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F U L L N E S S O F M A P S 

ABRAHAM BOYARSKY* AND WILLIAM BYERS 

ABSTRACT. An example is given of a surjective map T : [0,1] —» 
[0,1] which takes every interval of [0,1] onto [0,1] eventually, but 
does not do so for certain other sets of positive measure. 

1. Introduction. Let I = [0,1], 38 = {A : A <= I, A Lebesgue measurable} and 
let A denote the Lebesgue measure on (I, 38). 

DEFINITION. Let T : I-+I be measurable and surjective. We say T is full if for 
all A e 38, A(A)>0, and T ( A ) , T2(A), , measurable, 

(1) l imA(r n (A) )= l 

holds. If (1) is true for any interval A c l , we say T is interval full 
In this note we prove the existence of a surjective map that is interval full 

but not full. The key to the construction lies in the observation that while 
topological conjugation preserves topological properties it does not preserve 
measure-theoretic properties. 

2. Main Results. Define the continuous surjective map T:I-*I as follows: 

3x, x 6 l ! = [0,è] 

2 - 3 x , x e I 2 = B,§] 

[ 3 x - 2 , x € l 3 = B , l ] 

(2) T ( X ) H 

LEMMA 1. r is interval full 

Proof. Let / = [«, 38] be any subinterval of I. If §e J, then since T( | ) = 0 and 
T(0) = 0 , rn(J) is an interval about 0 for all n = l , 2 , If r k ( / ) c [0 ,^ ] , 
k = 1 , . . . , n - 1 , then the length of rn(J) is 3 n _ 1 times the length of r(J) since 
f I [0,e] is given by r(x) = 3x. Thus for some n we must have ^ern(J). Then 
rn + 1(J) is an interval containing 0 and T@) = 1 and Tn+1(J) = [0,1]. On the 
other hand, if le J then rn(J) is an interval about 1 since T( | ) = 1 and T(1) = 1. 
Reasoning as above rn(J) must contain § for some n and then rn+1(J) = [0,1]. 

If now /<= Ji? î = 1, 2, or 3, then A (T( / ) ) = 3 A (J), since \dr/dx\ = 3 on each of 
the subintervals I1? J2, I3. If è or f € T ( J ) , we proceed as above to obtain the 
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result. If not, then we get À(T 2 ( J ) ) = 9 À ( J ) . More generally, 

A(Tk(J)) = 3kA(J), 

where /, r ( J ) , . . . . , rk(J) are all in one of Il912,13. The expansion, however, 
forces r l(7) to contain 5 or | for some /. Then we proceed as above. 

Q.E.D. 

Remark. The T defined above is an example of a piecewise linear map 
Markov map. In [1] it is shown that a class of non-linear Markov maps are 
interval full. 

Now, the standard ternary representation of the elements of the Cantor set % 
leads directly to the conclusion \T^€)^%. Recall % has Lebesgue measure 0. 
Let si be any Cantor set in I that has positive Lebesgue measure. 

LEMMA 2. There exists a homeomorphism <$> of I onto itself such that $ ( ^ ) = si. 

Proof. [2, p. 101]. 

PROPOSITION. Let a = $OT°<£> - 1 , where r is defined by (2) and $ is the 
homeomorphism of Lemma 2. Then ail-* I is interval full but not full. 

Proof. Let / be an interval. Then c/>_1(7) is an interval, and it follows that 
there exists an integer n such that Tn(<£_1(J0) = I, since r is interval full. Noting 
that <rn = $ ° T n ° f 1 , we have 

since <f> is a homeomorphism. Thus a is interval full. It is, however, not full, 
since for any integer n 

= <KTn(«))ç<K«), 

since T ( « ) C « . But <f>(cê) = sd. Thus, 

(Tn(si)^si. 

Since si has Lebesgue measure strictly less than 1, the conclusion follows. 
Q.E.D. 
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