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Abstract

Let α be a complex-valued 2-cocycle of a finite group G with α chosen so that the α-characters of G
are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then
the real or rational elements of G that are also α-regular are characterised by the values that the irreducible
α-characters of G take on those respective elements. These new results generalise two known facts
concerning such elements and irreducible ordinary characters of G; however, the initial choice of α from
its cohomology class is not unique in general and it is shown the results can vary for a different choice.
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1. Introduction

Throughout this paper G will denote a finite group.

DEFINITION 1.1. A 2-cocycle of G over C is a function α : G × G→ C∗ such that
α(1, 1) = 1 and α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G.

The set of all such 2-cocycles of G forms a group Z2(G,C∗) under multiplication.
Let δ : G→ C∗ be any function with δ(1) = 1. Then t(δ)(x, y) = δ(x)δ(y)/δ(xy) for all
x, y ∈ G is a 2-cocycle of G, which is called a coboundary. Two 2-cocycles α and β
are cohomologous if there exists a coboundary t(δ) such that β = t(δ)α. This defines an
equivalence relation on Z2(G,C∗) and the cohomology classes [α] form a finite abelian
group, called the Schur multiplier M(G).

DEFINITION 1.2. Let α be a 2-cocycle of G. Then g ∈ G is α-regular if α(g, h) =
α(h, g) for all h ∈ CG(g).

Setting y = z = 1 in Definition 1.1 yields α(x, 1) = 1 and similarly α(1, x) = 1 for all
x ∈ G, hence 1 is α-regular. Let β ∈ [α]. Then g ∈ G is α-regular if and only if it is
β-regular. If g is α-regular then any conjugate of g is also α-regular, so one may refer
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to the α-regular conjugacy classes of G (see [3, Problem 11.4]). Finally, if m ∈ N is
relatively prime to o(g), then it is easy to show gm is α-regular.

DEFINITION 1.3. Let α be a 2-cocycle of G. Then an α-representation of G of
dimension n is a function P : G→ GL(n,C) such that P(g)P(h) = α(g, h)P(gh) for all
g, h ∈ G.

To avoid repetition all α-representations of G in this paper are defined over C. An
α-representation is also called a projective representation of G with 2-cocycle α and
its trace function is its α-character. Let Proj(G,α) denote the set of all irreducible
α-characters of G. The relationship between Proj(G,α) and α-representations is much
the same as that between Irr(G) and ordinary representations of G (see [4, page 184]
for details). The following known results concerning α-representations and characters
may all be found in [3, Problems 11.7 and 11.8] and [1, Sections 1 and 4]. First,∑
ξ∈Proj(G,α) ξ(1)2 = |G|. Next g ∈ G is α-regular if and only if ξ(g) � 0 for some
ξ ∈ Proj(G,α) and |Proj(G,α)| is the number of α-regular conjugacy classes of G. For
[β] ∈ M(G) there exists α ∈ [β] such that o(α) = o([β]) and α is class-preserving, that
is, the elements of Proj(G,α) are class functions. Henceforward it will be assumed
that the initial choice of 2-cocycle α has these two properties, but the choice made
within such 2-cocycles will affect the results obtained in Section 2. Under these
assumptions the ‘standard’ inner product 〈 , 〉 may be defined on α-characters of G
and the ‘normal’ orthogonality relations hold.

DEFINITION 1.4. Let g ∈ G. Then g is a real element if g is conjugate to g−1, and g is
a rational element if g is conjugate to gm for all m ∈ N with m relatively prime to o(g).

Clearly every rational element of G is real; also G contains a nontrivial real element
if and only if |G| is even. The next two theorems are standard results in ordinary
character theory concerning real and rational elements (see [3, Problems 2.11 and 2.12]
and [6, Exercise XVIII.14]).

THEOREM 1.5. Let g ∈ G. Then χ(g) is real for all χ ∈ Irr(G) if and only if g is a real
element.

THEOREM 1.6. Let g ∈ G. Then the following statements are equivalent:

(a) χ(g) is rational for all χ ∈ Irr(G);
(b) g is conjugate to gm for all m ∈ N with m relatively prime to |G|;
(c) g is a rational element.

In Section 2, these two results will be generalised to irreducible α-characters and
an α-regular real or rational element of G.

2. Values of α-characters

Let P be an α-representation of G of dimension n with α-character ξ. Then
P(g)P(g−1) = α(g, g−1)In for any g ∈ G, and hence P(g−1) = α(g, g−1)P(g)−1. It follows
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TABLE 1. α-character table of S4.

1 (1 2 3) (1 2 3 4)

ξ1 2 1 −
√

2
ξ2 2 1

√
2

ξ3 4 −1 0

that ξ(g−1) = α(g, g−1)ξ(g), where the bar denotes complex conjugation (see [5,
Lemma 1.11.11]).

THEOREM 2.1. Let α be a 2-cocycle of G and let g ∈ G be α-regular. Then g is a real
element if and only if ξ(g) = ±|ξ(g)|ω for all ξ ∈ Proj(G,α), where ω2 = α(g, g−1).

PROOF. Suppose g is real and let ξ ∈ Proj(G,α) such that ξ(g) � 0. Then
α(g, g−1)ξ(g) = ξ(g) and the choice of α from Section 1 implies α(g, g−1) is a
root of unity. Choose ω such that ω2 = α(g, g−1). Then ξ(g)2 = |ξ(g)|2ω2 and so
ξ(g) = ±|ξ(g)|ω.

Conversely, suppose ξ(g) = ±|ξ(g)|ω for all ξ ∈ Proj(G,α), where ω2 = α(g, g−1).
Then

∑

ξ∈Proj(G,α)

ξ(g)ξ(g−1) = α(g, g−1)ω2
∑

ξ∈Proj(G,α)

|ξ(g)|2 = |CG(g)|,

and hence by the second orthogonality relation for α-characters g is conjugate
to g−1. �

Let g ∈ G be α-regular. From Theorem 2.1, if α(g, g−1) = 1 or −1, then g is a
real element if and only if ξ(g) is real or purely imaginary, respectively, for all
ξ ∈ Proj(G,α). It should be noted that the root of unity ω that occurs in Theorem 2.1
depends upon the choice of α, as the next example illustrates.

EXAMPLE 2.2. Every element of the symmetric group S4 is rational and M(S4) is
cyclic of order 2. Also S4 has two Schur representation groups (also known as covering
groups) up to isomorphism (see [4, Theorem 12.2.2]). One is the binary octahedral
group and an α-character table of S4 for o(α) = 2 constructed from this group is given
in Table 1 (see [5, Theorem 5.6.4]). We deduce that α(g, g−1) = 1 for all α-regular
g ∈ S4. The other Schur representation group is GL(2, 3) and it is easy to check
that a β-character table of S4 for o(β) = 2 constructed from this group is identical
to Table 1 except that the three entries in the last column are multiplied by i, so
β((1 2 3 4), (1 2 3 4)−1) = −1.

Two variations of Theorem 2.1 are discussed next, the first of which is easy to see.

COROLLARY 2.3. Let α be a 2-cocycle of G and let g ∈ G be α-regular. Then g is a
real element if and only if ξ(g)2α−1(g, g−1) ∈ R≥0 for all ξ ∈ Proj(G,α).
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PROOF. Let ξ ∈ Proj(G,α) and suppose ξ(g)2α−1(g, g−1) = r for r ∈ R≥0. Then
r = |ξ(g)|2 and the result follows from Theorem 2.1. �

Suppose g is an α-regular real element of G. Then it was shown in Theorem 2.1 that
ξ(g) lies on a line in the complex plane of the form {rω : r ∈ R} for all ξ ∈ Proj(G,α),
where |ω| = 1. Conversely, this latter condition is sufficient to guarantee that an
α-regular element g of G is a real element.

COROLLARY 2.4. Let α be a 2-cocycle of G and let g ∈ G be α-regular. Then g is
a real element if and only if there exists an ω ∈ C such that ξ(g) = ±|ξ(g)|ω for all
ξ ∈ Proj(G,α).

PROOF. Suppose the second condition holds. Then, using the same argument as that at
the end of the proof of Theorem 2.1, it must be the case that the product of ω2 and the
root of unity α(g, g−1) is 1 and so g is a real element from Theorem 2.1. The converse
obviously holds from Theorem 2.1. �

Note that ω2 = α(g, g−1) from Theorem 2.1 or the proof of Corollary 2.4. So ω is a
|G|th root of unity if |G| is even (see [4, Theorem 10.11.1]). If |G| is odd, then just one
of ω and −ω is a |G|th root of unity.

Rational elements are now considered. Continuing with the notation at the start of
this section, an easy proof by induction shows P(g)m = fα(g, m)P(gm) for any g ∈ G
and any m ∈ N, where fα(g, 1) = 1 and

fα(g, m) = α(g, g) · · ·α(g, gm−1) for m > 1.

Let ζ be a primitive |G|th root of unity. Then ξ(g) ∈ Q[ζ] and is an algebraic integer
for any g ∈ G (see [5, Corollary 1.2.7]). If (m, |G|) = 1 then, as shown in the proof of
[2, Theorem 2],

ξ(gm) = f −1
α (g, m)σm(ξ(g)),

where σm is the automorphism of Q[ζ] over Q that maps ζ to ζm. The Galois group
of Q[ζ] over Q is abelian and σ−1 represents the restriction of complex conjugation
to Q[ζ]. Thus for all z ∈ Q[ζ], σm(z) = σm(z) and σm(|z|2) = |σm(z)|2. So |ξ(gm)|2 =
σm(|ξ(g)|2).

THEOREM 2.5. Let α be a 2-cocycle of G and let g ∈ G be α-regular. Then g is
conjugate to gm for all m ∈ N that are relatively prime to |G| if and only, if for all
ξ ∈ Proj(G,α),

(a) there exists a |G|th root of unity ω with ω2 = α(g, g−1) such that ξ(g) = ±|ξ(g)|ω
and

(b) either σm(|ξ(g)|) = |ξ(g)| and fα(g, m) = ωm−1, or σm(|ξ(g)|) = −|ξ(g)| and
fα(g, m) = −ωm−1.
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PROOF. Suppose g is conjugate to gm for all m ∈ N with (m, |G|) = 1. Then, in
particular, g is a real element of G from Theorem 1.6. Thus ξ(g) = ±|ξ(g)|ω for all
ξ ∈ Proj(G,α), where ω2 = α(g, g−1) by Theorem 2.1. If g = 1, then (a) and (b) hold
with ω = 1 and so, as previously noted, in all cases ω is a |G|th root of unity. By
supposition ξ(g) = ξ(gm) and so |ξ(g)|2 = σm(|ξ(g)|2) for all such m. Thus |ξ(g)|2 ∈ Q≥0.
Also

±|ξ(g)|ω = f −1
α (g, m)σm(±|ξ(g)|ω) = ± f −1

α (g, m)σm(|ξ(g)|)ωm,

and consequently

|ξ(g)| = f −1
α (g, m)σm(|ξ(g)|)ωm−1.

Nowσm(|ξ(g)|) = ±|ξ(g)|. For the positive sign the conclusion is fα(g, m) = ωm−1, since
ξ(g) � 0 for some ξ ∈ Proj(G,α), and similarly for the negative sign.

Conversely, suppose (a) and (b) are true for all m ∈ N with (m, |G|) = 1. Then

ξ(gm) = ± f −1
α (g, m)σm(|ξ(g)|)ωm,

with the sign corresponding to that of ξ(g) = ±|ξ(g)|ω. In either case, using (b),
∑

ξ∈Proj(G,α)

ξ(g)ξ(gm) = fα(g, m)ω1−m
∑

ξ∈Proj(G,α)

|ξ(g)|2 = |CG(g)|,

and hence by the second orthogonality relation g is conjugate to gm. �

Suppose α is trivial and g is conjugate to gm for all m ∈ N with (m, |G|) = 1. Then
with ω = 1, (a) in Theorem 2.5 implies that χ(g) is real for all χ ∈ Irr(G). In addition,
fα(g, m) = 1 for all such m, and so from (b), |χ(g)| ∈ Q. Thus χ(g) ∈ Q. Conversely, if
χ(g) ∈ Q for all χ ∈ Irr(G), then (a) and (b) in Theorem 2.5 obviously hold with ω = 1.
So Theorem 2.5 reduces to Theorem 1.6 in this case.

It is possible to replace (a) in Theorem 2.5 by: ‘(a)′ there exists an ω ∈ C such
that ξ(g) = ±|ξ(g)|ω and’. Suppose (a)′ and (b) hold. Then ω2 = α(g, g−1) from the
proof of Corollary 2.4. Theorem 2.5 will then still hold using this variation provided
ω is a |G|th root of unity, which is the case if |G| is even, using the remarks after
Corollary 2.4. Suppose |G| is odd and let γ denote the unique |G|th root of unity with
γ2 = α(g, g−1). Now fα(g, m) is a |G|th root of unity, and from (b), fα(g, m) = ±γm−1 or
±(−γ)m−1. Setting m = 1 and then 2 shows that fα(g, m) = γm−1, so ω must equal γ in
this situation.

Of course, using Theorem 1.6, the conditions in Theorem 2.5 are necessary and
sufficient for an α-regular element of G to be a rational element. Also Q can be
replaced by Z in either formulation of Theorem 2.5, since as previously noted ξ(g)
is an algebraic integer for all ξ ∈ Proj(G,α) and any g ∈ G. This yields the following
useful consequence of Theorem 2.5.

COROLLARY 2.6. Let α be a 2-cocycle of G and let g ∈ G be α-regular. If g is a
rational element, then ξ(g)2α−1(g, g−1) ∈ Z≥0 for all ξ ∈ Proj(G,α).
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