changes in cellular age accurately over the course of a typical
12- or 18-week trial. The study would need to have sufficiently long
follow-up periods to observe reliable changes in the DNA methy-
lome. That said, pharmacological studies suggest some promise for
effects of treatment on epigenetic aging. For example, a study of
30 individuals with bipolar disorder and 30 healthy controls indi-
cated an association between the use of combination mood stabil-
izers (lithium carbonate, sodium valproate, and carbamazepine), in
contrast to either monotherapy or no medication, with decreased
Horvath age acceleration (Okazaki et al., 2020). In human neuro-
blastoma cells, lithium, valproate, and carbamazepine induced
hypermethylation at 377, 70, and 66 CpG sites, respectively, and
hypomethylation at 145, 37, and 14 CpG sites, respectively (Asai
et al., 2013). Similar studies are needed in PTSD samples to explore
the effect of PTSD treatments and their potential to alter the aging
methylome.

Our study also reported high correlations between DNAm age
estimates and age residuals with themselves over time, suggesting
the robustness of the two age calculators. Both GrimAge and
GrimAge residuals were more strongly correlated with themselves
over time than were those for the Horvath algorithm. This could be
due to its unique 2-step calculation, the inclusion of age and sex in
the model (Lu et al., 2019), or that the thousands of GrimAge
probes are collectively more stable than the smaller set of probes
included in the Horvath model. The stronger correlation between
GrimAge residuals over timemay be one reason we did not observe
a significant interaction between T1 GrimAge residuals and PTSD.
There simply may be little variance remaining in the outcome
after adjusting for the T1 GrimAge main effect. In addition, the
two models may capture different elements of the aging process
reflected by methylation and have differential relevance for PTSD-
related pathology.

This study also provided the opportunity to test the stability of
estimated white blood cell types over time. We found that the cell
type proportion estimates were strongly correlated with themselves
over time, particularly CD8+ T and B cells. This highlights the
robustness of the cell-type estimation algorithm and its value in
studying aging-related changes in cell-type composition.

Study limitations

Our results should be considered with several limitations in mind.
We did not adjust for intervening time in any analysis because there
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was little to no variability in time between assessments in the pre-
and post-deployment military cohorts. This makes it impossible to
determine how correlated measures of epigenetic age are over
shorter versus longer periods of time and how factors such as
severe, chronic PTSD (i.e., more symptoms over a longer period
of time) might alter accelerated aging. Data were only available at
two time points so we were unable to test if the pattern of change in
epigenetic age is constant or nonlinear over time. Given the absence
of baseline PTSD cases in the pre/post deployment samples, it was
impossible to explore the association between epigenetic aging and
baseline diagnosis and severity.

We did not assess intervening trauma or life stress across the two
time points across all cohorts so we could not adjust for new trauma
exposure/life stressors or substitute it for new-onset PTSD in our
analyses. Thus, we were not able to distinguish the effects of PTSD
from trauma or life stress as these variables are often correlated,
which is a common challenge. However, a number of prior studies
have suggested that PTSD, rather than trauma exposure alone
(which is near universal across populations), is more strongly
linked to advanced epigenetic age (Wolf et al., 2016, 2019; Wolf,
Logue et al., 2018). We suspect that it is the ongoing chronic
psychological and physiological stress associated with PTSD (e.g.,
startle, arousal, anger, and poor sleep) that may have a more direct
and sustained influence on physiological processes, including those
linked to epigenetic aging.

As information on participants’medical and pharmacy records
were not available, we were unable to identify their associations
with epigenetic aging or adjust for them in analyses. We were also
unable to adjust for lifestyle factors like body mass index and
substance misuse given that these data were not consistently avail-
able across cohorts. However, sensitivity analyses revealed that
smoking did not account for our primary associations of interest.
The error associated with the Horvath age algorithm (3.6-year
median absolute difference between the estimated and actual age
in the original test data; Horvath, 2013) was greater than the mean
time between assessments in some studies (e.g., theAURORA study
with a 5.7-month mean interval). It is possible that analyses in
cohorts with smaller intervals were more susceptible to measure-
ment error as the algorithm may not be sufficiently sensitive to
detect minor changes in methylation over a small period of time.
We chose not to analyze the recently developed DunedinPACE
metric (Belsky et al., 2022), which uses DNAm data from a single
time point to predict pace of aging because we wanted to calculate
the observed DNAm age at two timepoints andmeasure the change
in association between them. Due to the limited sample size of
civilian participants, we were not able to address whether or how
the military versus civilian nature of the samples might influence
the findings of this study. While the participants included in this
study are diverse in terms of sex, race, ethnicity, military versus
civilian status, and geography, they may still not fully represent any
particular population, potentially limiting the generalizability of
our findings. Finally, although our data are longitudinal, we can
make no claims as to a causal association between PTSD and
changes in epigenetic age.

Conclusions

This was the first meta-analysis and largest study to date of the
associations between PTSD and changes in DNAm age over time.
We found meta-analytic evidence across seven cohorts spanning
both military and civilian samples that new-onset PTSD diagnosis

and increases in PTSD symptom severity were associated with
greater age acceleration per the Horvath metric than would be
expected based on the baseline measure of age acceleration. This
adds to the growing body of evidence suggesting that stress-related
disorders may accelerate cellular aging, potentially contributing to
the association between traumatic stress and early onset of age-
related diseases, such as cardiovascular conditions (Vidal et al.,
2018) and dementia (Yaffe et al., 2010). This highlights the import-
ance of integrating our understanding of mental and physical
health even at the cellular level and underscores the tremendous
personal costs associated with traumatic stress.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725000558.
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