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Strongly 0-dimensional Modules

Kürşat Hakan Oral, Neslihan Ayşen Özkirişci, and Ünsal Tekir

Abstract. In a multiplication module, prime submodules have the following property: if a prime sub-
module contains a finite intersection of submodules, then one of the submodules is contained in the
prime submodule. In this paper, we generalize this property to infinite intersection of submodules
and call such prime submodules strongly prime submodules. A multiplication module in which every
prime submodule is strongly prime will be called a strongly 0-dimensional module. It is also an ex-
tension of strongly 0-dimensional rings. After this we investigate properties of strongly 0-dimensional
modules and give relations of von Neumann regular modules, Q-modules and strongly 0-dimensional
modules.

1 Introduction

Let R be a commutative ring with identity and M be a unitary R-module. The nilrad-
ical of R is defined to be the set of all nilpotent elements of R and denoted by Nil(R).
It is known that the nilradical of R is equal to intersection of all prime ideals of R. For
any submodule N of M, the annihilator of M/N, denoted by (N :M), is the set of all
elements r in R such that rM ⊆ N. A submodule N of M is called prime if N 6= M
and rm ∈ N implies r ∈ (N :M) or m ∈ N for r ∈ R, m ∈ M. The set of all prime
submodules of M is denoted by Spec(M). It is known that for any ring R, the set of
prime ideals of R is non-empty if and only if R 6= (0). However, some modules have
no prime submodules and such modules are called primeless. Among examples of
primeless modules are the zero module and E(p), which is a Z-submodule of Q/Z
[7, Example]. An R-module M is called a multiplication module provided that for
each submodule N of M, there exists an ideal I of R such that N = IM. Note that
for an R-module M, the set of prime submodules is non-empty precisely when M is
a multiplication module. It is clear that M is a multiplication R-module if and only
if N = (N :M)M for every submodule N of M. By [2, Corollary 2.11], if M is a
multiplication module, then the submodule N of M is prime if and only if the ideal
(N :M) of R is prime. The radical of a submodule N is defined to be the intersection
of all prime submodules of M that contains N, and it is denoted by M-rad(N). A
submodule N of M is called nilpotent if (N :M)kN = 0 for some k ∈ Z+. We say that
m ∈ M is nilpotent if Rm is a nilpotent submodule of M. The nilradical of M is the
set of all nilpotent elements of M and denoted by Nil(M) [1]. If M is a faithful multi-
plication module, then Nil(M) = Nil(R)M =

⋂
Q, where the intersection runs over

all prime submodules of M [1, Theorem 6]. If M has no nonzero nilpotent elements,
then M is called reduced. Also, a submodule N of M is idempotent if N = (N :M)N
(see [1]).
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Let S be a multiplicatively closed subset of R and M be an R-module. Then
S−1M = {m

s | m ∈ M, s ∈ S} is a S−1R-module. Note that if M is a multipli-
cation R-module, then S−1M is a multiplication S−1R-module. If N is a submodule
of M and

√
(N :M) ∩ S = ∅, then S−1N is a proper submodule of S−1M [8, The-

orem 3.1]. Note that every submodule of S−1M is of the form S−1N, where N is a
submodule of M [8, Theorem 3.3]. Furthermore ([8, Theorem 3.4]),

Spec(S−1M) =
{

S−1P | (P :M) ∩ S = ∅ and P ∈ Spec(M)
}
.

Let R be a ring, I1, I2, . . . , Im a finite number of ideals of R, and P a prime ideal of
R such that

⋂m
i=1 Ii ⊆ P. Then, I j ⊆ P for some j ∈ {1, . . .m}. In [4], the authors

have recently generalized the above statement to infinite intersections. The authors
called a prime ideal P of R strongly prime if, for any index set S,

⋂
i∈S Ii ⊆ P implies

I j ⊆ P for some j ∈ S. And a ring is called strongly 0-dimensional if all prime ideals
are strongly prime ideals. Following this definition, it was shown that every strongly
0-dimensional ring is 0-dimensional. Further, it was proved that every Artinian ring
is a strongly 0-dimensional ring. Moreover, they gave the relations among strongly
0-dimensional rings, von Neumann rings, Q-rings, and compactly packed rings. In
a multiplication module, if a prime submodule contains any finite intersection of
submodules, then it has to contain at least one of them [6, Proposition 5]. Note that
this property is not valid for every module. For example, consider the Z-module
Z× Z. Indeed, (Z× 0)∩ (0× Z) ⊆ (0, 0), but (Z× 0) * Z× Z and (0× Z) * (0, 0).

In this paper we will generalize this concept to infinite intersection, and we will
call a prime submodule P strongly prime if

⋂
α∈S Nα ⊆ P implies Nβ ⊆ P for some

β ∈ S. A module M is said to be strongly 0-dimensional if all prime submodules
are strongly prime submodules. In the following section we give some characteriza-
tions of strongly 0-dimensional modules, and in the last section we investigate some
properties of von Neumann regular modules. After this we get a relation among von
Neumann regular modules, Q-modules, and strongly 0-dimensional modules.

2 Strongly 0-dimensional Modules

In this section we extend strongly 0-dimensional rings to multiplication modules.
With the above characterizations we will determine the relation between strongly
0-dimensional modules and strongly 0-dimensional rings.

Definition 2.1 Let M be a multiplication R-module, S be an index set, and Nα’s
be submodules of M for α ∈ S. A prime submodule P of M is said to be strongly
prime if

⋂
α∈S Nα ⊆ P implies Nβ ⊆ P for some β ∈ S. A multiplication module M

is said to be strongly 0-dimensional if all prime submodules of M are strongly prime
submodules.

Proposition 2.2 Every homomorphic image of a strongly 0-dimensional module is a
strongly 0-dimensional module.

Proof Let M be a strongly 0-dimensional R-module and let M ′ be any R-module.
Let f : M → M ′ be a module epimorphism. Suppose that

⋂
α∈S N ′α ⊆ P ′ for some
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submodules N
′

α and prime submodule P ′ of M ′. There exist submodules Nα and a
prime submodule P of M such that ker( f ) ⊆ Nα, ker( f ) ⊆ P and f (Nα) = N

′

α,
f (P) = P ′. Hence we obtain⋂

α∈S
N

′

α =
⋂
α∈S

f (Nα) = f
( ⋂
α∈S

Nα

)
⊆ P ′ = f (P).

Thus
⋂
α∈S Nα ⊆ P. Since M is strongly 0-dimensional, Nα ⊆ P for some α ∈ S.

Therefore, N
′

α = f (Nα) ⊆ f (P) = P ′ for some α ∈ S.

Corollary 2.3 Let M be an R-module and N a submodule of M. If M is a strongly
0-dimensional module, then M/N is a strongly 0-dimensional R/(N :M)-module.

Proof If M is a strongly 0-dimensional module, then so is M/N by Proposition 2.2.
And so M/N is a strongly 0-dimensional R/(N :M)-module by change of rings.

Theorem 2.4 Let M be a torsion-free R-module. If M is a strongly 0-dimensional
module, then M is a simple module.

Proof Suppose that M is a strongly 0-dimensional R-module. Let N be the intersec-
tion of all non-zero submodules Nα of M. Suppose for contradiction that N = 0.
Since M is a strongly 0-dimensional module and (0) is prime, we get that one of the
Nα = 0, this is a contradiction. Thus N 6= 0. Now let 0 6= m ∈ N. Since N is the
smallest non-zero submodule of M and Rm ⊆ N, we get Rm = N. Let 0 6= a ∈ R,
then Ram ⊆ Rm. Hence Rm = N = Ram. So there exists an r ∈ R such that
m = ram. Since M is torsion-free, we get a as a unit element of R. Thus R is a field,
and so M is a simple module.

Proposition 2.5 Every strongly 0-dimensional module is 0-dimensional.

Proof Let M be a strongly 0-dimensional module and P1 ⊆ P2 be two prime
submodules of M. Then by Corollary 2.3 we get M/P1 a strongly 0-dimensional
R/(P1 :M)-module. Since P1 is prime, M/P1 is torsion-free. Thus by Theorem 2.4,
M/P1 is a simple module. Hence P2/P1 = (0) and so P2 = P1.

Theorem 2.6 Every Artinian multiplication module is strongly 0-dimensional.

Proof Let M be an Artinian multiplication module and let
⋂
α∈S Nα ⊆ P for

some submodules Nα and prime submodule P of M. Since M is Artinian, we have⋂
α∈S Nα =

⋂n
i=1 Nαi for some finite subset {αi}n

i=1 of S, where n ∈ Z+. Then( ⋂
α∈S

Nα :M
)
=
( n⋂

i=1
Nαi :M

)
=

n⋂
i=1

(Nαi :M) ⊆ (P :M).

It follows that (Nαk :M) ⊆ (P :M) for some k ∈ Z+, since (P :M) is a prime ideal of
R. So (Nαk :M)M ⊆ (P :M)M. Since M is a multiplication module, Nαk ⊆ P for
some αk ∈ S. Hence M is a strongly 0-dimensional module.

Theorem 2.7 Let M be a finitely generated faithful multiplication R-module. Then
M is a strongly 0-dimensional module if and only if R is a strongly 0-dimensional ring.
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Proof Let M be a strongly 0-dimensional module and let
⋂
α∈S Iα ⊆ P for some

ideals Iα and prime ideal P of R. Then (
⋂
α∈S Iα)M ⊆ PM (here PM is a prime

submodule of M by [2, Corollary 2.11]). By using [2, Theorem 1.6(i)] we have⋂
α∈S(IαM) ⊆ PM. Since M is a strongly 0-dimensional module, IβM ⊆ PM for

some β ∈ S. Hence Iβ ⊆ P from [2, Theorem 3.1]. For the converse, suppose that
R is a strongly 0-dimensional ring and

⋂
α∈S Nα ⊆ P for some submodules Nα and

prime submodule P. Since M is a multiplication module, there exist ideals Iα and
prime ideal P such that Nα = IαM and P = PM. Thus we have

PM = P ⊇
⋂
α∈S

Nα =
⋂
α∈S

(IαM) =
( ⋂
α∈S

Iα
)

M,

and so we get
⋂
α∈S Iα ⊆ P. Since R is a strongly 0-dimensional ring, we get Iβ ⊆ P

for some β ∈ S. Hence Nβ = IβM ⊆ PM = P. Thus M is a strongly 0-dimensional
module.

Proposition 2.8 Let M be a multiplication R-module and S a multiplicative subset of
R. If M is a strongly 0-dimensional R-module, then S−1M is a strongly 0-dimensional
S−1R-module.

Proof Let
⋂
α∈T S−1Nα ⊆ S−1P for any submodules Nα and prime submodule P

of M. Since
S−1
( ⋂
α∈T

Nα

)
⊆
⋂
α∈T

S−1Nα ⊆ S−1P,

we have
⋂
α∈T Nα ⊆ P by [8, Theorem 3.3(i)]. Since M is a strongly 0-dimensional

module, Nβ ⊆ P for some β ∈ T. Thus we get S−1Nβ ⊆ S−1P for some β ∈ T.

3 Von Neumann Regular Modules and Strongly 0-dimensional
Modules

In this section we will examine von Neumann regular modules and describe the rela-
tion with strongly 0-dimensional modules. First, recall that an R-module M is called
von Neumann regular if and only if every cyclic submodule of M is a direct sum-
mand in M [5]. An element m ∈ M is called von Neumann regular if there exists
r ∈ (Rm :M) and a ∈ R such that m = ram [1]. In [1, Proposition 9], it is shown
that M is von Neumann regular if and only if every element of M is von Neumann
regular.

Proposition 3.1 ([1, Proposition 10]) Let R be a ring and M a faithful multiplication
R-module. If M is von Neumann regular, then dim(M) = 0 and Nil(M) = 0. The
converse is true if we assume that M is finitely generated.

Lemma 3.2 Let R be a ring, M an R-module, and K, L two submodules of M. For
each maximal ideal m of R, let Km and Lm be considered as Rm-submodules of Mm. If
Km = Lm for every m, then K = L.

Proof One can look for the proof in [9, p. 164, Corollary].
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Lemma 3.3 Let M be a multiplication R-module. If Mm is a strongly 0-dimensional
module for all maximal ideals m of R, then dim(M) = 0.

Proof Let P ⊆ Q for prime submodules P, Q of M such that (P :M) ⊆ (Q :M) ⊆
m for some maximal ideal m of R. Then we have Pm ⊆ Qm. Since Mm is strongly
0-dimensional, dim(Mm) = 0 by Proposition 2.5. So we get Pm = Qm. It follows
that P = Q by Lemma 3.2.

Theorem 3.4 Let M be a finitely generated faithful multiplication R-module. If M is
reduced and Mm is a strongly 0-dimensional module for all maximal ideals m of R, then
M is a von Neumann regular module.

Proof This follows from Lemma 3.3 and Proposition 3.1.

Theorem 3.5 Let M be a faithful multiplication R-module. If M is finitely generated,
then M is a von Neumann regular module if and only if every submodule N of M is
idempotent.

Proof Let M be a von Neumann regular module and N be a submodule of M. It is
clear that (N :M)N ⊆ (N :M)M = N. Now let m ∈ N. Then there exists an element
r ∈ (Rm :M) and a ∈ R such that m = ram. Since (Rm :M) ⊆ (N :M), we get
m = ram ∈ (N :M)N. Hence N = (N :M)N. Now for the converse, suppose that
every submodule is idempotent and let m ∈ M. Then Rm = (Rm :M) Rm. Thus
m ∈ (Rm :M)m, so we get m = rm for some r ∈ (Rm :M). Consequently M is a von
Neumann regular module.

Proposition 3.6 ([1, Corollary 11]) Let R be a ring and M a faithful multiplication
R-module. If R is von Neumann regular, then M is von Neumann regular, and the
converse is true if M 6= PM for all prime ideals P of R.

Note that if the faithful multiplication R-module M is finitely generated, then
M 6= PM for all prime ideal P of R by [2, Theorem 3.1].

Theorem 3.7 Let M be a faithful multiplication R-module. Consider the following
three statements:

(i) M is a von Neumann regular module.
(ii) Every primary submodule of M is a maximal submodule.
(iii) Every primary submodule of M is a minimal prime submodule.

If M is finitely generated, (i)⇒(ii)⇒(iii) is always true. And (iii)⇒(i) is true if M is a
reduced module.

Proof Let M be a finitely generated module.

(i)⇒(ii) Suppose that M is von Neumann regular and N is a primary submodule of
M. It is sufficient to verify that N is a prime submodule, because in a such case we
get N is a maximal submodule since M is von Neumann regular. Now let rm ∈ N for
some r ∈ R and m ∈ M. Then m ∈ N or rk ∈ (N :M) for some positive integer k. If
m ∈ N, we are done. If rk ∈ (N :M), then we get r = rxr = · · · = rkxk−1 ∈ (N :M)
for some x ∈ R, since R is a von Neumann regular ring. Thus N is a prime submodule
of M.
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(ii)⇒(iii) Suppose that every primary submodule of M is a maximal submodule.
Since every prime submodule is primary, there is no strict chain of prime submod-
ules. Thus every primary submodule is a minimal prime submodule.

Now assume that M is a reduced module.

(iii)⇒(i) Suppose that every primary submodule of M is a minimal prime sub-
module. Thus every prime submodule is a minimal prime submodule, and we get
dim(M) = 0. Since M is reduced, we have Nil(M) = 0. So by Proposition 3.1, M is a
von Neumann regular module.

Proposition 3.8 ([1, Proposition 14]) Let R be a ring and N a submodule of an
R-module M. Let H = {m ∈ M : (Rm :M)km ⊆ N for some positive integer k}. If
M is multiplication, then H is a submodule of M. Assuming further that M is finitely
generated, we get H = M-rad N.

Proposition 3.9 Let M be a finitely generated multiplication R-module and N a sub-
module of M. If M is a von Neumann regular module, then N = M-rad N.

Proof It is known that N ⊆ M-rad N. For the converse, let m ∈ M-rad N. Then
(Rm :M)km ⊆ N for some k ∈ Z+. Since M is von Neumann regular, there exists
r ∈ (Rm :M) and a ∈ R such that m = ram. From this we get m = ram = r2a2m =
· · · = rkakm, and thus m ∈ N.

Recall that an R-module M is said to be a Q-module if every proper submodule N
of M is of the form IM, where I is a finite product of primary ideals of R [3].

Lemma 3.10 ([1, Theorem 6]) Let R be a ring and M a faithful R-module.

(i) Nil(M) is a submodule of M.
(ii) Assuming M is multiplication, we get Nil(M) = Nil(R)M =

⋂
Q∈Spec(M) Q.

Theorem 3.11 Let M be a finitely generated faithful multiplication R-module. Then
M is a 0-dimensional Q-module if and only if M/Nil(M) is a Noetherian von Neumann
regular R/Nil(R)-module.

Proof Let M be a 0-dimensional Q-module, and so M/Nil(M) is a 0-dimensional
R/Nil(R)-module. Furthermore we get Nil(M/Nil(M)) = 0 from [1, Corol-
lary 7], and so M/Nil(M) is a von Neumann regular module by Proposition 3.1.
Now, since M is a Q-module, we get that R is a Q-ring by [3, Theorem 1]. Since
dim(M) = 0, we have dim(R) = 0. Thus R/Nil(R) is Noetherian from [4, Theo-
rem 2.12], and so M/Nil(M) is Noetherian. For the converse, let M/Nil(M) be a
Noetherian von Neumann regular R/Nil(R)-module. Then dim(M/Nil(M)) = 0
and Nil(M/Nil(M)) = 0 by Proposition 3.1. Since M/Nil(M) is Noetherian,

R/Ann(M/Nil(M)) = R/Nil(R)

is a Noetherian ring. Thus R/Nil(R) is a von Neumann regular ring by Proposition
3.6. Hence R is a 0-dimensional Q-ring by [4, Theorem 2.12]. Consequently, M is a
0-dimensional Q-module by [3, Theorem 1].
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Theorem 3.12 Let M be a faithful multiplication R-module. If M is finitely generated,
then M is a reduced strongly 0-dimensional module if and only if M is a Noetherian von
Neumann regular module.

Proof Let M be a reduced strongly 0-dimensional module. Since M is reduced,
Nil(M) = 0. Since M is strongly 0-dimensional module, dim(M) = 0 from Proposi-
tion 2.5. Now by Proposition 3.1, M is a von Neumann regular module. Now, since
Nil(M) = Nil(R)M = 0, we get Nil(R) = 0. That is, R is a reduced ring. Since M
is a strongly 0-dimensional module, R is a strongly 0-dimensional ring, and so by [4,
Theorem 2.10] R is Noetherian. Hence M is a Noetherian module. Conversely, let M
be a Noetherian von Neumann regular module. Then dim(M) = 0 and Nil(M) = 0.
So M is reduced. Since M is Noetherian, M is an Artinian module [9, p. 180, Theo-
rem 2]. Thus M is a strongly 0-dimensional module by Theorem 2.6.

Corollary 3.13 Let M be a finitely generated faithful multiplication R-module. If M
is reduced, then the following statements are equivalent:

(i) M is a strongly 0-dimensional module.
(ii) M is a Noetherian von Neumann regular module.
(iii) M is a 0-dimensional Q-module.
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