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Abstract

This is the second of a series of two papers dealing with local limit theorems in relatively
hyperbolic groups. In this second paper, we restrict our attention to non-spectrally
degenerate random walks and we prove precise asymptotics of the probability pn(e, e) of
going back to the origin at time n. We combine techniques adapted from thermodynamic
formalism with the rough estimates of the Green function given by part I to show that
pn(e, e) ∼ CR−nn−3/2, where R is the inverse of the spectral radius of the random
walk. This both generalizes results of Woess for free products and results of Gouëzel
for hyperbolic groups.

1. Introduction

Consider a finitely generated group Γ and a probability measure μ on Γ. We define the μ-random
walk on Γ, starting at γ ∈ Γ, as Xγ

n = γg1 . . . gn, where (gk) are independent random variables
of law μ in Γ. The law of Xγ

n is denoted by pn(γ, γ′). For γ = e, it is given by the convolution
powers μ∗n of the measure μ.

We say that μ is admissible if its support generates Γ as a semigroup. We say that μ is
symmetric if μ(γ) = μ(γ−1). Finally, if μ is admissible, we say that the random walk is aperiodic
if pn(e, e) > 0 for large enough n. The local limit problem consists in finding asymptotics of
pn(e, e) when n goes to infinity. In many situations, if the μ-random walk is aperiodic, one can
prove a local limit theorem of the form

pn(e, e) ∼ CR−nn−α, (1)

where C > 0 is a constant, R ≥ 1, and α ∈ R.
If Γ = Z

d and μ is finitely supported and aperiodic, then classical Fourier computations show
that pn(e, e) ∼ Cn−d/2 if the random walk is centered and pn(e, e) ∼ CR−nn−d/2 with R > 1 if
the random walk is non-centered. If Γ is a non-elementary Gromov-hyperbolic group and μ is
finitely supported, symmetric and aperiodic, then one has pn(e, e) ∼ CR−nn−3/2, with R > 1,
see [Gou14] and references therein.

Free products are a great source of examples for various local limit theorems, see, for example,
[Car88, Car89, CG12]. Woess proved in [Woe86] that for a special class of nearest-neighbor
random walks on free products, called the ‘typical case’ in [Woe00], one has a local limit of
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Local limit theorems in relatively hyperbolic groups II

the form (1), with α = 3/2. This ‘typical case’ should be considered informally as a situation
where the random walk only sees the underlying tree structure of the free product, and not what
happens inside the free factors. Thus, in some sense, this coefficient 3/2 is consistent with the
hyperbolic case [Gou14]. Our main goal in this series of two papers is to extend Woess’ results
to any relatively hyperbolic group.

We give more details on relatively hyperbolic groups in § 2.1. Recall for now that a finitely
generated group Γ is relatively hyperbolic with respect to a collection of subgroups Ω if it acts
via a geometrically finite action on a proper geodesic Gromov hyperbolic space X, such that
Ω is exactly the set of stabilizers of parabolic limit points for this action. Let Ω0 be a set of
representatives of conjugacy classes of elements of Ω. Such a set Ω0 is finite.

Let μ be a probability measure on a relatively hyperbolic group Γ. Denote by Rμ the
inverse of its spectral radius, that is, the radius of convergence of the Green function G(x, y|r),
defined as

G(x, y|r) =
∑
n≥0

pn(x, y)rn.

This radius of convergence is independent of x, y. Let H ∈ Ω0 be a parabolic subgroup. Denote
by pH the first return kernel to H associated to the measure Rμμ. Say that a probability
measure μ is spectrally degenerate along H ∈ Ω0 if the spectral radius of pH is one and that
μ is non-spectrally degenerate if, for every H ∈ Ω0, it is not spectrally degenerate along H.
This definition is independent of the choice of Ω0. It was introduced in [DG21] and appeared
to be crucial in the study of the stability of the Martin boundary of relatively hyperbolic
groups.

In part I, we introduced the notion of spectral positive recurrence and proved a weaker form
of (1) under this assumption, namely that there exists C such that

C−1R−nn−3/2 ≤ pn(e, e) ≤ CR−nn−3/2.

In this part II, we prove a precise local limit theorem like (1), with α = 3/2, for non-spectrally
degenerate measures on relatively hyperbolic groups. As it was proved in part I, non-spectrally
degenerate random walks are spectrally positive recurrent, so our assumptions here are stronger,
but we prove a more precise result. We insist on the fact that our methods in both papers are
very different and that this paper is not an enhanced version of part I, as it uses the results of
part I. We make further comments in § 2.3.

Our main goal is to prove the following.

Theorem 1.1. Let Γ be a non-elementary relatively hyperbolic group. Let μ be a finitely
supported, admissible, symmetric, and non-spectrally degenerate probability measure on Γ.
Assume that the corresponding random walk is aperiodic. Then, for every γ, γ′ ∈ Γ, there exists
Cγ,γ′ > 0 such that

pn(γ, γ′) ∼ Cγ,γ′R
−n
μ n−3/2.

If the μ-random walk is not aperiodic, similar asymptotics hold for p2n(γ, γ′) if the distance
between γ and γ′ is even and for p2n+1(γ, γ′) if this distance is odd.

This generalizes Woess’s results [Woe86] on free products and known results on hyper-
bolic groups (see [GW86, Lal93, GL13, Gou14]). As a corollary, we also obtain the
following.

Corollary 1.2. Let Γ be a non-elementary relatively hyperbolic group. Let μ be a finitely
supported, admissible, symmetric, and non-spectrally degenerate probability measure on Γ.
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Assume that the corresponding random walk is aperiodic. Denote by qn(x, y) the probability
that the first visit in positive time at y starting at x is at time n. Then,

qn(γ, γ′) ∼ Cγ,γ′R
−n
μ n−3/2.

In [Ger81], Gerl conjectured that if a local limit of the form pn(e, e) ∼ CR−nn−α holds
for a finitely supported random walk, then α is a group invariant. This conjecture was dis-
proved by Cartwright in [Car89]. He gave examples of local limit theorems on Z

d ∗ Z
d, with

α = d/2 and examples on the same groups with α = 3/2. Actually, if d �= 3, then one can only get
α = d/2 if d ≥ 5. There are some computations to explain why in [Car88] (see also [Woe00]). In
[DG21, Proposition 6.1], we gave a geometric explanation of this fact and proved that if a
parabolic subgroup H is virtually abelian of rank d ≤ 4, the random walk cannot be spec-
trally degenerate along H. As a particular case, we thus obtain the following corollary, for
low-dimensional Kleinian groups.

Theorem 1.3. Let Γ be the fundamental group of a geometrically finite hyperbolic manifold of
dimension n ≤ 5. Let μ be a finitely supported, admissible, and symmetric probability measure
on Γ. Assume that the μ-random walk is aperiodic. Then, for every γ, γ′ ∈ Γ, there exists Cγ,γ′ >
0 such that

pn(γ, γ′) ∼ Cγ,γ′R
−n
μ n−3/2.

If the μ-random walk is not aperiodic, similar asymptotics hold for p2n(γ, γ′) if the distance
between γ and γ′ is even and for p2n+1(γ, γ′) if it is odd.

Let us now give some details on the proofs. We have the same approach as Gouëzel and
Lalley in [GL13, Gou14] and we begin by explaining their work.

The first step in both papers is to obtain an asymptotic differential equation satisfied by
the Green function. Throughout this paper, we use the following notation: if two functions
f and g satisfy that there exists some constant C ≥ 0 such that f ≤ Cg, then we write f � g.
In addition, if f � g and g � f , then we write f � g. Whenever we need to be specific about the
constant, or about its dependence on some parameters, we write the full inequalities to avoid
being unclear. In [GL13, Gou14], the authors proved that

d2

dr2
G(e, e|r) �

(
d

dr
G(e, e|r)

)3

, (2)

the implicit constant not depending on r. Integrating these inequalities yields(
d

dr
G(e, e|r)

)−2

−
(
d

dr
G(e, e|Rμ)

)−2

� Rμ − r,

so that, assuming (d/dr)G(e, e|Rμ) = +∞ (which is proved in [GL13, Gou14]), one obtains

d

dr
G(e, e|r) � 1√

Rμ − r
.

The rigorous way to proceed is to transform these a priori estimates (2) into an equivalent when
r tends to Rμ, that is,

d2

dr2
G(e, e|r) ∼

r→Rμ

C

(
d

dr
G(e, e|r)

)3

. (3)

Once this is established, one can prove that

d

dr
G(e, e|r) ∼

r→Rμ

C ′√
Rμ − r

.
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Finally, one can obtain asymptotics of pn(e, e) from asymptotics of (d/dr)G(e, e|r) using Taube-
rian theorems and spectral theory. To go from (2) to (3), Lalley and Gouëzel used thermodynamic
formalism. Precisely, they use Cannon’s result and choose a finite automaton that encodes short-
lex geodesics in the hyperbolic group Γ. They then define some potential function depending on
r on the path space of this automaton, using the Green function. To prove that this potential
function is Hölder continuous, they use the strong Ancona inequalities (see § 2.4 for more details).
They then apply the Ruelle–Perron–Frobenius theorem to the associated transfer operator to
derive asymptotic properties of the first and second derivatives of the Green function, when r
tends to Rμ, which, in turn, leads to (3).

Brief outline of the paper
We first compile in § 2 the tools and results that are needed in the following. We also review
in § 3 the results of Sarig on thermodynamic formalism for countable shifts. The remaining
sections are devoted to adapting the proofs of Lalley and Gouëzel to the relatively hyperbolic
case.

Note that the first step, that is, obtaining an asymptotic differential equation satisfied by
the Green function, is given by the results proved in part I. Precisely, [Dus22, Theorem 1.5]
shows that (2) holds again in our situation. In the present paper, we mainly focus on the sec-
ond step, that is deriving a precise equivalent such as (3) from the a priori estimates (2).
We first give in §§ 4 and 5 an estimate for the first derivative of the Green function, in terms
of the spectral data of a suited transfer operator. We then give in § 6 an estimate of the
second derivative. Combining these two estimates leads to (3). There are several difficulties
here.

First, we do not have a finite automaton encoding geodesics. Anyway, geodesics are not so
much interesting for our purpose. Indeed, Ancona inequalities that are used in [GL13, Gou14]
to prove Hölder continuity do not hold along geodesics, but along relative geodesics in relatively
hyperbolic groups. On the other hand, we proved in part I that there exists an automaton with
finite set of vertices and countable set of edges that encodes relative geodesics, see precisely
[Dus22, Theorem 4.2]. We use this automaton instead.

However, the associated path space will not be finite but countable. We thus have to
use thermodynamic formalism for countable Markov shifts, which is more delicate to han-
dle than thermodynamic formalism for Markov shifts of finite type. For example, there
are situations where Ruelle–Perron–Frobenius theorem, which is a crucial tool in [Gou14],
does not hold for countable shifts. We thus prove that the Hölder continuous function
analogous to that introduced in [GL13, Gou14] is positive recurrent (using the terminol-
ogy of Sarig in [Sar99]), which is sufficient to mimic some of the arguments of Lalley and
Gouëzel.

Another difficulty is that the family of transfer operators (Lr)r≤Rμ we introduce does not
vary continuously in r for the operator norm. However, looking carefully at the proofs of
[GL13, Gou14], one only needs continuity of the spectral data associated to this family of oper-
ators. We use an enhanced version of perturbations results due to Keller and Liverani [KL99] to
prove this sort of continuity.

Finally, the last step, that is, getting the local limit theorem from the asymptotics of the
Green function, is a combination of Tauberian theorems and spectral theory. We are able to
use directly the results of [GL13] and so we have nothing to prove there to conclude. We also
deduce Corollary 1.2 from Theorem 1.1 using directly results of [GL13]. We give more details
in § 7.
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2. Some background

2.1 Relatively hyperbolic groups
We first recall definitions and basic properties of relatively hyperbolic groups. More details are
given in part I [Dus22]. Consider a finitely generated group Γ acting discretely and by isometries
on a proper and geodesic hyperbolic space (X, d). We denote the limit set of Γ by ΛΓ, that is, the
set of accumulation points in the Gromov boundary ∂X of an orbit Γ · o, o ∈ X. A point ξ ∈ ΛΓ
is called conical if there is a sequence (γn) of Γ and distinct points ξ1, ξ2 in ΛΓ such that γnξ
converges to ξ1 and γnζ converges to ξ2 for all ζ �= ξ in ΛΓ. A point ξ ∈ ΛΓ is called parabolic
if its stabilizer in Γ is infinite, fixes exactly ξ in ΛΓ and contains no loxodromic element. The
stabilizer of a parabolic limit point is called a (maximal) parabolic subgroup. A parabolic limit
point ξ in ΛΓ is called bounded parabolic if is stabilizer in Γ is infinite and acts cocompactly on
ΛΓ \ {ξ}. Finally, the action is called geometrically finite if the limit set only consists of conical
limit points and bounded parabolic limit points.

Definition 2.1. The group Γ is relatively hyperbolic with respect to Ω if it acts geometrically
finitely on such a hyperbolic space (X, d) such that the stabilizers of the parabolic limit points
are exactly the elements of Ω. In this situation, Γ is said to be non-elementary if its limit set is
infinite.

One might choose different spaces X on which Γ can act geometrically finitely. However,
different choices of X give rise to equivariantly homeomorphic limit sets ΛΓ. We call this limit
set the Bowditch boundary of Γ and we denote it by ∂BΓ.

Let Γ be a relatively hyperbolic group with respect to a collection of subgroups Ω. Let Ω0

be a set of representatives of conjugacy classes of elements of Ω. Such a set Ω0 is necessarily
finite, according to [Bow12, Proposition 6.15]. Fix a finite generating set S for Γ. Denote by
Γ̂ the Cayley graph associated with the infinite generating set consisting of the union of S and
of all parabolic subgroups H ∈ Ω0. Endowed with the graph distance, that we write d̂, the graph
Γ̂ is hyperbolic.

A relative geodesic is a geodesic in the graph Γ̂. A relative quasi-geodesic is a path of adjacent
vertices in Γ̂, which is a quasi-geodesic for the distance d̂. Following Osin [Osi06], a path is
called without backtracking if once it has left a coset γH, for H ∈ Ω0, it never goes back to
it. Relative geodesic and relative quasi-geodesic satisfy the following property, called the BCP
property.

Proposition 2.1 (BCP property). For all λ ≥ 1 and c ≥ 0, there exists a constant Cλ,c such
that for every pair (α1, α2) of relative (λ, c)-quasi geodesic paths without backtracking, starting
and ending at the same point in Γ, the following hold:

(i) if α1 travels more than Cλ,c in a coset, then α2 enters this coset;
(ii) if α1 and α2 enter the same coset, the two entering points and the two exit points are

Cλ,c-close to each other in Cay(Γ, S).

We need to study both geodesics in Cay(Γ, S) and relative geodesics in the following. We
use the following terminology. Let α be a geodesic in Cay(Γ, S) and let η1, η2 ≥ 0. A point γ on
α is called an (η1, η2)-transition point if for any coset γ0H of a parabolic subgroup, the part
of α consisting of points at distance at most η2 from γ is not contained in the η1-neighborhood
of γ0H.

Transition points are of great importance in relatively hyperbolic groups. They stay close to
points on relative geodesics in the following sense.
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Lemma 2.2 [Hru10, Proposition 8.13]. Fix a generating set S. For every large enough η1, η2 > 0,
there exists r ≥ 0 such that the following holds. Let α be a geodesic in Cay(Γ, S) and let α̂ be
a relative geodesic path with the same endpoints as α. Then, for the distance in Cay(Γ, S), any
(η1, η2)-transition point on α is within r of a point on α̂ and, conversely, any point on α̂ is within
r of an (η1, η2)-transition point on α.

2.2 Relatively automatic groups
Hyperbolic groups are known to be strongly automatic, meaning that for every generating set
S, there exists a finite directed graph G = (V,E, v∗) encoding geodesics. It is quite implicit in
Farb’s work [Far94, Far98], although not formally stated, that relatively hyperbolic groups are
relatively automatic in the following sense.

Let Γ be a finitely generated group and let Ω be a collection of subgroups invariant by
conjugacy and such that there is a finite set Ω0 of conjugacy classes representatives of subgroups
in Ω.

Definition 2.2. A relative automatic structure for Γ with respect to the collection of subgroups
Ω0 and with respect to some finite generating set S is a directed graph G = (V,E, v∗) with
distinguished vertex v∗ called the starting vertex, where the set of vertices V is finite and with
a labelling map φ : E → S ∪ ⋃

H∈Ω0
H such that the following holds. If ω = e1, . . . , en is a path

of adjacent edges in G, define φ(e1, . . . , en) = φ(e1) . . . φ(en) ∈ Γ. Then:

(i) no edge ends at v∗, except the trivial edge starting and ending at v∗;
(ii) every vertex v ∈ V can be reached from v∗ in G;
(iii) for every path ω = e1, . . . , en, the path e, φ(e1), φ(e1e2), . . . , φ(γ) in Γ is a relative geodesic

from e to φ(γ), that is, the image of e, φ(e1), φ(e1e2), . . . , φ(γ) in Γ̂ is a geodesic for the
metric d̂;

(iv) the extended map φ is a bijection between paths in G starting at v∗ and elements of Γ.

Note that the union S ∪ ⋃
H∈Ω0

H is not required to be a disjoint union. Actually, the inter-
section of two distinct subgroups H,H′ ∈ Ω0 can be non-empty. Also note that we require the
vertex set V to be finite. However, the set of edges is infinite, except if all subgroups H in Ω0

are finite.
If there exists a relative automatic structure for Γ with respect to Ω0 and S, we say that Γ

is automatic relative to Ω0 and S. The following was proved in part I.

Theorem 2.3 [Dus22, Theorem 4.2]. Let Γ be a relatively hyperbolic group and let Ω0 be a
finite set of representatives of conjugacy classes of the maximal parabolic subgroups. For every
symmetric finite generating set S of Γ, Γ is automatic relative to Ω0 and S.

Along the proof of this theorem, a lot of technical lemmas about relative geodesics were
proved in [Dus22]. We use some of them repeatedly in this paper, so we restate them for con-
venience. We use the same notation as previously and so we fix a relatively hyperbolic group
Γ and a finite set Ω0 of conjugacy classes of parabolic subgroups.

Lemma 2.4 [Dus22, Lemma 4.5]. For every K ≥ 0, there exists C ≥ 0 such that the follow-
ing holds. Let (x1, . . . , xn, . . .) and (x′1, . . . , x′m, . . .) be two infinite relative geodesics such that
d(x1, x

′
1) ≤ K and xn and x′m converge to the same conical limit point ξ. Then, for every j ≥ 1,

there exists ij such that d(xj , x′ij ) ≤ C.

Lemma 2.5 [Dus22, Lemma 4.16]. Let (e, γ1, . . . , γn) and (e, γ′1, . . . , γ′m) be two relative
geodesics. Assume that the nearest point projection of γ′m on (e, γ1, . . . , γn) is at γl. If there
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are several such nearest point projection, choose the closest to γn. Then, any relative geodesic
from γ′m to γn passes within a bounded distance of γl for the distance d. Moreover, if γl �= e,
then any relative geodesic from e to γ′m passes within a bounded distance of γl−1.

2.3 Spectrally degenerate measures
We now consider a group Γ, hyperbolic relative to a collection of subgroups Ω. We fix a finite
collection Ω0 = {H1, . . . ,HN} of representatives of conjugacy classes of Ω. We assume that Γ is
non-elementary. Let μ be a probability measure on Γ, Rμ the inverse of the spectral radius of
the μ-random walk and G(γ, γ′|r) the associated Green function, evaluated at r, for r ∈ [0, Rμ].
If γ = γ′, we simply use the notation G(r) = G(γ, γ|r) = G(e, e|r).

We denote by pk the first return transition kernel to Hk. Namely, if h, h′ ∈ Hk, then pk(h, h′)
is the probability that the μ-random walk, starting at h, eventually comes back to Hk and that
its first return to Hk is at h′. In other words,

pk(h, h′) = Ph(∃n ≥ 1, Xn = h′, X1, . . . , Xn−1 /∈ Hk).

More generally, for r ∈ [0, Rμ], we denote by pk,r the first return transition kernel to Hk for rμ.
Precisely, if h, h′ ∈ Hk, then

pk,r(h, h′) =
∑
n≥1

∑
γ1,...,γn−1

/∈Hk

rnμ(h−1γ1)μ(γ−1
1 γ2) . . . μ(γ−1

n−2γn−1)μ(γ−1
n−1h

′).

We then denote by p(n)
k,r the convolution powers of this transition kernel, by Gk,r(h, h′|t) the

associated Green function, evaluated at t and by Rk(r) the inverse of the associated spectral
radius, that is, the radius of convergence of the power series t 
→ Gk,r(h, h′|t). For simplicity,
write Rk = Rk(Rμ). If h = h′, we simply write Gk,r(t) = Gk,r(h, h|t) = Gk,r(e, e|t).

According to [Dus22, Lemma 3.4], for any r ∈ [0, Rμ], for any k ∈ {1, . . . , N},
Gk,r(h, h′|1) = G(h, h′|r).

In addition, because Γ is non-elementary, it contains a free group and, hence, is non-amenable.
It follows from a result of Guivarc’h (see [Gui80, p. 85, Remark b)]) that G(Rμ) < +∞. Thus,
Gk,Rμ(1) < +∞. In particular, Rk ≥ 1.

Definition 2.3. We say that μ (or, equivalently, the random walk) is spectrally degenerate
along Hk if Rk = 1. We say it is non-spectrally degenerate if, for every k, Rk > 1.

This definition was introduced in [DG21] to study the homeomorphism type of the Martin
boundary at the spectral radius. As explained in [Dus22, § 3.3], it should be thought of as a
notion of a spectral gap between the spectral radius of the random walk on the whole group
and the spectral radii of the induced walks on the parabolic subgroups. Very roughly speaking,
the random walk is not spectrally degenerate if the driving probability measure μ does not give
too much weight to the parabolic subgroups. Let us give more details on this intuition now. For
simplicity, we only consider the case of free products which was studied by Woess in [Woe86]
and by Candellero and Gilch in [CG12]. We first need to introduce some notation.

Let Γ = Γ0 ∗ Γ1 be a free product of two groups. Then, Γ is hyperbolic relative to the conju-
gates of the free factors Γ0 and Γ1. Consider a symmetric probability measure μ0, respectively
μ1, whose finite support generates Γ0, respectively Γ1. For any 0 < β < 1, set

μ = βμ1 + (1 − β)μ0.
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Then, μ is a symmetric probability measure whose finite support generates Γ. Such a probability
measure is called adapted to the free product structure: the random walk driven by μ can only
move inside one of the free factors at each step.

In this situation, the Green function Gμ of μ and the Green function Gμ0 of μ0 can be related
by the following formula. For every x, y ∈ Γ0, for every r ≤ Rμ,

Gμ(x, y|r)
Gμ(e, e|r) =

Gμ0(x, y|ζ0(r))
Gμ0(e, e|ζ0(r))

, (4)

where ζ0 is a continuous function of r, see [Woe00, Proposition 9.18] for an explicit formula. We
always have ζ0(Rμ) ≤ Rμ0 . A similar formula holds for x, y ∈ Γ1.

Actually, because μ is adapted to the free product structure, the first return kernel pΓ0,r can
be written as

pΓ0,r(e, x) = (1 − β)rμ0 + w0δe,x,

where w0 is the weight of the first return to e associated to rμ, starting with a step in Γ1. Thus,
[Woe00, Lemma 9.2] shows that for any x, y ∈ Γ0,

GΓ0,r(x, y|t) =
1

1 − w0t
Gμ0

(
x, y

∣∣∣∣ (1 − β)rt
1 − w0t

)
. (5)

In particular, for t = 1,

GΓ0,r(x, y|1) =
1

1 − w0
Gμ0

(
x, y

∣∣∣∣ (1 − β)r
1 − w0

)
and so we recover (4) with ζ(r) = ((1 − β)r)/(1 − w0).

Following Woess [Woe00], we call the situation where ζi(Rμ) < Ri (the inverse of the spectral
radius of μi) the ‘typical case’. We prove that the ‘typical case’ is exactly the case where the
measure is not spectrally degenerate.

Proposition 2.6. Consider an adapted random walk on a free product Γ = Γ0 ∗ Γ1. The
random walk is spectrally degenerate along Γ0 if and only if ζ0(Rμ) = Rμ0 .

Proof. Applying (5) to t = 1 + ε and r = Rμ, we obtain

GΓ0,Rμ(x, y|1 + ε) =
1

1 − w0(1 + ε)
Gμ0

(
x, y

∣∣∣∣ (1 − β)Rμ(1 + ε)
1 − w0(1 + ε)

)
.

If ε > 0, then
(1 − β)Rμ(1 + ε)

1 − w0(1 + ε)
>

(1 − β)Rμ
1 − w0

= ζ0(Rμ).

Thus, there exists t > 1 such that GΓ0,Rμ(x, y|t) is finite if and only if there exists z > ζ0(Rμ)
such that Gμ0(x, y|z) is finite, which concludes the proof. �

Hence, in the context of adapted random walks on free products, to check whether the random
walk is non-spectrally degenerate, one has to check whether ζi(Rμ) < Ri or not. This problem was
studied by Candellero and Gilch. More specifically, in [CG12, § 7], they construct both spectrally
degenerate and non-spectrally degenerate measures. In particular, in their example A, Γi = Z

di ,
where di ≥ 5. Then, if β is close enough to zero, the random walk is spectrally degenerate along
Γ0. Similarly, if β is close enough to one, the random walk is spectrally degenerate along Γ1. In
the middle case, the random walk is not spectrally degenerate.

Let us also mention their example F, where Γ0 = Z
5 and Γ1 = Z

6. They construct measures
μ0 and μ1 such that the adapted measure μ is spectrally degenerate for every β. More precisely,
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they show there exists a critical parameter βc such that the following classification holds. For
β < βc, μ is spectrally degenerate along Γ0 and is not spectrally positive recurrent. For β > βc, μ
is spectrally degenerate along Γ1 and is not spectrally positive recurrent. On the other hand, for
β = βc, μ is spectrally positive recurrent. This yields a random walk which is spectrally degen-
erate, but which is spectrally positive recurrent. In this situation, one has a local limit theorem
of the form (1) with α = 3/2. This leads to the conjecture that spectral positive recurrence is a
sufficient condition to obtain α = 3/2.

Unfortunately, it seems difficult to construct (non-)spectrally degenerate measures on
general relatively hyperbolic groups, so we do not know yet any example beyond free prod-
ucts, except low-dimensional Kleinian groups, according to Theorem 1.3. A reasonable approach
would be to try to adapt the method of Candellero and Gilch in the following way. Consider
a relatively hyperbolic group Γ and choose a parabolic subgroup H. Start with an admissible,
finitely supported and symmetric measure μ0 on Γ and an admissible, finitely supported and
symmetric measure μH on H. Define then μ = βμ0 + (1 − β)μH. One would expect μ to be spec-
trally degenerate along H for small enough β. However, to actually prove that it is spectrally
degenerate, one would need to prove a sort of continuity of the Green function and its derivatives
with respect to the driving measure, which would, in turn, require some new material. Similar
difficulties occur when trying to construct non-spectrally degenerate measures.

Finally, let us now recall some consequences of spectral degeneracy proved in [Dus22].
Let Γ be a relatively hyperbolic group. We introduce the following notation. We write

I(k)(r) =
∑

γ(1),...,γ(k)∈Γ

G(γ, γ(1)|r)G(γ(1), γ(2)|r) . . . G(γ(k−1), γ(k)|r)G(γ(k), γ′|r).

Then, I(k)(r) is related to the kth derivative of the Green function. For a precise statement, we
refer to [Dus22, Lemma 3.2]. For instance, we have the following.

Lemma 2.7 [Dus22, Lemma 3.1]. For every γ, γ′ ∈ Γ, for every r ∈ [0, Rμ], we have

d

dr
(rG(γ1, γ2|r)) =

∑
γ∈Γ

G(γ1, γ|r)G(γ, γ2|r).

If H is a parabolic subgroup, we also write

I
(k)
H (r) =

∑
γ(1),...,γ(k)∈H

G(γ, γ(1)|r)G(γ(1), γ(2)|r) . . . G(γ(k−1), γ(k)|r)G(γ(k), γ′|r).

Once Ω0 = {H1, . . . ,HN} is fixed, we also write I(k)
j (r) = I

(k)
Hj

(r) for simplicity.

One of the main results of part I is that whenever I(2)
H (r) < +∞ for every parabolic subgroup

H ∈ Ω0, then
I(2)(r) � (I(1)(r))3.

This is a consequence of the following result.

Proposition 2.8 [Dus22, Proposition 5.6]. For every r ∈ [0, Rμ), we have

I(2)(r)
I(1)(r))3

� 1 +
∑
j

I
(2)
j (r).

In particular, if μ is non-spectrally degenerate, then

I(2)(r) � (I(1)(r))3.
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The following results were also proved in part I. Note that we do not need to assume that
μ is non-spectrally degenerate.

Lemma 2.9 [Dus22, Lemma 5.4]. There exists some uniform C ≥ 0 such that for every
r ∈ [0, Rμ], for every m, ∑

γ∈Ŝm

H(e, γ|r) ≤ C.

Corollary 2.10 [Dus22, Corollary 5.5]. For every parabolic subgroup H ∈ Ω0 and every

r ∈ [0, Rμ], we have I
(1)
H (r) < +∞.

Finally, we also use the following.

Proposition 2.11 [Dus22, Proposition 5.8]. If μ is non-spectrally degenerate, then

d

dr |r=Rμ

G(e, e|Rμ) = +∞.

2.4 Relative Ancona inequalities
We consider a finitely generated group Γ, hyperbolic relative to a collection of subgroups Ω. Let
Ω0 be a finite set of representatives of conjugacy classes. We also consider a probability measure
μ on Γ, whose finite support generates Γ as a semigroup and denote by Rμ the inverse of its
spectral radius. As soon as Γ is non-elementary, it is non-amenable, so that Rμ > 1 according to
Kesten’s results [Kes59].

In the case where Γ is hyperbolic, Ancona proved that the Green function G is roughly
multiplicative along geodesics. Precisely, there exists C ≥ 1 such that if x, y, z are elements
along a geodesic in this order, then

1
C
G(x, y)G(y, z) ≤ G(x, z) ≤ CG(x, y)G(y, z). (6)

See [Anc88] for more details. The proof also works for the Green function evaluated at r, when
r < Rμ. Actually, the lower bound is always true, so that the content of Ancona inequalities
really is

G(x, z|r) ≤ CG(x, y|r)G(y, z|r).
In [Gou14], Gouëzel proved that these inequalities still hold at r = Rμ and that the constant
C is uniform in r, when the measure is symmetric. He also gave a strengthened version of them.
Namely, if x, x′, y, y′ are four points such that geodesics [x, y] from x to y and [x′, y′] from x′ to
y′ fellow travel for a time at least n, then for r ∈ [1, Rμ],∣∣∣∣G(x, y|r)G(x′, y′|r)

G(x′, y|r)G(x, y′|r) − 1
∣∣∣∣ ≤ Cρn, (7)

where C ≥ 0 and 0 < ρ < 1 are uniform (see [Gou14, Theorem 2.9]). This strengthened ver-
sion of Ancona inequalities was proved at r < Rμ in [INO08]. It was also already proved at
the spectral radius by Gouëzel and Lalley in the case of co-compact Fuchsian groups (see
[GL13, Theorem 4.6]). It allowed the authors to obtain Hölder regularity for Martin kernels on
the Martin boundary and then to use thermodynamic formalism to deduce local limit theorems
in hyperbolic groups in [Gou14, GL13].

Back to relatively hyperbolic groups, inequalities similar to (6) were obtained by Gekhtman,
Gerasimov, Potyagailo, and Yang in [GGPY21]. Recall that if α is a geodesic in the Cayley graph
Cay(Γ, S), a point on α is called a transition point if it is not deep in a parabolic subgroup. It is

773

https://doi.org/10.1112/S0010437X22007448 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007448


M. Dussaule

proved in [GGPY21] that if x, y, z are elements on a geodesic in this order and if y is a transition
point on this geodesic, then (6) holds. The proof actually works for G(·, ·|r) whenever r < Rμ.

Because of our automatic structure, it is more convenient for us to work with relative
geodesics rather than transition points on actual geodesics. We fix a generating set S and consider
the Cayley graph and the graph Γ̂ associated with S.

Definition 2.4. Let Γ be a relatively hyperbolic group and let μ be a probability measure on
Γ with Green function G. Let Rμ be the inverse of the spectral radius of μ. If r ∈ [1, Rμ], say that
μ satisfies the weak r-relative Ancona inequalities if there exists C ≥ 0 (which depends on r)
such that for every x, y, z ∈ Γ such that their images in Γ̂ lie in this order on a relative geodesic,

1
C
G(x, y|r)G(y, z|r) ≤ G(x, z|r) ≤ CG(x, y|r)G(y, z|r).

Say that μ satisfies the weak relative Ancona inequalities up to the spectral radius if it satisfies
the r-relative Ancona inequalities for every r ∈ [1, Rμ] with a constant C not depending on r.

We also need the following enhanced version of relative Ancona inequalities.

Definition 2.5. We say that two relative geodesics [x, y] and [x′, y′] c-fellow travel for a time
n, for some c ≥ 0, if there exist distinct points γ1, . . . , γn which are at distance in Cay(Γ, S) at
most c from points on [x, y] and points on [x′, y′].

Definition 2.6. Let Γ be a relatively hyperbolic group and let μ be a probability measure on
Γ with Green function G. Let Rμ be the inverse of the spectral radius of μ. If r ∈ [1, Rμ], say
that μ satisfies the strong r-relative Ancona inequalities if for every c ≥ 0, there exist C ≥ 0 and
0 < ρ < 1 such that if x, x′, y, y′ are four points such that relative geodesics [x, y] from x to y
and [x′, y′] from x′ to y′ c-fellow travel for a time at least n, then∣∣∣∣G(x, y|r)G(x′, y′|r)

G(x′, y|r)G(x, y′|r) − 1
∣∣∣∣ ≤ Cρn.

Say that μ satisfies the strong relative Ancona inequalities up to the spectral radius if it satis-
fies the strong r-relative Ancona inequalities for every r ∈ [1, Rμ] with constants C and ρ not
depending on r.

Remark 2.1. If μ satisfies the strong or weak relative Ancona inequalities, then the reflected
measure μ̌, defined by μ̌(γ) = μ(γ−1) also satisfies them. Indeed, if Ǧ is the Green function of
the reflected measure, then Ǧ(x, y) = G(y, x).

The following is proved in [DG21].

Theorem 2.12. Let Γ be a non-elementary relatively hyperbolic group and let μ be a symmetric
probability measure on Γ whose finite support generates Γ. Then μ satisfies both the weak and
strong relative Ancona inequalities up to the spectral radius.

Actually, these inequalities are stated in [DG21] using the Floyd distance, which is a suitable
rescaling of the distance in Cay(Γ, S). However, [GP16, Corollary 5.10] relates the Floyd distance
with transition points and Lemma 2.2 relates transition points with points on a relative geodesic.
We deduce the above theorem combining these two results with [DG21, Theorem 1.6].
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3. Thermodynamic formalism

3.1 Transfer operators with countably many symbols
We follow here the terminology of Sarig and recall some facts proved in [Sar99, Sar03]. We
consider a countable set Σ (the set of symbols), and a matrix A = (as,s′)s,s′∈Σ, with entries zeros
and ones (the transition matrix). We then define

Σ∗
A = {x = (x1, . . . , xn), xi ∈ Σ, n ≥ 0,∀i, axi,xi+1 = 1}

and

∂Σ∗
A = {x = (x1, . . . , xn, . . .), xi ∈ Σ,∀i, axi,xi+1 = 1}.

Note that in the definition of Σ∗
A, n can be zero, so that the empty sequence, that we denote by

∅, is in Σ∗
A. We also define

ΣA = Σ∗
A ∪ ∂Σ∗

A.

If s1, . . . , sk ∈ Σ, we define the cylinder [s1, . . . , sk] as {x ∈ ΣA, x1 = s1, . . . , xk = sk}.
Let T : ΣA → ΣA be given by

T ((x1, . . . , xn)) = (x2, . . . , xn)

if (x1, . . . , xn) ∈ Σ∗
A and

T ((x1, . . . , xn, . . .)) = (x2, . . . , xn, . . .)

if (x1, . . . , xn, . . .) ∈ ∂Σ∗
A. We call T the shift map and we call the pair (ΣA, T ) a Markov shift.

We say that the Markov shift is irreducible if for every s, s′ ∈ Σ, there exists Na,b such that
there exists x ∈ ΣA with x1 = s and x′ ∈ ΣA with x′1 = s′ such that TNa,bx = x′. In other words,
one can reach any cylinder [s′] from any cylinder [s] with a finite number of iterations of the
shift. We say it is topologically mixing if for every s, s′ ∈ Σ, there exists Na,b such that for every
n ≥ Na,b, there exists x ∈ ΣA with x1 = s and x′ ∈ ΣA with x′1 = s′ such that Tnx = x′.

In [Sar99], everything is stated only using ∂Σ∗
A. However, up to considering a ceme-

tery symbol x†, we can see finite sequences (x1, . . . , xn) in Σ∗
A as infinite ones, of the form

(x1, . . . , xn, x†, . . . , x†, . . .). Thus, we can apply the terminology and results of [Sar99] to ΣA. In
addition, for technical reasons, it will be convenient to assume that the empty sequence is not a
preimage of itself by the shift. This can be done, for example, using a second cemetery symbol.

We also define a metric on ΣA, setting d(x, y) = 2−n, where n is the first time that the two
sequences x and y differ.

If ϕ : ΣA → R is a function, define

Vn(ϕ) = sup{|ϕ(x) − ϕ(y)|, x1 = y1, . . . , xn = yn}.
For ρ ∈ (0, 1), such a function ϕ is called ρ-locally Hölder continuous if it satisfies

∃C,∀n ≥ 1, Vn(ϕ) ≤ Cρn.

It is called locally Hölder continuous if it is ρ-locally Hölder continuous for some ρ. Note that
nothing is required for V0(ϕ) and, in particular, ϕ can be unbounded. We can always change
the metric d on ΣA, defining dρ(x, y) = ρn, where n is the first time that the two sequences x
and y differ (and 0 < ρ < 1). A ρ-locally Hölder continuous function is then a locally Lipschitz
function for this new metric.
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If ϕ is locally Hölder continuous, we denote by ϕn =
∑n−1

k=0 ϕ ◦ T k its nth Birkhoff sum. We
also define its transfer operator Lϕ as

Lϕf(x) =
∑
Ty=x

eϕ(y)f(y).

It acts on several spaces of functions. We are interested in one in particular, described in the
following, on which the transfer operator has a spectral gap. By definition, we have

(Lnϕf)(x) =
∑

Tny=x

eϕn(y)f(y).

We also define, for s ∈ Σ,

Zn(ϕ, s) =
∑

Tnx=x
x1=s

eϕn(x).

For every s, (1/n) logZn(ϕ, s) has a limit P (ϕ, s). If the Markov shift is irreducible, then it is
independent of s and we denote it by P (ϕ). Moreover, P (ϕ, s) > −∞ and if ‖Lϕ1‖∞ < +∞,
then P (ϕ, s) < +∞. We refer to [Sar99, Theorem 1] for a proof. Independence of s is proved
under the assumption that the Markov shift is topologically mixing, although the proof only
requires that it is irreducible. We call P (ϕ, s) the Gurevic pressure of ϕ at s, or simply its
pressure.

We say that ϕ is positive recurrent if for every s ∈ Σ, there exist Ms ≥ 1 and λs > 0 such
that for every large enough n, Zn(ϕ, s)/λns ∈ [M−1

s ,Ms]. If it is the case, then one necessarily has
log λs = P (ϕ, s). The main result of [Sar99] is that positive recurrence is a necessary and sufficient
condition for convergence of the iterates of the transfer operator Lnϕ (see [Sar99, Theorem 4] for
a precise statement).

If the set of symbols Σ is finite, then every Hölder continuous function is positive recurrent.
Actually, we can say a little more in this case. The convergence of Lnϕ is exponentially fast.
Precisely, if the Markov shift is topologically mixing, there exist λ > 0, a positive function h and
a measure ν and constants C ≥ 0 and 0 < θ < 1 satisfying, for all ρ-Hölder continuous function
f and all n ∈ N, ∥∥∥∥λ−nLnϕf − h

∫
f dν

∥∥∥∥ ≤ Cθn‖f‖.

This is the so-called Ruelle–Perron–Frobenius theorem. Equivalently, λ is a positive eigenvalue
of the operator Lϕ acting on the space of Hölder continuous functions and the remainder of the
spectrum is contained in a disk of radius strictly smaller than λ. In other words, Lϕ acts on this
space with a spectral gap

When the set of symbols is countable, it can happen that the convergence is not expo-
nentially fast (see [Sar99, Example 1]). However, there are sufficient conditions for this to
hold, studied by Aaronson, Denker, and Urbański among others (see [ADU93, AD01]; see
also [Gou04]).

Definition 3.1. Say that the Markov shift (ΣA, T ) has finitely many images if the set

{T [s], s ∈ Σ}
is finite. Equivalently, there is only a finite number of different rows (and, thus, a finite number
of different columns) in the matrix A.
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Fix 0 < ρ < 1. Let β be the partition generated by the image sets, that is, β is the σ-algebra
generated by {T [s], s ∈ Σ}. Then, define for a ρ-locally Hölder continuous function f ,

Dρ,βf = sup
b∈β

sup
x,y∈b

|f(x) − f(y)|
dρ(x, y)

,

where we recall that dρ(x, y) = ρn, where n is the first time that the two sequences x and y differ.
Denote then ‖f‖ρ,β = ‖f‖∞ +Dρ,βf and define

Bρ,β = {f, ‖f‖ρ,β < +∞}.
Then, (Bρ,β , ‖ · ‖ρ,β) is a Banach space.

Having finitely many images is a sufficient condition to have a spectral gap on (Bρ,β , ‖ · ‖ρ,β).
Indeed, Mauldin and Urbański introduced in [MU01] the BIP property, which is automatically
satisfied if the shift has finitely many images. Moreover, they proved that the BIP property is a
sufficient condition for locally Hölder functions to have a Gibbs measure, whereas Sarig proved
in [Sar99] that having a Gibbs measure is a sufficient condition to be positive recurrent and to
have a spectral gap. In particular, we have the following two results.

Proposition 3.1. Let (ΣA, T ) be a topologically mixing countable Markov shift having finitely
many images. Let ϕ be a locally Hölder continuous function with finite pressure P (ϕ). Then,
ϕ is positive recurrent.

Proof. As ϕ is locally Hölder, the sum∑
n≥1

Vn(ϕ) =
∑
n≥1

sup{|ϕ(x) − ϕ(y)|, x1 = y1, . . . , xn = yn} ≤ C
∑
n≥1

ρn

is finite. Thus, [Sar03, Theorem 1] shows that ϕ has a Gibbs measure. Consequently,
[Sar99, Theorem 8] shows that ϕ is positive recurrent. �
Theorem 3.2 Sarig [Sar03, Corollary 3] and [Sar99, Theorem 4]. Let (ΣA, T ) be a topologi-
cally mixing countable Markov shift having finitely many images. Let ϕ be a locally Hölder
continuous function with finite pressure P (ϕ). Then there exist a σ-finite measure ν and a func-
tion h bounded away from zero and infinity such that L∗

ϕν = eP (ϕ)ν and Lϕh = eP (ϕ)h. There
also exist C ≥ 0 and 0 < θ < 1 such that for every f ∈ Bρ,β ,∥∥∥∥e−nP (ϕ)Lnϕf − h

∫
f dν

∥∥∥∥
ρ,β

≤ Cθn‖f‖ρ,β .

Moreover, ν is supported on ∂Σ∗
A and both measures ν and m defined by dm = h dν are ergodic.

The fact that ν is ergodic is not stated in Corollary 3 but in Corollary 2 of [Sar03]. Ergodicity
of m follows (see the remarks after [Sar99, Theorem 4]). Finally, the fact that h is bounded away
from zero and infinity is deduced from the fact that the shift has finitely many images, see
[Sar99, Proposition 2].

Actually, we never really use the ‖ · ‖ρ,β norm and all our bounds in the following are on the
ρ-Hölder norm, that is, we both bound ‖ · ‖∞ and Dρ, which is defined by

Dρf = sup
x,y∈ΣA

|f(x) − f(y)|
dρ(x, y)

.

Obviously, a bound onDρ is stronger than a boundDρ,β . Moreover, when boundingDρf , we have
to bound |f(x) − f(y)|/dρ(x, y). We always assume that x and y start with the same element,
otherwise d(x, y) = ρ and one can, thus, bound |f(x) − f(y)|/dρ(x, y) by 2ρ−1‖f‖∞.
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One issue we have to deal with, when applying these results to random walks on relatively
hyperbolic groups in the next subsection, is that our Markov shift will not be topologically
mixing. It will not even be irreducible (but will have only finitely many recurrent classes). This
issue was already addressed in [Gou14] for a Markov shift with finitely many symbols, as we now
explain.

In the following, we consider a countable Markov shift (ΣA, T ) with set of symbols Σ and
transition matrix A and we assume that it has finitely many images. If the Markov shift is
irreducible, but not topologically mixing, then there is a minimal period p > 1 such that for any
symbol s ∈ Σ, if T−n[s] ∩ [s] �= ∅, then n = pk for some k ≥ 0. Then, one can decompose the set
of symbols as a finite union Σ = Σ(1)

A � Σ(2)
A � · · · � Σ(p)

A , such that for i ∈ Z/pZ, if as,s′ = 1 and
s ∈ Σ(i), then s′ ∈ Σ(i+1). We call such a decomposition a cyclic decomposition. We denote by
Σ(i)
A the subset of ΣA of sequences that begin with an element of Σ(i)

A , so that the shift map

T maps Σ(i)
A to Σ(i+1)

A . Moreover, in this case, T p acts on Σ(i)
A and the induced Markov shift is

topologically mixing. Using this decomposition together with Theorem 3.2, we get that if ϕ is
locally Hölder continuous function with finite pressure P (ϕ) and if the Markov shift has finitely
many images, then there are positive functions h(i) on Σ(i)

A and probability measures ν(i) on Σ(i)
A

with
∫
h(i)dν(i) = 1 such that for f ∈ Bρ,β ,∥∥∥∥e−nP (ϕ)Lnϕf −

p∑
i=1

h(i)

∫
f dν((i−n) mod p)

∥∥∥∥
ρ,β

≤ Cθn‖f‖ρ,β .

Assume that the Markov shift is not irreducible. Then, because it has finitely many images,
one can first decompose Σ as Σ = ΣA,0 � ΣA,1 � · · ·ΣA,q, such that if a path starts at s ∈ ΣA,0,
then it never reaches s again and for s, s′ ∈ Σ, one can reach s′ starting at s and conversely if
and only if s and s′ are in the same subset ΣA,j , j ≥ 1. More formally, the decomposition of
Σ satisfies the following properties.

(i) If s ∈ ΣA,0, then for all n ≥ 1, T−n[s] ∩ [s] = ∅.
(ii) If there exist n, n′ such that T−n[s] ∩ [s′] �= ∅ and T−n′

[s′] ∩ [s] �= ∅, then there exists j ≥ 1
such that s, s′ ∈ ΣA,j .

(iii) Conversely, if s, s′ lie in the same ΣA,j , j ≥ 1, then there exist n, n′ such that T−n[s] ∩ [s′] �= ∅
and T−n′

[s′] ∩ [s] �= ∅.
We call ΣA,0 the transient component of Σ and the sets ΣA,j , j ≥ 1, the biconnected components
of Σ. All the non-trivial dynamical behavior of the Markov shift happens in the biconnected
components. We denote by ΣA,j the subset of ΣA of sequences x that stay in ΣA,j , that is, for
every n, xn ∈ ΣA,j . We similarly call the sets ΣA,j , j ≥ 1 the biconnected components of ΣA.

Then, ΣA,j is stable under the shift map T and we can apply the above discussion to ΣA,j . If
ϕ is a locally Hölder continuous function on ΣA, denote by ϕj its restriction to the component
ΣA,j , with associated transfer operator Lϕj . Denote the pressure of ϕj by Pj(ϕ). Then, Lϕj has
a spectral gap and ePj(ϕ) is its dominant eigenvalue. Let P (ϕ) be the maximum of all the Pj(ϕ)
and call a component ΣA,j maximal if Pj(ϕ) = P (ϕ).

Definition 3.2. We say that ϕ is semisimple if one cannot reach a maximal component from
another. That is, for every two maximal components ΣA,j , ΣA,j′ , j �= j′, for any two symbols
s ∈ ΣA,j , s′ ∈ ΣA,j′ , for any n ≥ 1, T−n[s] ∩ [s′] = ∅.

Elaborating on ideas of Calegari and Fujiwara from [CF10], Gouëzel proved in [Gou14] a
spectral gap theorem for the transfer operator of a semisimple Hölder continuous function, when
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the set of symbols is finite. His proof works for a countable set of symbols, if the Markov shift has
finitely many images and the Hölder continuous function is positive recurrent, because it is based
on a spectral decomposition over the sets ΣA,j , on which one applies the Ruelle–Perron–Frobenius
theorem (that we replace here with Theorem 3.2). Thus, combining Theorem 3.2 and the proof
of [Gou14, Theorem 3.8], we obtain the following.

Theorem 3.3. Let (ΣA, T ) be a countable Markov shift with finitely many images. Let ϕ be a
locally Hölder continuous function with finite maximal pressure P (ϕ). Assume that ϕ is semisim-
ple. Denote by ΣA,1, . . .ΣA,k the maximal components, with corresponding period p1, . . . , pk and
consider a cyclic decomposition

ΣA,j = Σ(1)
A,j � · · ·Σ(pj)

A,j .

Then, there exist functions h
(i)
j and probability measures ν

(i)
j with

∫
h

(i)
j dν

(i)
j = 1 and such that

L∗
ϕν

(i)
j = ν

(i−1) mod pj

j and Lϕh(i)
j = h

(i−1) mod pj

j . Moreover, for f ∈ Bρ,β ,∥∥∥∥e−nP (ϕ)Lnϕf −
k∑
j=1

pj∑
i=1

h
(i)
j

∫
f dν

((i−n) mod pj)
j

∥∥∥∥
ρ,β

≤ Cθn‖f‖ρ,β ,

for some C ≥ 0 and 0 < θ < 1. Finally, the functions h
(i)
j are bounded away from zero and infinity

on the support of ν
(i)
j .

We also obtain the following result, again proved in [Gou14] for finite sets of symbols, which
applies in our situation (see [Gou14, Lemma 3.7]).

Lemma 3.4. Let (ΣA, T ) be a countable Markov shift with finitely many images. Let ϕ be a
locally Hölder continuous function with finite maximal pressure P (ϕ). Let s ∈ Σ and assume that
there is a path starting with s that visits k maximal components. Then, for any non-negative
function f with f ≥ 1 on the set of paths starting with s, one has

Lnϕf(∅) ≥ Cnk−1enP (ϕ),

where we recall that ∅ is the empty sequence in Σ∗
A. In particular, for k = 2, if ϕ is not semisimple,

then

Lnϕ1(∅) ≥ CnenP (ϕ).

3.2 Perturbation of the pressure
In [Gou14], Gouëzel proves a perturbation theorem for finite sets of symbols (see precisely [Gou14,
Proposition 3.10]). Its proof remains valid for countable shifts with finitely many images. Denote
by |||·|||ρ,β the operator norm for operators acting on (Bρ,β , ‖ · ‖ρ,β). To apply Gouëzel’s pertur-
bation theorem, one needs to control |||Lϕ − Lψ|||ρ,β . However, estimating this norm will be very
difficult in this paper, so we need finer results, that are based on the following theorem, proved
by Keller and Liverani [KL99].

Consider a Banach (V, ‖ · ‖) endowed with a norm | · |w, satisfying | · |w ≤ C‖ · ‖ for some
uniform C. Letting L : V → V be a linear operator, let

|||L||| = sup
{‖Lv‖, ‖v‖ ≤ 1

}
denote the operator norm of L associated with ‖ · ‖ and let

|||L|||s→w = sup
{|Lv|w, ‖v‖ ≤ 1

}
be the operator norm of L : (V, ‖ · ‖) → (V, | · |w).
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Theorem 3.5. Consider a family of bounded operators Lr : (V, ‖ · ‖) → (V, ‖ · ‖), with r varying
in (0, R]. Assume there exist 0 < σ < M and C ≥ 0 and there exists a function τ(r) converging
to zero as r tends to R such that the following hold.

(i) For every n, for every v ∈ V , |LnRv|w ≤ CMn|v|w.
(ii) For every r ≤ R, for every n, for every v ∈ V , ‖Lnr v‖ ≤ Cσn‖v‖ + CMn|v|w.
(iii) For every r ≤ R, |||Lr − LR|||s→w ≤ τ(r).

For fixed ρ > 0 and ρ′ > 0 let

Aρ,ρ′ = {z ∈ C, |z| ≥ σ + ρ, d(z, spec(LR)) ≥ ρ′}.
Then, for any ρ, ρ′ > 0 there exist β0 < 1 and K0 ≥ 0 and there exists r0 such that for every
β ≤ β0, for every r ∈ [r0, R] for every z z ∈ Aρ,ρ′ :

(a) the operator zI − Lr : (V, ‖ · ‖) → (V, ‖ · ‖) is invertible;
(b) the operator norm

∣∣∣∣∣∣(zI − Lr)−1
∣∣∣∣∣∣ is bounded independently of r;

(c) the norm |||·|||s→w satisfies
∣∣∣∣∣∣(zI − Lr)−1 − (zI − LR)−1

∣∣∣∣∣∣
s→w

≤ K0τ(r)β .

Moreover, β0 only depends on ρ and can be explicitly computed whenever σ + ρ ≤M . Indeed,
one can then choose

β0 =
log((σ + ρ)/σ)

log(M/σ)
.

In particular, β0 converges to zero as ρ tends to zero and converges to one as ρ tends to M − σ.

For a proof, we refer to [Bal18, A.3]. Note that it is asked there that for every r, |Lnr v|w ≤
CMn|v|w, whereas our condition (i) only requires that this holds for r = R. However, the proof
in [Bal18, A.3] only uses this inequality for r = R.

Let us apply this to transfer operators. Consider a countable shift with finitely many images
(XA, T ) and a family of locally Hölder functions fr, for r ∈ (0, R]. Let Lr = Lfr be the associated
transfer operator. Assume that for every r, the maximal pressure Pr of fr is finite and that
fr is semisimple. Let h(i)

j and ν(i)
j be the functions and measures given by Theorem 3.3, associated

with LR. Define the measure mj as dmj = (1/pj)
∑pj

i=1 h
(i)
j dν

(i)
j .

Let m =
∑
mj . Consider the Banach space (V = Hρ,β , ‖ · ‖ = ‖ · ‖ρ,β) on V = Hρ,β, endowed

with the norm | · |w = ‖ · ‖L1(m). As m is finite, we have | · |w ≤ C‖ · ‖. We deduce from
Theorem 3.5 the following.

Theorem 3.6. With the same notation as previously, assume there exists σ such that 0 < σ <
ePR and that there exist C ≥ 0 and a function τ(r) converging to zero as r tends to R such that
the following hold.

(α) For every r ≤ R, for every n, for every v ∈ V ,

‖Lnr v‖ ≤ Cσn‖v‖ + CenPR |v|w.
(β) For every r ≤ R, |||Lr − LR|||s→w ≤ τ(r).

Then, for every r which is close enough to R, there exist numbers P̃j(r) and eigenfunctions

h̃
(i)
j,r and eigenmeasures ν̃

(i)
j,r of Lr associated with the eigenvalue eP̃j(r) such that

∥∥∥∥e−nPRLnr g −
k∑
j=1

en(P̃j(r)−PR)

pj∑
i=1

h̃
(i)
j,r

∫
g dν̃

((i−n) mod pj)
j,r

∥∥∥∥
ρ,β

≤ Cθn‖g‖ρ,β .
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The functions h̃
(i)
j and the measures ν̃

(i)
j have the same support as h

(i)
j and ν

(i)
j , respectively.

Moreover,
∥∥h̃(i)

j,r

∥∥ is uniformly bounded. Finally,
∣∣h̃(i)
j,r − h

(i)
j

∣∣
w

converges to zero as r tends to R

and ν̃
(i)
j,r weakly converges to ν

(i)
j as r tends to R.

Proof. As LR has a spectral gap according to Theorem 3.3, there exists σ0 < ePR such that the
spectrum of LR outside of the disk of radius σ0 exactly consists of the eigenvalue ePR , with
eigenfunctions h(i)

j and eigenmeasures ν(i)
j . The result is then a consequence of Theorem 3.5,

choosing ρ such that σ0 < σ + ρ < ePR . Indeed, condition (i) there is satisfied with M = ePR

because ν(i)
j is an eigenmeasure of LR associated with ePR . In addition, conditions (ii) and (iii)

are direct consequences of assumptions (α) and (β). �

Note that
∫
h̃

(i)
j,r dν

(i)
j �= 0 for r close enough to R, because

∫
h

(i)
j dν

(i)
j = 1 and

∣∣h̃(i)
j,r − h

(i)
j

∣∣
w

converges to zero. One can, thus, normalize h̃j,r declaring
∫
h̃

(i)
j,r dν

(i)
j = 1. We make this assump-

tion in the following. We still have that
∥∥h̃(i)

j,r

∥∥ is uniformly bounded and that
∣∣h̃(i)
j,r − h

(i)
j

∣∣
w

converges to zero. The following result allows us to obtain a precise asymptotic of P̃j,r − PR in
the following sections.

Proposition 3.7. Under the assumptions of Theorem 3.6,

eP̃j(r)−PR − 1 =
∫

(efr−fR − 1) dmj +
∫

(efr−fR − 1)
1
pj

( pj−1∑
i=0

h
(i)
j − h̃

(i)
j,r

)
dν

(i)
j ,

where dmj = (1/pj)
∑pj

i=1 h
(i)
j dν

(i)
j .

Proof. As h̃(i)
j,r are eigenfunctions of Lr and h̃j,r is normalized, we have

eP̃j(r) =
∫

Lrh̃(i)
j,r dν

(i)
j .

Consequently,

eP̃j(r) − ePR =
∫

(Lrh̃(i)
j,r − LRh(i)

j ) dν(i)
j .

Note that for any function g, Lrg = LR(efr−fRg). In particular,

eP̃j(r) − ePR =
∫

LR(efr−fR h̃
(i)
j,r − h

(i)
j ) dν(i)

j .

Using that dν(i)
j is an eigenmeasure of LR associated with the eigenvalue ePR , we obtain

eP̃j(r)−PR − 1 =
∫

(efr−fR h̃
(i)
j,r − h

(i)
j ) dν(i)

j

=
∫

(efr−fR − 1)(h̃(i)
j,r − h

(i)
j ) dν(i)

j +
∫
h̃

(i)
j,r dν

(i)
j −

∫
efr−fRh

(i)
j dν

(i)
j .

As
∫
h

(i)
j dν

(i)
j =

∫
h̃

(i)
j,r dν

(i)
j = 1, we thus obtain

eP̃j(r)−PR − 1 =
∫

(efr−fR − 1)(h̃(i)
j,r − h

(i)
j ) dν(i)

j +
∫

(efr−fR − 1)h(i)
j dν

(i)
j .

This holds for every i, which concludes the proof summing over i and then dividing by pj . �
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4. Asymptotic of the first derivative of the Green function

In this section, we assume that Γ is hyperbolic relative to Ω and choose a system of representatives
of conjugacy classes Ω0 = {H1, . . . ,HN} of elements of Ω. We consider a probability measure μ
on Γ that satisfies weak and strong relative Ancona inequalities up to the spectral radius and
we denote by Rμ the inverse of this spectral radius. Note that we do not need to assume that
the measure μ is symmetric but only that relative Ancona inequalities are satisfied.

We assume that μ is not spectrally degenerate. According to Proposition 2.11, we
have (d/dr)|r=Rμ

G(e, e|r) = +∞, or equivalently I(1)(Rμ) = +∞ by Lemma 2.7. In addition,
Proposition 2.8 shows that

I(2)(r) � (I(1)(r))3.

Our goal in the following sections is to obtain a more precise statement, transforming � into ∼,
when r → Rμ. Precisely, we prove the following.

Theorem 4.1. Under these assumptions, there exists ξ > 0 such that

I(2)(r) ∼
r→Rμ

ξ(I(1)(r))3.

To do so, we use thermodynamic formalism, adapting [Gou14, GL13].

4.1 Transfer operator for the Green function
We choose a generating set S of Γ as in Theorem 2.3, so that Γ is automatic relative to Ω0 and
S, where Ω0 is a finite set of representatives of conjugacy classes of the parabolic subgroups Let
G = (V,E, v∗) be a graph and φ : E → S ∪ ⋃

H∈Ω0
H be a labelling map as in the definition of a

relative automatic structure.
The set of vertices V is finite. Moreover, if σ ∈ Σ0 = S ∪ ⋃

H∈Ω0
H and if v ∈ V , there is at

most one edge that leaves v and that is labelled with σ. Thus, the set of edges E is countable.
Set Σ = E and consider the transition matrix A = (as,s′)s,s′∈Σ, defined by as,s′ = 1 if the edges s
and s′ are adjacent in G and as,s′ = 0 otherwise. We then define Σ∗

A, ∂ΣA and ΣA as previously.
According to the definition of a relative automatic structure, elements of ΣA represent relative
geodesics and relative geodesic rays.

We decompose Σ0 = S ∪ ⋃
H∈Ω0

H as follows. The sets Hj ∩Hk are finite if j �= k (see,
e.g., [DS05, Lemma 4.7]). We can, thus, consider H′

k = Hk \ ∪j 	=kHj and H′
0 = Σ0 \ ∪kH′

k. Then,
H′

0 remains finite and the sets H′
k are disjoint. By analogy with free factors in a free product,

we introduce the following terminology.

Definition 4.1. We call the sets H′
k the factors of the relatively automatic structure

Paths of length n in G beginning at v∗ are in bijection with the relative sphere Ŝn. Moreover,
infinite paths in G starting at v∗ give relative geodesic rays starting at e. Denote by E∗ ⊂ E
the set of edges that starts at v∗. The labelling map φ can be extended to infinite paths. When
restricted to infinite words starting in E∗, it gives a surjective map from paths beginning at v∗ to
the Gromov boundary of the graph Γ̂, which is by definition the set of conical limit points of Γ,
included in the Bowditch boundary. Restricting the distance dρ(x, y) = ρ−n to E∗, this induced
map is continuous, endowing the Bowditch boundary with the usual topology. A formal way of
restricting our attention to elements of the group and to conical limit points is to consider the
function 1E∗ on ΣA which takes value one on sequences in ΣA beginning with an edge in E∗ and
that takes value zero elsewhere. This function 1E∗ is locally Hölder continuous.

We have the following, which proves that every locally Hölder continuous function with finite
pressure is positive recurrent, according to Proposition 3.1.
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Lemma 4.2. The Markov shift (ΣA, T ) has finitely many images.

Proof. If an edge s in Σ ends at some vertex v in G, then the only edges s′ such that as,s′ = 1
are those that start at v. Thus, if two edges end at the same vertex v, they have the same row
in the matrix A. The lemma follows, because there is only a finite number of vertices. �

Recall that Rμ is the inverse of the spectral radius of the μ-random walk on Γ. Also recall
that for r ∈ [0, Rμ], we writeH(e, γ|r) = G(e, γ|r)G(γ, e|r). For r ∈ [1, Rμ], we define the function
ϕr on Σ∗

A by ϕr(∅) = 1 and

ϕr(x = x1, . . . , xn) = log
(
H(e, φ(x)|r)
H(e, φ(Tx)|r)

)
= log

(
H(e, φ(x1 . . . xn)|r)
H(e, φ(x2 . . . xn)|r)

)
.

Using equivariance of the Green function, we also have

ϕr(x = x1, . . . , xn) = log
(

H(e, φ(x1 . . . xn)|r)
H(φ(x1), φ(x1 . . . xn)|r)

)
.

Lemma 4.3. For every r ∈ [1, Rμ], the function ϕr can be extended to ΣA. It is then locally
Hölder continuous on ΣA.

Proof. Let n ≥ 1 and let x, y ∈ Σ∗
A be such that x1 = y1, . . . , xn = yn. Hence, in Γ, we have

φ(x1) = φ(y1), . . . , φ(xn) = φ(yn). This means that relative geodesics from e to φ(x) and from
φ(x1) = φ(y1) to φ(y) fellow-travel for a time at least n− 1. According to strong relative Ancona
inequalities, we thus have, for some C ≥ 0 and 0 < ρ < 1,∣∣∣∣G(e, φ(x)|r)G(φ(y1), φ(y)|r)

G(φ(x1), φ(x)|r)G(e, φ(x)|r) − 1
∣∣∣∣ ≤ Cρn.

Weak relative Ancona inequalities also show that

G(e, φ(x)|r)G(φ(y1), φ(y)|r) ≥ 1
C
G(e, φ(x1)|r)G(φ(x1), φ(x)|r)G(φ(y1), φ(y)|r)

and because x1 = y1, we obtain

G(e, φ(x)|r)G(φ(y1), φ(y)|r) ≥ 1
C2

G(e, φ(y)|r)G(φ(x1), φ(x)|r).
Thus, G(e, φ(x)|r)G(φ(y1), φ(y)|r)/G(φ(x1), φ(x)|r)G(e, φ(x)|r) is bounded away from zero, so
that ∣∣∣∣ log

(
H(e, φ(x)|r)

H(φ(x1), φ(x)|r)
)
− log

(
H(e, φ(y)|r)

H(φ(y1), φ(y)|r)
)∣∣∣∣

≤ C1

∣∣∣∣G(e, φ(x)|r)G(φ(y1), φ(y)|r)
G(φ(x1), φ(x)|r)G(e, φ(y)|r) − 1

∣∣∣∣ ≤ Cρn. (8)

This proves that if x = (x1, . . . , xn, . . .) ∈ ∂Σ∗
A, then the sequence ϕr(x1, . . . , xk) is Cauchy,

so that it converges to some well-defined limit ϕr(x). This extended function ϕr on ΣA still
satisfies (8), so that it is locally Hölder continuous. �

We denote by Lr the transfer operator associated with the function ϕr.

Lemma 4.4. For every r ∈ [1, Rμ], the function ϕr has finite pressure and is positive recurrent.

Proof. As noted previously, because the Markov shift has finitely many images, Proposition 3.1
shows that any locally Hölder function with finite pressure is positive recurrent. Thus, we only
need to prove that ϕ has finite pressure, which is equivalent to proving that ‖Lr1‖∞ < +∞
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by [Sar99, Theorem 1]. For x ∈ ΣA, let X1
x be the set of symbols that can precede x in the

automaton G. Then, by weak relative Ancona inequalities,

Lr1(x) =
∑
σ∈X1

x

H(e, σx|r)
H(σ, σx|r) �

N∑
k=0

∑
σ∈H′

k

H(e, σ|r).

This last sum is bounded by Corollary 2.10, which concludes the proof. �
Let Pj(r) be the pressure of the restriction of ϕr to a component ΣA,j of the Markov shift and

let P (r) be the maximal pressure, that is, the maximum of the Pj(r). Recall that we declared that
the empty sequence is not a preimage of the empty sequence. This will simplify the following.

The main reason for introducing this function ϕr is that

Lnr 1E∗(∅) =
1

H(e, e|r)
∑
γ∈Ŝn

H(e, γ|r),

where we recall that 1E∗ is the function on ΣA that takes value one on paths that start at v∗
in the automaton G and zero elsewhere. Indeed, to prove Theorem 4.1, we want to understand
I(1)(r) =

∑
γ∈ΓH(e, γ|r). Thus, we want to understand the behavior of

∑
γ∈Ŝn

H(e, γ|r), which
is thus the same as understanding the behavior of Lnr 1E∗(∅).

4.2 Continuity properties of the transfer operator
Our goal in this subsection is to prove that the map r 
→ Lr is continuous in a weak sense. We
begin by the following result.

Lemma 4.5. There exists C > 0 such that for all r ∈ [1, Rμ),

1
C

1√
Rμ − r

≤
∑
γ∈Γ

H(e, γ|r) ≤ C
1√

Rμ − r
.

Proof. Let I1(r) =
∑

γ H(e, γ|r) and F (r) = r2I1(r). According to [Dus22, Lemma 3.2],

F ′(r) = 2r
∑
γ,γ′

G(e, γ′|r)G(γ′, γ|r)G(γ, e|r).

Proposition 2.8 gives
1
C ′ ≤

F ′(r)
F (r)3

≤ C ′

and Proposition 2.11 gives F (Rμ) = +∞. Thus, integrating the inequality above between r and
Rμ, we obtain

1
C ′ (Rμ − r) ≤ 1

F (r)2
≤ C ′(Rμ − r),

which leads to the desired inequality. �
We also prove the following.

Lemma 4.6. For any r ∈ [1, Rμ], P (r) ≤ 0. Moreover, P (Rμ) = 0 and ϕRμ is semisimple.

Proof. If P (r) were positive, then Theorem 3.3 would show that

Lr1E∗(∅) =
1

H(e, e|r)
∑
γ∈Ŝn

H(e, γ|r)
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tends to infinity. However, Lemma 2.9 shows that this quantity is bounded, so we obtain a
contradiction.

If P (Rμ) were negative, then
∑

γ∈Ŝn
H(e, γ|r) would converge to zero exponentially fast,

according to Theorem 3.3. In particular,
∑

γ∈ΓH(e, γ|r) would be finite, that is, using Lemma 2.7,
(d/dr)|r=Rμ

G(e, e|r) would be finite. This would be a contradiction with Proposition 2.11.
Finally, if ϕRμ were not semisimple, then Lemma 3.4 would again show that

∑
γ∈Ŝn

H(e, γ|r)
would tend to infinity, because we already know that P (Rμ) = 0. Again, Lemma 2.9 shows that
this quantity is bounded. �

Let h(i)
j and ν

(i)
j be the functions and measures given by Theorem 3.3, associated with

LRμ . Let mj be the measure defined as dmj = (1/pj)
∑pj

i=1 h
(i)
j dν

(i)
j . According to [Sar99,

Proposition 4], mj is a Gibbs measure. However, we have to apply this proposition to each
component ΣA,j of the shift, so that we do not have that mj([x1, . . . , xn]) � H(e, x1 . . . xn|Rμ)
for any cylinder [x1, . . . , xn]. We still deduce that there exists C ≥ 0 such that for any n, for any
cylinder [x1, . . . , xn],

mj([x1 . . . xn]) ≤ CH(e, x1 . . . xn|Rμ). (9)

Furthermore, letting m =
∑

jmj , there exists C ≥ 0 such that for any n, for any cylinder
[x1 . . . xn] in the support of one of the measures mj ,

1
C
H(e, x1 . . . xn|Rμ) ≤ m([x1, . . . , xn]) ≤ CH(e, x1 . . . xn|Rμ). (10)

Proposition 4.7. There exists a non-negative function ϕ on XA, possibly taking the value +∞
on ∂ΣA, which is integrable with respect to the measure m and such that for every x ∈ ΣA and
for every 1 ≤ r, r′ ≤ Rμ,

|ϕr(x) − ϕr′(x)| ≤ 2ϕ(x)
√

|r − r′|.
Integrating over r, this proposition is a direct consequence of the following lemma.

Lemma 4.8. There exists a non-negative function ϕ on XA, possibly taking the value +∞ on
∂ΣA, which is integrable with respect to the measure m and such that for every x ∈ ΣA and for
every 1 ≤ r < Rμ, ∣∣∣∣ ddrϕr(x)

∣∣∣∣ ≤ ϕ(x)
1√

Rμ − r
.

Proof. Fix x ∈ ΣA. We compute the derivative of r 
→ ϕr(x). To simplify the notation, we identify
x with φ(x) ∈ Γ. We obtain

d

dr
ϕr(x) =

d

dr
log

H(e, x|r)
H(x1, x|r) =

d

dr
log r2H(e, x|r) − d

dr
log r2H(x1, x|r).

In [Dus22, Lemma 3.2] we showed that

d

dr
ϕr(x) =

∑
y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r) +G(e, x|r)G(x, y|r)G(y, e|r)
rH(e, x|r)

−
∑
y∈Γ

G(x1, y|r)G(y, x|r)G(x, x1|r) +G(x1, x|r)G(x, y|r)G(y, x1|r)
rH(x1, x|r) . (11)
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We first give an upper bound for∣∣∣∣
∑

y∈ΓG(e, y|r)G(y, x|r)G(x, e|r)
rH(e, x|r) −

∑
y∈ΓG(x1, y|r)G(y, x|r)G(x, x1|r)

rH(x1, x|r)
∣∣∣∣.

The remaining term in (11) will be bounded in the same way. Putting together these two sums,
we obtain

1
rH(e, x|r)

∑
y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r) −G(x1, y|r)G(y, x|r)G(x, x1|r) H(e, x|r)
H(x1, x|r) .

We rewrite this as
1

rH(e, x|r)
∑
y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)
.

We decompose the sum over Γ in the following way. Let n = d̂(e, x), so that the relative geodesic
[e, x] has length n. Denote by e, x1, . . . , xn successive points on this relative geodesic. In addition,
for 0 ≤ k ≤ n, let Γk be the set of y ∈ Γ whose projection on [e, x] which is closest to x is exactly
at xk.

We use Lemma 2.5 several times. Let us first focus on the sum over Γ0. If y ∈ Γ0, then
any relative geodesic from y to x passes within a bounded distance of e. Weak relative Ancona
inequalities show that

G(y, x|r) � G(y, e|r)G(e, x|r).
Similarly, any relative geodesic from x1 to y passes within a bounded distance of e, hence

G(x1, y|r) � G(x1, e|r)G(e, y|r).
We also have

G(e, x|r) � G(e, x1|r)G(x1, x|r),
so that ∣∣∣∣ 1

rH(e, x|r)
∑
y∈Γ0

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
�

∑
y∈Γ

H(e, y|r)(1 +H(e, x1|r)).

As H(e, x1|r) is uniformly bounded, we deduce from Lemma 4.5 that∣∣∣∣ 1
rH(e, x|r)

∑
y∈Γ0

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
� 1√

Rμ − r
.

Let us focus on the sum over Γ1 now. Let H1 be the union of parabolic subgroups containing
x1. Let y ∈ Γ1 and denote by σ its projection on H1. Then, any relative geodesic from e to y
passes within a bounded distance of σ and any relative geodesic from y to x passes first to a
point within a bounded distance of σ, then to a point within bounded distance of x1. We thus
obtain

G(e, y|r) � G(e, σ|r)G(σ, y|r)
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and

G(y, x|r) � G(y, σ|r)G(σ, x1|r)G(x1, x|r).
Similarly,

G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r) � G(x1, σ|r)G(e, x1|r)

G(e, σ|r) � 1.

Letting Γσ1 be the set of y whose projection on H1 is at σ, we obtain∣∣∣∣ 1
rH(e, x|r)

∑
y∈Γ1

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
�

∑
σ∈H1

∑
y∈Γσ

1

G(e, σ|r)G(σ, x1|r)
G(e, x1|r) H(σ, y|r).

We bound the sum over y ∈ Γσ1 by a sum over y ∈ Γ, so that∣∣∣∣ 1
rH(e, x|r)

∑
y∈Γ1

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
� 1√

Rμ − r

∑
σ∈H1

G(e, σ|r)G(σ, x1|r)
G(e, x1|r) .

Suppose now that k ≥ 2 and consider the sum over Γk. For any y ∈ Γk, relative geodesic from
x1 to y and from e to x travel together for a time at least k − 1. We deduce from strong relative
Ancona inequalities that ∣∣∣∣1 − G(x1, y|r)G(e, x|r)

G(x1, x|r)G(e, y|r)
∣∣∣∣ � ρk

for some 0 < ρ < 1. Letting Hk be the union of parabolic subgroups containing x−1
k−1xk, we also

obtain ∣∣∣∣ 1
rH(e, x|r)

∑
y∈Γk

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
� ρk

1√
Rμ − r

∑
σ∈Hk

G(xk−1, xk−1σ|r)G(xk−1σ, xk|r)
G(xk−1, xk|r) .

Putting everything together and letting x0 = e, we obtain∣∣∣∣ 1
rH(e, x|r)

∑
y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r)
(

1 − G(x1, y|r)G(e, x|r)
G(x1, x|r)G(e, y|r)

)∣∣∣∣
� 1√

Rμ − r

(
1 +

n−1∑
k=0

ρk
∑
σ∈Hk

G(xk, xkσ|r)G(xkσ, xk+1|r)
G(xk, xk+1|r)

)
. (12)

We now bound
n∑
k=0

ρk
∑
σ∈Hk

G(xk, xkσ|r)G(xkσ, xk+1|r)
G(xk, xk+1|r)

by an integrable function independently of r and n. We first prove the following.
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Lemma 4.9. There exists Λ such that the following holds. Let H be a parabolic subgroup. For
every x in H and for any 1 ≤ r ≤ Rμ, we have∑

y∈H
G(e, y|r)G(y, x|r) ≤ (Λd(e, x) + Λ)G(e, x|r).

Proof. We write G(1)
r (e, x) = (d/dt)|t=1(Gr(e, x|t)), where Gr is the Green function associated

with the first return kernel pr to H. According to Lemma 2.7, it is enough to prove that

G(1)
r (e, x) ≤ (Λd(e, x) + Λ)G(e, x|r).

As we are assuming that μ is non-spectrally degenerate along H, there exists ρ < 1 such that for
any x, for any n,

p(n)
r (e, x) ≤ p

(n)
Rμ

(e, x) ≤ ρn,

where p(n)
r denotes the nth power of convolution of pr. By definition,

G(1)
r (e, x) =

∑
n≥0

np(n)
r (e, x).

Note then that ∑
n≥Λd(e,x)+Λ

np(n)
r (e, x) � (ρ′)Λd(e,x)+Λ.

As r ≥ 1, for any x, G(e, x|r) ≥ pd(e,x) for some p < 1 and so

G(1)
r (e, x) ≥ G(e, x|r) ≥ pd(e,x).

If Λ is large enough, we thus have∑
n≥Λd(e,x)+Λ

np(n)
r (e, x) ≤ 1

2
G(1)
r (e, x),

so that

G(1)
r (e, x) ≤ 2

∑
n≤Λd(e,x)+Λ

np(n)
r (e, x) ≤ (2Λd(e, x) + 2Λ)G(e, x|r).

This concludes the proof. �
Going back to the proof of Lemma 4.8, we obtain the upper bound

n∑
k=0

ρk
∑
σ∈Hk

G(xk, xkσ|r)G(xkσ, xk+1|r)
G(xk, xk+1|r) ≤

n∑
k=0

ρk(Λd(xk, xk+1) + Λ).

We fix N and define ϕ(N)
1 by

ϕ
(N)
1 (x) = 1 +

n−1∑
k=0

ρk(Λd(xk, xk+1) + Λ) (13)

for any word x of length n ≤ N . We extend ϕ
(N)
1 to a function on ΣA declaring ϕ

(N)
1 to be

constant on cylinders of length N . For fixed x, the sequence ϕ
(N)
1 (x) is non-decreasing. Let

ϕ1(x) be its limit, possibly infinite if x ∈ ∂ΣA. We now prove that ϕ1 is integrable with respect
to m. This is based on the following.
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Letting E be a set, a transition kernel p is a function p : E × E → [0,+∞). We fix a base
point x0 ∈ E. We say that p is finite if its total mass is finite, that is,∑

x∈E
p(x0, x) < +∞.

If the total mass is one, then p defines a Markov chain Zn on E. Otherwise, p still defines a
chain Zn with transition given by p. We let zn be the increments of this chain. Whenever E is
endowed with a distance d, we say that p is C-quasi-invariant if there exists C such that for
any k,

d(Zk, Zk+1) ≤ Cd(e, zk+1).

Lemma 4.10. Let p be a finite C-quasi-invariant transition kernel on a countable metric space
(E, d). Let x0 be a fixed point in E. Assume that p has exponential moments in the sense that∑

x∈E
p(x0, x)eαd(x0,x)

for some positive α. Then, for any β > 0, there exists λ > 0 and Cλ such that for any x ∈ E,∑
n≤d(e,x)/λ

p(n)(x0, x) ≤ Cλe
−βd(e,x),

where p(n) denotes the nth power of convolution of p.

Proof. The proof is contained in the proof of [BHM11, Lemma 3.6], although the statement and
the assumptions there are different, so we rewrite it for convenience. To simplify the notation,
we assume that the total mass of p is one, so that p defines a Markov chain Zn. The general
proof is the same. By assumption, we have

E(eαd(x0,Z1)) = E < +∞.

For any λ, Markov inequality shows that

P

(
sup

1≤k≤n
d(e, Zk) ≥ λn

)
≤ e−(α/C)λn

E(e(α/C) sup1≤k≤n d(e,Zk)).

As p is C-quasi-invariant, we have for any k ≤ n, letting Z0 = x0,

d(x0, Zk) ≤
∑

0≤j≤n−1

d(Zj , Zj+1) ≤ C
∑

1≤j≤n
d(x0, zj).

As the zj are independent and follow the same law as Z1, we obtain

P

(
sup

1≤k≤n
d(e, Zk) ≥ λn

)
≤ e−(α/C)λnEn ≤ en(−(α/C)λ+logE).

We choose λ large enough so that −(α/C)λ+ logE ≤ −2β. Then,∑
n≤d(e,x)/λ

p(n)(x0, x) ≤ d(e, x)
λ

e−2βd(e,x) � e−βd(e,x).

This concludes the proof. �
We apply this in our situation. Let H be a parabolic subgroup. For any η > 0, we let

pη,Rμ be the first return kernel associated with Rμμ to the η-neighborhood Nη(H) of H. Then,
[DG21, Lemma 4.6] shows that if η is large enough, then pη,Rμ has exponential moments. As it
is defined as the first return associated with Rμμ, it is C-quasi-invariant for the induced metric

789

https://doi.org/10.1112/S0010437X22007448 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007448


M. Dussaule

on Nη(H) (it is actually invariant for this distance). Thus, for any β > 0, there exists λ and Cλ
such that ∑

n≤d(e,x)/λ
p
(n)
η,Rμ

(e, x) ≤ Cλe
−βd(e,x).

The Green function associated with pη,Rμ coincides with the restriction of the Green function
associated with Rμμ on Nη(H), see [Dus22, Lemma 3.4] for a proof. As there exists q < 1 such
that G(e, x|Rμ) ≥ qd(e,x), we can choose λ so that∑

n≤d(e,x)/λ
p
(n)
η,Rμ

(e, x) ≤ 1
2
G(e, x|Rμ)

and so

G(e, x|Rμ) ≤ 2
∑

n≥d(e,x)/λ
p
(n)
η,Rμ

(e, x) ≤ 2λ
d(e, x)

∑
n≥d(e,x)

np
(n)
η,Rμ

(e, x).

According to Lemma 2.7,

G(e, x|Rμ) ≤ 2λ
d(e, x)

∑
y∈Nη(H)

G(e, y|Rμ)G(y, x|Rμ).

Finally, any point in Nη(H) is within η of a point in H, hence for any x ∈ H,

d(e, x)G(e, x|Rμ) �
∑
y∈H

G(e, y|Rμ)G(y, x|Rμ), (14)

because η is fixed.
Recall that we want to prove that ϕ1 is integrable with respect to m. As ϕ

(n)
1 is

non-decreasing, it is enough to show that there exists a uniform C ≥ 0 such that for
any n, ∫

ϕ
(n)
1 dm ≤ C.

By definition, ϕ(n)
1 is constant on cylinders of the form [x1, . . . , xn]. According to (9), we just

need to show that for every n,

∑
x∈ŜN

H(e, x|Rμ)
n−1∑
k=0

ρkd(xk, xk+1) (15)

is uniformly bounded.
We decompose x ∈ Ŝn as x = x1 . . . xn. For any y ∈ Ŝk, denote by Xy

1 the set of symbols σ
which can follow y in the automaton G. More generally, denote by Xy

j the set of words of length
j which can follow y. For fixed k writing σk+1 = x−1

k xk+1 and y = x−1
k+1x, we have, using weak

relative Ancona inequalities,∑
x∈Ŝn

H(e, x|Rμ)d(xk, xk+1)

�
∑
xk∈Ŝk

∑
σk+1∈Xxk

1

∑
y∈Xxk+1

n−k−1

H(e, xk|Rμ)H(e, y|Rμ)d(e, σk+1)G(e, σk+1|Rμ)G(σk+1, e|Rμ)

�
∑
xk∈Ŝk

∑
σk+1∈Xxk

1

∑
y∈Xxk+1

n−k−1

H(e, xk|Rμ)H(e, y|Rμ)
∑
σ∈Hk

G(e, σ|Rμ)G(σ, σk+1|Rμ)G(σk+1, e|Rμ).
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Lemma 2.9 shows that ∑
y∈Xxk+1

n−k−1

H(e, y|Rμ) � 1.

As μ is not spectrally degenerate,∑
σ∈Hk

G(e, σ|Rμ)G(σ, σk+1|Rμ)G(σk+1, e|Rμ) � 1.

Using again Lemma 2.9, ∑
xk∈Ŝk

H(e, xk|Rμ) � 1.

Finally, we find that (15) is bounded by C
∑n−1

k=0 ρ
k for some C. As ρ < 1, this last sum is

uniformly bounded.
To conclude, we give a similar bound for the remaining term in (11), with an integrable

function ϕ2. We set ϕ = ϕ1 + ϕ2. This concludes the proof. �
The function ϕ is constructed as the non-decreasing limit of functions ϕ(n) which are

uniformly integrable and satisfy that for any word x of length n,∣∣∣∣ ddrϕr(x)
∣∣∣∣ ≤ ϕ(n)(x)

1√
Rμ − r

. (16)

Let us note that we proved something a bit stronger than
∫
ϕ(n) dm � 1. Indeed, we proved there

exists C ≥ 0 such that for every n,∑
x∈Ŝn

H(e, x|Rμ)ϕ(n)(x) ≤ C. (17)

We both use (16) and (17) in the following. However, to simplify the notation, we only stated
Lemma 4.8 using ϕ and m.

We also prove the following result. We do not use in full generality, but only for x = ∅.
Proposition 4.11. For every x ∈ ΣA, there exists Cx such that for every r, r′ ≤ Rμ and for
every bounded function f ,∣∣(Lrf)(x) − (Lr′f)(x)

∣∣ ≤ Cx‖f‖∞
√
|r − r′|.

Proof. Fix x ∈ ΣA and let n = d̂(e, x). Let X1
x be the set of symbols which can precede x in the

automaton G. Then,

(Lrf)(x) − (Lr′f)(x) =
∑
σ∈X1

x

(eϕr(σx) − eϕr′ (σx))f(σx).

Differentiating in r the quantity ∑
σ∈X1

x

eϕr(σx)f(σx),

we obtain ∑
σ∈X1

x

(
d

dr
ϕr(σx)

)
eϕr(σx)f(σx).

Using Lemma 4.8, this is bounded by

‖f‖∞ 1√
Rμ − r

∑
σ∈X1

x

ϕ(σx)eϕr(σx).
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We deduce from weak relative Ancona inequalities that this is bounded by

‖f‖∞ 1√
Rμ − r

∑
σ∈X1

x

ϕ(σx)H(e, σ|r).

As
∑

σ∈X1
x
ϕ(σx)H(e, σ|r) only depends on x, it is enough to show that this last sum is bounded

independently of r. This is done exactly like showing that the sum (15) is bounded. �
We want to apply Theorem 3.6, so we now prove that the assumptions of this theorem are

satisfied, for τ(r) =
√
Rμ − r. Recall that m =

∑
jmj .

Proposition 4.12. There exist constants 0 < σ < 1 and C ≥ 0 such that for every 1 ≤ r ≤ Rμ,
for every n, for every function f ∈ Hρ,β ,

‖Lnr f‖ρ,β ≤ Cσn‖f‖ρ,β + C

∫
|f |dm

and ∫ ∣∣(Lr − LRμ)f
∣∣dm ≤ C‖f‖ρ,β

√
Rμ − r.

The proof of this proposition is postponed to the end of the section. We first state the
following corollary which is deduced from Theorem 3.6.

Corollary 4.13. For every r close enough of Rμ, there exist numbers P̃j(r), eigenfunctions h̃
(i)
j,r,

and eigenmeasures ν̃
(i)
j,r of Lr associated with the eigenvalue eP̃j(r) such that for every g ∈ Hρ,β ,∥∥∥∥Lnr g −

k∑
j=1

en(P̃j(r))

pj∑
i=1

h̃
(i)
j,r

∫
g dν̃

((i−n) mod pj)
j,r

∥∥∥∥
ρ,β

≤ Cθn‖g‖ρ,β ,

where C ≥ 0 and 0 < θ < 1. The functions h̃
(i)
j and the measures ν̃

(i)
j have the same support as

the functions h
(i)
j and the measures ν

(i)
j , respectively. Moreover,

∥∥h̃(i)
j,r

∥∥
ρ,β

is uniformly bounded.
Finally, ∫ ∣∣h̃(i)

j,r − h
(i)
j

∣∣ dm −→
r→Rμ

0

and ν̃
(i)
j,r weakly converges to ν

(i)
j as r tends to Rμ.

To conclude, note that Proposition 4.11 yields

|Lrf(∅) − Lr′f(∅)| � ‖f‖ρ,β
√
|r′ − r|. (18)

Consequently,

|h̃(i)
j,r(∅) − h

(i)
j (∅)| −→

r→Rμ

0. (19)

Indeed, this last estimate (18) shows that we can replace the norm | · |w when applying
Theorem 3.6 with the norm | · |′w defined by

|f |′w = |f(∅)| +
∫

|f | dm.

Although we use (19) in the following, we preferred using the norm | · |w in the statements and
in the proofs for convenience.

We now prove Proposition 4.12. We use repeatedly strong relative Ancona inequalities to
obtain stronger and stronger continuity statements. We first give an upper bound for ‖Lnr f‖∞
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and then one for Dρ,β(Lnr f), that actually use the first upper bound. This will conclude the proof
of the first statement in the proposition. The proof of the second statement is similar but a bit
more technically involved.

Proof. Let f ∈ Hρ,β and let x ∈ ΣA. Denote by Snϕr the nth Birkhoff sum of ϕr and let Xn
x the

set of words of length n which can precede x in the automaton G. Then,

Lnr f(x) =
∑
γ∈Xn

x

eSnϕr(γx)f(γx).

Let f (n) be the function which is constant on cylinders of length n and which is equal to f
elsewhere. In particular,

f (n)(γx) = f(γ)

for x ∈ ΣA and γ ∈ Xn
x . As f is ρ-locally Hölder,

|f (n)(γx) − f(γx)| ≤ ρnDρ,β(f).

Hence, ∣∣Lnr f(x)
∣∣ ≤ ρnDρ,β(f)

∑
γ∈Xn

x

eSnϕr(γx) +
∑
γ∈Xn

x

eSnϕr(γx)|f (n)(γx)|.

To simplify, we identify an element γ ∈ X1
x with the corresponding element in Ŝn ⊂ Γ. Note that

eSnϕr(γx) = H(e, γx|r)/H(γ, γx|r). Using weak relative Ancona inequalities, we obtain∣∣Lnr f(x)
∣∣ � ρnDρ,β(f)

∑
γ∈Ŝn

H(e, γ|Rμ) +
∑
γ∈Ŝn

H(e, γ|Rμ)|f (n)(γx)|.

For every γ ∈ Γ, we can use the automaton G and choose a relative geodesic from e to γ
whose increments we denote by x1, . . . , xn. Let [γ] be the corresponding cylinder [x1, . . . , xn].
Let Ŝnmax be the set of γ ∈ Ŝn such that the cylinder [γ] is in a maximal component. As f (n) is
constant on cylinders of length n, (10) shows that

∑
γ∈Ŝn

max

H(e, γ|Rμ)|f (n)(γx)| �
∫

|f (n)| dm.

In addition, by the definition of maximal components, there exists ρ′ < eP (Rμ) = 1 such that∑
γ∈Ŝn\Ŝn

max

H(e, γ|Rμ)|f (n)(γx)| � (ρ′)n‖f‖∞.

Using that f is ρ-locally Hölder, we obtain∫
|f (n)| dm � ρnDρ,β(f) +

∫
|f | dm.

Lemma 2.9 shows that the sum
∑

γ∈Ŝn H(e, γ|Rμ) is bounded independently of n. We thus obtain

∣∣Lnr f(x)
∣∣ � 2ρnDρ,β(f) + (ρ′)n‖f‖∞ +

∫
|f | dm � σn‖f‖ρ,β +

∫
|f | dm, (20)

where σ = max(ρ, ρ′). We can thus control ‖Lnr f‖∞.
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We now focus on Dρ,β(Lrf). Let x, x′ ∈ ΣA and let ρm = dρ(x, x′), m ≥ 1. We have

Lnr f(x) − Lnr f(x′) =
∑
γ∈Xn

x

(eSnϕr(γx) − eSnϕr(γx′))f(γx)

+
∑
γ∈Xn

x

eSnϕr(γx′)(f(γx) − f(γx′)).

On the one hand, using that f is ρ-locally Hölder and using weak relative Ancona inequalities
to bound eSnϕr(γx) by H(e, γ|r) as previously, we obtain∑

γ∈Xn
x

eSnϕr(γx′)|(f(γx) − f(γx′))| �
∑
γ∈Ŝn

H(e, γ|Rμ)ρn+mDρ,β(f).

It follows from Lemma 2.9 that the sum
∑

γ∈Ŝn H(e, γ|Rμ) is bounded and because
ρm = dρ(x, x′), we have∑

γ∈Xn
x

eSnϕr(γx′)|(f(γx) − f(γx′))| � ρn‖f‖ρ,βdρ(x, x′).

On the other hand, ∑
γ∈Xn

x

(eSnϕr(γx) − eSnϕr(γx′))f(γx)

=
∑
γ∈Xn

x

eSnϕr(γx)(1 − eSnϕr(γx′)−Snϕr(γx))f(γx).

By definition,

(1 − eSnϕr(γx′)−Snϕr(γx)) =
(

1 − H(e, γx|r)H(γ, γx′|r)
H(γ, γx|r)H(e, γx′|r)

)
.

As relative geodesics [e, x] and [e, x′] fellow travel for a time at least m and because γ both
precedes x and x′ in the automaton G, relative geodesics [e, γx] and [γ, γx′] also fellow travel for
a time at least m. Strong relative Ancona inequalities thus yield∣∣1 − eSnϕr(γx′)−Snϕr(γx)

∣∣ � ρm

and so ∣∣∣∣ ∑
γ∈Xn

x

(eSnϕr(γx) − eSnϕr(γx′))f(γx)
∣∣∣∣ � ρm

∑
γ∈Xn

x

eSnϕr(γx)|f(γx)|.

We bound
∑

γ∈Xn
x
eSnϕr(γx)|f(γx)| by σn‖f‖ρ,β +

∫ |f | dm as previously to obtain

∣∣Lrf(x) − Lrf(x′)
∣∣ �

(
σn‖f‖ρ,β +

∫
|f | dm

)
dρ(x, x′). (21)

We deduce from (20) and (21) that

∥∥Lnr f∥∥
ρ,β

� σn‖f‖ρ,β +
∫

|f | dm,

which concludes the first part of the proposition.
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We now prove that ∫ ∣∣(Lr − LRμ)f
∣∣ dm ≤ C‖f‖ρ,β

√
Rμ − r. (22)

The function f is ρ-locally Hölder. As the operator Lr − LRμ is bounded on (Hρ,β , ‖ · ‖ρ,β), for
every word x = x1 . . . xn of length n and for every y ∈ [x1, . . . , xn],∣∣(Lr − LRμ)f(y) − (Lr − LRμ)f(x)

∣∣ � ρn‖f‖ρ,β .
Hence, ∣∣(Lr − LRμ)f(y)

∣∣ � ρn‖f‖ρ,β +
∣∣(Lr − LRμ)f(x)

∣∣.
Fixing r, we choose n large enough so that ρn ≤ √

Rμ − r. Let f̃r be the function which is
constant on cylinders of length n and which is equal to (Lr − LRμ)f(x) elsewhere. To prove (22),
we just need to show that ∫ ∣∣f̃r∣∣ dm � ‖f‖ρ,β

√
Rμ − r.

For every x of length n and for every y in [x1, . . . , xn], we have

f̃r(y) =
∑
σ∈X1

x

(eϕr(σx) − eϕRμ (σx))f(σx).

Differentiating this, we obtain ∑
σ∈X1

x

(
d

dr
ϕr(σx)

)
eϕr(σx)f(σx).

Using (16), we bound the absolute value of this term by
1√

Rμ − r
‖f‖∞

∑
σ∈X1

x

ϕ(n+1)(σx)eϕr(σx).

Inverting the sum and the derivative is legitimate because weak relative Ancona inequalities
show that eϕr(σx) � H(e, σ). As in the proof of Lemma 4.8, we show that the sum∑

σ∈X1
x

ϕ(n+1)(σx)eϕr(σx)

is finite. Therefore, ∣∣∣∣ ddr f̃r(y)
∣∣∣∣ � 1√

Rμ − r
‖f‖∞

∑
σ∈X1

x

H(e, σ|Rμ)ϕ(n+1)(σx).

Integrating this, we obtain∫ ∣∣f̃r∣∣ dm � ‖f‖ρ,β
√
Rμ − r

∫ ∑
σ∈X1

x

H(e, σ|Rμ)ϕ(n+1)(σx) dm(x).

As x 
→ ϕ(n+1)(σx) is constant on cylinders of length n, (10) shows that∫ ∣∣f̃r∣∣ dm � ‖f‖ρ,β
√
Rμ − r

∑
x∈Ŝn

∑
σ∈X1

x

H(e, σ|Rμ)H(e, x|Rμ)ϕ(n+1)(σx)

� ‖f‖ρ,β
√
Rμ − r

∑
y∈Ŝn+1

H(e, y|Rμ)ϕ(n+1)(y).
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According to (17), we thus have ∫ ∣∣f̃r∣∣ dm � ‖f‖ρ,β
√
Rμ − r,

which concludes the proof. �

5. Evaluating the pressure

Our goal in this section is to estimate the numbers P̃j(r) given by Corollary 4.13 and to compare
them with the maximal pressure P (r). This allows us to obtain a precise estimate of I(1)(r).

According to Corollary 4.13, if Rμ − r is small enough, then

Lnr 1E∗(∅) =
k∑
j=1

enP̃j(ϕr)

pj∑
i=1

h̃
(i)
j (∅)

∫
1E∗ dν̃

((i−n) mod pj)
j +O(θn).

Here, 0 < θ < 1 and k is the number of maximal components for the function ϕRμ . Denote by
p the least common multiple of the periods of these components, so that if n ≥ 0 and 0 ≤ q < p,
then dν̃((i−np+q) mod pj)

j only depends on q. In particular, we can write

Lnp+qr 1E∗(∅) =
k∑
j=1

e(np+q)P̃j(ϕr)ξq,j(r) +O(θnp+q),

where ξq,j is a non-negative function of r defined on some fixed neighborhood of Rμ. Note that
ξq,j(r) only depends on h̃j,r(∅) and on

∫
1E∗ dν̃

(i)
j,r and that it is continuous in r according to

Corollary 4.13 and (19).
If r < Rμ, then

∑
γ H(e, γ|r) is finite, so the numbers P̃j(ϕr) are negative. Summing over n

and q ∈ {0, . . . , p− 1}, we obtain

∑
γ∈Γ

H(e, γ|r) = H(e, e|r)
∑
n,q

Lnp+qr 1E∗(∅) =
k∑
j=1

ξj(r)
|P̃j(ϕr)|

+O(1), r → Rμ, (23)

for some non-negative functions ξj , which are continuous in r on some neighborhood of Rμ.
We have the following result, which shows that the pressure is asymptotically independent

of the maximal components. Its proof is postponed to the following subsections.

Proposition 5.1. For every j ∈ {1, . . . , k}, P̃j(ϕr)/P (r) tends to one when r tends to Rμ, where
P (r) is the maximal pressure of the function ϕr.

Combining Proposition 5.1 and (23), we obtain that

I(1)(r) =
∑
γ∈Γ

H(e, γ|r) =
ξ(r)
|P (r)| +O(1), r → Rμ, (24)

for some non-negative function ξ, which is continuous in r on some neighborhood of Rμ. Recall
that I(1)(r) � √

Rμ − r and |P (r)| � √
Rμ − r. Therefore, ξ(Rμ) > 0, so that ξ(r) is bounded

away from zero on a neighborhood of Rμ.
The remainder of this section is devoted to proving Proposition 5.1. An analogous result is

proved in [Gou14] for hyperbolic groups. This is done by showing the following.

Lemma 5.2. For r ∈ [1, Rμ],
∫
ϕrdmj does not depend on j, where mj is the measure in

Proposition 3.7.
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This lemma, in turn, is proved in several steps.

Step 1. Fix c and define U(c) ⊂ ∂Γ̂ as the set of points ξ ∈ ∂Γ̂ such that if x is an infinite sequence
in ∂Σ∗

A defining ξ (that is, denoting γn = x1 . . . xn, e, γ1, . . . , γn, . . . is a relative geodesic ray that
converges to ξ in ∂Γ̂), then logH(e, γn|r)/d̂(e, γn) converges to c. Then, the definition of U(c)
does not depend on the choice of the sequence xn. Moreover, U(c) is Γ-invariant, that is, for any
γ ∈ Γ, γ · U(c) = U(c).

Step 2. Define the sequence of measures λn =
∑

γ∈Ŝn
H(e, γ|Rμ)δγ on Γ. Define λ̃N as

λ̃N :=
N∑
n=1

λn

/ ( N∑
n=1

λn(Γ)
)
. (25)

Then, up to a subsequence, λ̃N converges weakly to a probability measure on ∂Γ̂, which we
denote by λRμ .

Step 3. The limit measure λRμ is ergodic for the action of Γ on ∂Γ̂.

Step 4. Let cj =
∫
ϕr dmj . Then, λRμ(U(cj)) > 0. As λRμ is ergodic and U(ci) is Γ-invariant, we

thus have λRμ(U(cj)) = 1 for all j. In particular, all the sets U(cj) intersect, which proves that
cj is independent of j.

5.1 Proof of step 1
We prove here the following lemma.

Lemma 5.3. The sets U(c) as previously are well defined and are Γ-invariant.

Step 1 is stated in [Gou14, § 3.5] using the Gromov boundary ∂Γ of Γ instead of ∂Γ̂, because
groups are hyperbolic in there and not relatively hyperbolic. It is a consequence of the fact that
geodesics converging to ξ ∈ ∂Γ in a hyperbolic group stay within a bounded distance of each
other. This property still holds in our situation as we show in the proof of Lemma 5.3 that we
now present.

Proof. First, let us show that the definition of U(c) does not depend on the choice of the sequence
x defining ξ. Assume that x and x′ are two sequences such that, setting γn = x1 . . . xn and
γ′n = x′1 . . . x′n, both sequences e, γ1, . . . , γn, . . . and e, γ′1, . . . , γ′n, . . . are relative geodesics con-
verging to ξ. Then, according to Lemma 2.4, for every n, there exists kn such that d(γn, γ′kn

) ≤
C, so that H(e, γn|r) � H(e, γ′kn

|r). We thus have | logH(e, γn|r) − logH(e, γ′kn
|r)| ≤

C ′. Moreover, because d(γn, γ′kn
) ≤ C, d̂(γn, γ′kn

) ≤ C, so that |n− kn| ≤ C ′′ and, thus,
|d̂(e, γ′n) − d̂(e, γ′kn

)| ≤ C ′′. This proves that logH(e, γn|r)/d̂(e, γn) and logH(e, γ′n|r)/d̂(e, γ′n)
have the same limit.

Let γ ∈ Γ and let ξ ∈ U(c). We want to prove that γ · ξ ∈ U(c). Consider a sequence x
defining ξ and a sequence x′ defining γ · ξ, that is, setting γn = x1 . . . xn and γ′n = x′1 . . . x′n, the
sequence e, γ1, . . . , γn, . . . is a relative geodesic converging to ξ and the sequence e, γ′1, . . . , γ′n, . . .
is a relative geodesic converging to γ · ξ. Then, γ, γγ1, . . . , γγn, . . . is a relative geodesic start-
ing at γ and converging to γ · ξ. According to Lemma 2.4, for every n, there exists kn such
that d(γγn, γ′kn

) ≤ C. This time, the bound C depends on γ, but not on the sequences γn
and γ′n. This shows that H(γ−1, γn|r) = H(e, γγn|r) � H(e, γ′kn

|r), and because γ is fixed,
H(γ−1, γn|r) � H(e, γn|r), so that H(e, γn|r) � H(e, γ′kn

|r). The same proof then shows that
logH(e, γn|r)/d̂(e, γn) and logH(e, γ′n|r)/d̂(e, γ′n) have the same limit. �
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5.2 Proof of step 2
We prove here the following lemma.

Lemma 5.4. Up to a subsequence, λ̃N as defined in (25) converges weakly to a probability
measure on ∂Γ̂, which we denote by λRμ .

An analogous result follows directly from the convergence properties of the transfer operator
Lr in [Gou14] and one does not need to extract a subsequence. However, in our situation, we can
only prove convergence of

∫
f dλn for functions f ∈ Bρ,β . As our space is not compact and not

even locally compact, this set of functions is not dense in the set of all continuous and bounded
functions for the ‖ · ‖∞ norm. To fix this problem, we need to consider a compact space that
contains ∂Γ̂ so that λ̃N converges to a measure on this compact space (up to a subsequence). We
then prove that this limit measure gives full measure to ∂Γ̂. The compact space in question is a
version of the Martin boundary that we define. Actually, we deal both with the Martin boundary
and the Bowditch boundary at the same time.

We first define the Green distance at the inverse of the spectral radius as

dG(γ, γ′) = − logF (γ, γ′|Rμ)F (γ′, γ|Rμ),
where F (γ, γ′|Rμ) is the first visit Green function at Rμ. More precisely, we have

F (γ, γ′|r) =
∑
n≥0

rnP(X0 = γ,Xn = γ′, Xk �= γ′, 1 ≤ k ≤ n− 1), (26)

where Xk is the position of the μ-random walk at time k. Note that for r = 1, F (γ, γ′|1) is the
probability of ever reaching γ′ starting at γ.

Using the relation

G(γ, γ′|r) = F (γ, γ′|r)G(γ′, γ′|r) = F (γ, γ′|r)G(e, e|r)
(see [Woe00, Lemma 1.13(b)]), we also have that

dG(γ, γ′) = − logG(γ, γ′|Rμ) − logG(γ′, γ|Rμ) + 2G(e, e|Rμ).
Actually, the Green distance was introduced by Blachère and Brofferio in [BB07] as dG(γ, γ′) =
− logF (γ, γ′|1). What we call the Green distance here is, thus, a symmetrized version at the
spectral radius of what they call the Green distance.

In general, in any metric space (X, d), one can consider a compactification given by the
distance called the horofunction compactification. It was introduced by Kuratowski in [Kur35]
and used a lot by Gromov (see, for example, [BGS85]). It is the smallest compact set H such
that the function φ : (x, y) 
→ d(x, y) − d(x0, y) extends continuously to X ×H, where x0 is a
base point. Its homeomorphism type does not depend on x0. The horofunction boundary is the
complement of Γ in the horofunction compactification. We refer to [MT18, § 3] for a construction
and many more details.

Define the Martin kernel as

K̃(γ, γ′) =
G(γ, γ′|Rμ)G(γ′, γ|Rμ)
G(e, γ′|Rμ)G(γ′, e|Rμ) .

The Martin compactification is defined as the horofunction compactification for the Green dis-
tance. In other words, a sequence γn in Γ converges to a point ξ in the Martin boundary if and
only if the Martin kernel K̃(·, γn) converge pointwise to a limit function K̃(·, ξ). Usually, the
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Martin compactification is defined using the Martin kernel

K(γ, γ′) =
G(γ, γ′)
G(e, γ′)

.

Again, our Martin compactification is a symmetrized version of the usual Martin compactifica-
tion.

It is proved in [GGPY21] that as soon as weak relative Ancona inequalities are satisfied,
there is a one-to-one continuous map from Γ ∪ ∂Γ̂ to the Martin compactification, which is a
homeomorphism on its image. Actually, this is proved for the usual definition of the Martin
boundary. Although the proof still works for our symmetrized version, the terminology is a bit
different and we give a proof for completeness.

Lemma 5.5. There is a one-to-one continuous map from Γ ∪ ∂Γ̂ to the Martin compactification,
which is a homeomorphism on its image.

Proof. Let ξ be a conical limit point and let [e, ξ) be a relative geodesic ray from e to ξ. Let
γn be a sequence along [e, ξ) converging to ξ. Let γ ∈ Γ and let γ̃ be its projection on [e, ξ) in
Γ̂. Lemma 2.5 shows that for large enough n, a relative geodesic from γ to γn passes within a
bounded distance of γ̃. In addition, [Dus22, Lemma 4.17] shows that for large enough n, relative
geodesics from e to γn and from γ to γn fellow travel for an arbitrarily long time, when n goes
to infinity. Then, strong relative Ancona inequalities show that for every γ, K̃(γ, γn) converges
to some limit K̃ξ(γ), exactly as in the proof of Lemma 4.3. We thus proved that γn converges to
a limit that we still denote by ξ in the Martin boundary.

More generally, let ξ be a conical limit point and let ξn be a sequence in Γ ∪ ∂Γ̂ converging
to ξ. Let α be a relative geodesic ray from e to ξ and let αn be a (finite or infinite) rela-
tive geodesic from e to ξn. Let dμ be an arbitrary distance on the Martin compactification.
Then, there exists γn ∈ Γ on αn such that dμ(γn, ξn) ≤ 1/n. If ξn ∈ Γ, we can choose ξn = γn.
Otherwise, we use what we just proved previously. Up to choosing d̂(e, γn) large enough, we
can also assume that γn converges to ξ in Γ ∪ ∂Γ̂. Thus, there exists a sequence kn going
to infinity such that the projection γ̃n of γn on α in Γ̂ satisfies d̂(e, γ̃n) ≥ kn. In particular,
γ̃n converges to ξ in the Martin boundary, that is, for any γ, K̃(γ, γ̃n) converges to K̃ξ(γ).
Let γ ∈ Γ. Then, according to [Dus22, Lemma 4.17] applied twice, relative geodesics from
e to γn and from γ to γ̃n fellow-travel for an arbitrarily long time, when n goes to infin-
ity. Strong relative Ancona inequalities show that K̃(γ, γn) also converges to K̃ξ(γ). Thus,
dμ(ξ, γn) goes to zero. As dμ(γn, ξn) ≤ 1/n, we also have that ξn converges to ξ in the Martin
boundary.

We have, thus, constructed a map from Γ ∪ ∂Γ̂ to the Martin compactification. We also
proved that this map is continuous. Let us prove that it is one-to-one. Let ξ �= ξ′ be two conical
limit points. We just need to prove that ξ �= ξ′ in the Martin boundary. Consider two relative
geodesics [e, ξ) and [e, ξ′) from e to ξ and from e to ξ′. Let γn and γ′n be a sequence on [e, ξ) and
[e, ξ′), respectively, converging to ξ and ξ′, respectively. As ξ �= ξ′, the projection of γn on [e, ξ′) in
Γ̂ stays within a bounded distance of e. Thus, for large enough n and m, a relative geodesic from
γn to γ′m passes within a bounded distance of e. Weak relative Ancona inequalities show that
K̃(γn, γ′m) � H(γn, e|Rμ). Letting m tend to infinity, we thus have that K̃ξ′(γn) � H(γn, e|Rμ),
so that K̃ξ′(γn) converges to zero. Weak relative Ancona inequalities also show that if n < m, we
have K̃(γn, γm) � 1/H(e, γn|Rμ). Letting m tend to infinity, we obtain K̃ξ(γn) � 1/H(γn, e|Rμ),
so that K̃ξ(γn) goes to infinity. We can thus find n such that K̃ξ(γn) �= K̃ξ′(γn) and so ξ �= ξ′ in
the Martin boundary.
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Finally, we prove that this map is a homeomorphism on its image. Let ξn be a sequence in
Γ ∪ ∂Γ̂ converging to ξ in the Martin compactification. Assume by contradiction that it does not
converge to ξ in Γ ∪ ∂Γ̂. Fix a relative geodesic α from e to ξ and for every n, a relative geodesic αn
from e to ξn. Then, up to choosing a subsequence, we can assume that the projection of αn on α in
Γ̂ stays within a uniform bounded distance of e. In particular, if γm is a sequence on α converging
to ξ and if γ′k is a sequence on αn converging to ξn, then a relative geodesic from γm to γ′k passes
within a bounded distance of e, independently of k,m, n. Weak relative Ancona inequalities
show that K̃(γm, γ′k) � H(γm, e|Rμ) so that letting k tend to infinity, K̃ξn(γm) � H(γm, e|Rμ).
In particular, K̃ξn(γm) ≤ C for some uniform C. However, as we saw above, K̃ξ(γm) tends to
infinity, so there existsm such that K̃ξ(γm) ≥ C + 1. Fixing such anm, we obtain a contradiction,
since K̃ξn(γm) converges to K̃ξ(γm) when n tends to infinity. �

We first prove that λ̃N converges to a probability measure on the Bowditch compactification.
We then prove that it also converges to a probability measure on the Martin compactification.

Proposition 5.6. Up to a subsequence, the measure λ̃N weakly converges to a measure λRμ on
the Bowditch compactification. This limit measure gives full measure to the set of conical limit
points.

Proof. Convergence up to a subsequence follows directly from compactness of the Bowditch
compactification. We just need to prove that any limit measure of λ̃N gives full measure to the set
of conical limit points. Recall that λn =

∑
γ∈Ŝn

H(e, γ|Rμ)δγ and λ̃N =
∑N

n=1 λn/(
∑N

n=1 λn(Γ)).
First, we prove that any limit measure λRμ of λ̃N gives full mass to the Bowditch boundary.

Let K ⊂ Γ be a compact subset. Then, K is finite, so that for any N ,
∑N

n=1 λn(K) is bounded,
independently of N . Moreover, according to Proposition 2.11,

∑N
n=1 λn(Γ) tends to infinity. This

proves that for any subsequence λ̃Nj of λ̃N , λ̃Nj (K) converges to zero when j tends to infinity.
As K is both open and closed in the Bowditch compactification, the Portmanteau theorem shows
that λRμ(K) = 0.

Consider a parabolic limit point ξ in the Bowditch boundary. As the set of parabolic limit
points is countable, we just need to prove that λRμ({ξ}) = 0 to conclude. Let H be the cor-
responding parabolic subgroup, that is, H is the stabilizer of ξ. Choose H0 ∈ Ω0 so that H is
conjugated to H0, say H = γ0H0γ

−1
0 Denote by Uξ,n the set of γ ∈ Γ such that the projection of

γ on γ0H0 in the Cayley graph Cay(Γ, S) is at d-distance at least n from e. Let V (ξ, n) be the
closure of U(ξ, n) in the Bowditch compactification. Then, V (ξ, n) contains {ξ} so we only need
to prove that λRμ(V (ξ, n)) converges to zero when n tends to infinity.

According to the BCP property, if ζ ∈ V (ξ, n), then there exists γ ∈ H0 such that γ0γ is
within a bounded distance of a relative geodesic from e to ζ. In particular, if N is large enough,
for every γ′ ∈ V (ξ, n) ∩ Γ such that d̂(e, γ′) = N , weak relative Ancona inequalities show that

H(e, γ′|Rμ) � H(e, γ0|Rμ)H(e, γ|Rμ)H(γ0γ, γ
′|Rμ).

Thus,

λN (V (ξ, n)) �
∑

γ∈H0,d(e,γ0γ)≥n
H(e, γ|Rμ)

N∑
k=1

λk(Γ)

and so

λ̃N (V (ξ, n)) �
∑

γ∈H0,d(e,γ0γ)≥n
H(e, γ|Rμ).
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As γ0 is fixed, this proves that

λRμ(V (ξ, n)) �
∑

γ∈H0,d(e,γ)≥n
H(e, γ|Rμ).

According to Corollary 2.10, this last term converges to zero when n tends to infinity, which
concludes the proof. �

We can thus see the measure λRμ as a measure on ∂Γ̂. We fix a subsequence λ̃Nk
such that

λ̃Nk
weakly converges to λRμ . We can now prove Lemma 5.4.

Proof. There is a one-to-one and continuous map from Γ ∪ ∂Γ̂ to the Bowditch compactification,
which is a homeomorphism on its image. As the limit measure λRμ does not give any mass to
the complement of Γ ∪ ∂Γ̂, the Portmanteau theorem shows that λ̃Nk

also weakly converges to
λRμ on Γ ∪ ∂Γ̂. �

We also prove the following corollary.

Lemma 5.7. The measure λ̃Nk
also weakly converges to λRμ on the Martin compactification.

Proof. There is a one-to-one and continuous map from Γ ∪ ∂Γ̂ to the Martin compactification,
which is a homeomorphism on its image. Let f be a bounded continuous function on the Martin
compactification. Its restriction f̃ to Γ ∪ ∂Γ̂ also is bounded continuous, so λ̃Nk

(f) = λ̃Nk
(f̃)

converges to λRμ(f̃). This proves that λ̃Nk
also weakly converges to λRμ on the Martin

compactification. �

5.3 Proof of step 3
We prove here the following.

Lemma 5.8. The limit measure λRμ is ergodic for the action of Γ on ∂Γ̂.

This step is a bit more complicated. To show that λRμ is ergodic, we follow the strategy
of [MYJ20]. We first prove that λRμ is conformal for the Green distance defined previously.

Let γ ∈ Γ and let Lγ the operator of multiplication by γ on the left.

Lemma 5.9. For every γ, we have

d(Lγ)∗λRμ

dλRμ

(ξ) = K̃ξ(γ).

Proof. Direct computation shows that for fixed γ0, one has, for any γ and any N such that
N ≥ d̂(e, γ0) + d̂(e, γ),

(Lγ0)∗λ̃N (γ) = H(γ0, γ|Rμ)/H(e, γ|Rμ)λ̃N (γ) = K̃(γ0, γ)λ̃N (γ). (27)

Lemma 2.9 shows that
∑N

n=N−d̂(e,γ0)

∑
γ∈Ŝn

H(e, γ|Rμ) is bounded. Thus, according to
Proposition 2.11, ∑N

n=N−d̂(e,γ0)
H(e, γ|Rμ)∑

n≤N H(e, γ|Rμ) −→
N→∞

0.

Combined with (27), this shows that ((Lγ0)∗λ̃N − K̃(γ0, ·)λ̃N ) converges to zero in total variation
norm.
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By definition, for fixed γ0, the function K̃(γ0, ·) is continuous and bounded on the Martin
compactification. Thus, K̃(γ0, ·)λ̃Nk

weakly converges to K̃(γ0, ·)λRμ . Moreover, left multiplica-
tion by γ0 on Γ extends to a homeomorphism on the Martin compactification, so that (Lγ0)∗λ̃Nk

weakly converges to (Lγ0)∗λRμ . We have, thus, proved that (Lγ0)∗λRμ = K̃(γ0, ·)λRμ . �
We use this property to prove the following.

Lemma 5.10. The measure λRμ on ∂Γ̂ has no atom.

Proof. Assume in contrast that there exists ξ ∈ ∂Γ̂ such that λRμ(ξ) > 0. Consider a sequence
γn converging along a relative geodesic ray to ξ. Then, weak relative Ancona inequalities show
that if n ≤ m, then K̃(γn, γm) ≥ C/H(e, γn|Rμ). Consequently, letting m tend to infinity, we see
that K̃ξ(γn) ≥ C/H(e, γn|Rμ). As d(γn, e) tends to infinity, H(e, γn|Rμ) converges to zero and
so K̃ξ(γn) tends to infinity. Lemma 5.9 shows that λRμ(γ−1

n ξ) = K̃ξ(γn)λRμ(ξ), which goes to
infinity. This is a contradiction, because λRμ is a probability measure. �

In the following, it is simpler to see the measure λRμ as a measure on the Bowditch bound-
ary that gives full mass to the set of conical limit points. We used the symmetrized Martin
boundary to prove Lemmas 5.9 and 5.10. In the hyperbolic setting, using results of Coornaert
(see [Coo93]), conformal measures for hyperbolic distances are ergodic. Actually, [Coo93] only
deals with geodesic distances and this was generalized by [BHM11] for distances that are hyper-
bolic and quasi-isometric to a word distance, such as the Green distance as long as weak Ancona
inequalities hold (this is also proved in [BHM11]). Comparing a geodesic distance with the Green
distance is more difficult here and we need another approach. We use instead the same strategy
as in [MYJ20, Theorem 4.1] to prove Lemma 5.8, which generalizes Coornaert’s result.

Before proving this proposition, let us introduce some notions of geometric measure theory
from [MYJ20] and some constructions of [DG20] and [Yan22]. Let Λ be a metric space. A covering
relation C is a subset of the set of all pairs (ξ, S) such that ξ ∈ S ⊂ Λ. A covering relation C is said
to be fine at ξ ∈ Λ if there exists a sequence Sn of subsets of Λ with (ξ, Sn) ∈ C and such that the
diameter of Sn converges to zero. Let C be a covering relation. For any measurable subset E ⊂ Λ,
define C(E) to be the collection of subsets S ⊂ Λ such that (ξ, S) ∈ C for some ξ ∈ E. A covering
relation C is said to be a Vitali relation for a finite measure κ on Λ if it is fine at every point
of Λ and if the following holds: if C′ ⊂ C is fine at every point of Λ then for every measurable
subset E, C′(E) has a countable disjoint subfamily {Sn} such that κ(E \ ⋃∞

n=1 Sn) = 0. We use
the letter V to denote a Vitali relation in the following.

Recall that an (η1, η2)-transition point on a geodesic α in the Cayley graph Cay(Γ, S) is a
point γ such that for any coset γ0H of a parabolic subgroup, the part of α consisting of points
at distance at most η2 from γ is not contained in the η1-neighborhood of γ0H. Let ξ be a conical
limit point. Following Yang [Yan22], the partial shadow Ωη1,η2(γ) at γ ∈ Γ is the set of points
ξ in the Bowditch boundary such that there is a geodesic ray [e, ξ) in Cay(Γ, S) containing an
(η1, η2)-transition point in the ball B(γ, 2η2).

We define the following relation Vη1,η2 on the Bowditch boundary. For ξ parabolic, we declare
(ξ, {ξ}) ∈ Vη1,η2 . For ξ conical, we declare (ξ,Ωη1,η2(γ)) ∈ Vη1,η2 whenever ξ ∈ Ωη1,η2(γ). Accord-
ing to [DG20, Proposition 3.3], the relation Vη1,η2 is fine at every limit point in the Bowditch
boundary.

Let γ ∈ Γ and let η1, η2 > 0. Consider a neighborhood U of Ωη1,η2(γ) in the Bowditch com-
pactification. One can choose U such that for any point ξ in U , γ is within a bounded distance of
a transition point on a geodesic from e to ξ. According to Lemma 2.2, γ is within a bounded dis-
tance of a point on a relative geodesic from e to ξ. In particular, weak relative Ancona inequalities
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imply that there exists a constant C (depending on η2) such that for N large enough,

λ̃N (Ωη1,2η2(γ)) ≤ Cλ̃N (Ωη1,η2(γ)),

so that

λRμ(Ωη1,2η2(γ)) ≤ CλRμ(Ωη1,η2(γ)).

The measure λRμ on the Bowditch boundary gives full measure to the set of conical limit points.
Thus, [DG20, Proposition 3.4] shows that the relation Vη1,η2 is a Vitali relation for λRμ .

To prove Lemma 5.8, we need the following two results.

Lemma 5.11 [MYJ20, Theorem 4.2]. Let E be a measurable subset of the Bowditch boundary.
Then, for λRμ-almost every point ξ ∈ E, one has

λRμ(E ∩ Sn)
λRμ(Sn)

−→
n→∞ 1

for every sequence {Sn} such that (ξ, Sn) ∈ Vη1,η2 for all n and such that the diameter of Sn
converges to 0 when n tends to infinity.

For the second result, we need to choose a distance on the Bowditch boundary. To sim-
plify the argument, we choose the shortcut distance, so that the following holds. We refer to
[Yan22, § 2.4] for the definition of the shortcut distance.

Lemma 5.12. For every ε > 0 and η1 > 0, there exists η2 > 0 such that for every γ ∈ Γ, the
diameter of the complement of γ−1Ωη1,η2(γ) is smaller than ε.

Proof. This is exactly the content of the remark inside the proof of [Yan22, Lemma 4.1]. �
Actually, the choice of the distance is not relevant and with a bit of work, one could have

proved the same result for a visual distance on the Bowditch boundary, adapting the arguments of
[MYJ20, Proposition 2.10]. We only chose the shortcut distance to avoid reproving this technical
claim.

We can finally prove Lemma 5.8. Everything is settled so that we can easily adapt the
arguments of [MYJ20, Theorem 4.1]. We still rewrite the proof for convenience.

Proof. Denote by ∂BΓ the Bowditch boundary of Γ. Consider a Γ-invariant measurable subset
E of the Bowditch boundary, such that λRμ(E) > 0. Assume, by contradiction, that λRμ(E) < 1.
We fix ε > 0 arbitrarily small. For technical reasons, we assume that λRμ(∂BΓ) ≥ 2ε, that is,
ε ≤ 1/2.

According to Lemma 5.11, if η2 is large enough, for λRμ-almost every ξ in Ec,

λRμ(E ∩ Ωη1,η2(γn))
λRμ(Ωη1,η2(γn))

−→
n→∞ 0,

whenever γn converges to ξ along a relative geodesic ray. Take such a ξ and such a sequence γn.
Up to taking a subsequence, we can assume that γ−1

n converges to a point ζ in the Bowditch
boundary. According to Lemma 5.10, λRμ(ζ) = 0.

Then, because the Bowditch boundary is compact, there exists δ > 0 (not depending on ζ)
such that the ball centered at ζ of radius δ has measure at most ε. Moreover, according to
Lemma 5.12, there exists η2 > 0 such that the diameter of the complement of γ−1

n Ωη1,η2(γn)
is smaller than δ. Fixing such an η2 > 0, for large enough n, we have that ζ /∈ γ−1

n Ωη1,η2(γn),
so that the complement of γ−1

n Ωη1,η2(γn) is contained in the ball of center ζ and of radius δ.
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In particular,
λRμ(∂BΓ \ γ−1

n Ωη1,η2(γn)) ≤ ε.

As λRμ(∂BΓ) ≥ 2ε, we thus also have

λRμ(γ−1
n Ωη1,η2(γn)) ≥ ε.

As E is Γ-invariant, we have

λRμ(E ∩ γ−1
n Ωη1,η2(γn)) = (Lγn)∗λRμ(E ∩ Ωη1,η2(γn)).

Weak relative Ancona inequalities show that if ξ′ ∈ Ωη1,η2(γn), then

1
C(η2)

1
H(e, γn|Rμ) ≤ K̃ξ′(γn) ≤ C(η2)

1
H(e, γn|Rμ) .

In particular, Lemma 5.9 shows that

λRμ(E ∩ γ−1
n Ωη1,η2(γn)) ≤ C(η2)

1
H(e, γn|Rμ)λRμ(E ∩ Ωη1,η2(γn)).

Similarly, we have

λRμ(γ−1
n Ωη1,η2(γn)) ≥

1
C(η2)

1
H(e, γn|Rμ)λRμ(Ωη1,η2(γn)).

This proves that

λRμ(E ∩ γ−1
n Ωη1,η2(γn))

λRμ(γ−1
n Ωη1,η2(γn))

≤ C ′(η2)
λRμ(E ∩ Ωη1,η2(γn))
λRμ(Ωη1,η2(γn))

.

The right-hand side of this last equation converges to zero when n tends to infinity. This
proves that λRμ(E ∩ γ−1

n Ωη1,η2(γn))) converges to zero when n tends to infinity, because
λRμ(γ−1

n Ωη1,η2(γn)) ≥ ε. Finally, recall that λRμ(∂BΓ \ γ−1
n Ωη1,η2(γn)) ≤ ε, so that λRμ(E) ≤ 2ε.

As ε is arbitrarily small, we get that λRμ(E) = 0, which is a contradiction. �

5.4 Proof of step 4
We prove here the following.

Lemma 5.13. Let cj =
∫
ϕr dmj . With the notation as previously, we have

λRμ(U(cj)) > 0.

This lemma is a consequence of the two following results. We use the notation αj =
∑

i ν
(i)
j ,

where the measures ν(i)
j are given by Theorem 3.3.

Lemma 5.14. The measure T∗αj is absolutely continuous with respect to the measure αj .

Proof. Since by Lemma 4.6 the maximal pressure at the spectral radius is zero, we have

L∗
Rμ
αj = αj .

Denote by [x1, . . . , xn] the cylinder consisting of elements of ΣA starting with the symbols
x1, . . . , xn. Then, we have

αj([x1, . . . , xn]) = αj(LRμ1[x1,...,xn]).

Moreover, weak Ancona inequalities show that

αj(LRμ1[x1,...,xn]) ≤ CH(e, x1|Rμ)αj([x2, . . . , xn]).
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Now, T−1[x2, . . . , xn] is contained in the union of cylinders of the form [x1, . . . , xn], where x1 ∈ S
or x1 ∈ H for some parabolic subgroup. According to Corollary 2.10, the sum

∑
σ∈HH(e, σ|r)

is uniformly bounded, so that

αj(T−1[x2, . . . , xn]) ≤ Cαj([x2, . . . , xn]).

This is true for any cylinder [x2, . . . , xn]. It follows that αj(T−1E) ≤ Cαj(E) for any measurable
set E ∈ ΣA. �

Recall that φ maps paths of ΣA that start with v∗ to Γ ∪ ∂Γ̂. Let αj(· ∩E∗) be the measure
αj restricted to paths that start at v∗. Then, φ∗αj(· ∩ E∗) is a measure on ∂Γ̂.

Lemma 5.15. The measure φ∗αj(· ∩E∗) is absolutely continuous with respect to the
measure λRμ .

Proof. The sequence of measures λ̃Nk
weakly converges to λRμ in the Bowditch compactification.

Recall that according to Lemma 5.7, it also weakly converges to λRμ in Γ ∪ ∂Γ̂.
If f is a function defined on ∂Γ̂, then f ◦ φ is defined on ΣA and it vanishes on the complement

of E∗. We see ∂Γ̂ as the Gromov boundary of the hyperbolic space Γ̂ and we endow ∂Γ̂ with a
visual distance dv, as in [GH90]. Then, there exists ε > 0 such that dv(ξ, ξ′) ≤ e−ε(ξ,ξ′)e , where
(ξ, ξ′)e is the Gromov product of ξ and ξ′, based at e, see [GH90, Proposition 7.3.10]. In particular,
if f is a bounded locally Hölder continuous function on ∂Γ̂, then f ◦ φ is in Bρ,β . Theorem 3.3
shows that Lnp+qRμ

(f ◦ φ)(∅) converges to
∑k

j=1

∑pj

i=1 h
(i)
j

∫
(f ◦ φ) dν((i−n) mod pj)

j . Also note that∑
γ∈Ŝn

H(e, γ|Rμ) = H(e, e|Rμ)LnRμ
(1E∗f ◦ φ)(∅).

Let βj = φ∗αj(· ∩E∗). As the functions h(i)
j are bounded away from zero and infinity on the

support of ν(i)
j , this proves that for any bounded locally hölder continuous function f on ∂Γ̂, we

have

βj(f) ≤ CλRμ(f). (28)

Bounded Hölder continuous functions are not dense in bounded continuous functions for
the supremum norm, but they are dense in the space of integrable functions for the L1-norm,
see [AB06, Corollary 3.14]. Let A ⊂ ∂Γ̂ be any measurable set. We want to prove that βj(A) ≤
CλRμ(A). Let ε > 0. There exists a bounded locally Hölder continuous function f such that

‖f − 1A‖L1(∂Γ̂,βj+λRμ ) ≤ ε.

Then, βj(A) ≤ βj(|f |) + ε. As |f | still is locally Hölder continuous, (28) shows that

βj(A) ≤ CλRμ(|f |) + ε ≤ CλRμ(A) + (1 + C)ε.

As ε is arbitrary, this concludes the proof. �
Those two lemmas allow us to conclude the proof of Lemma 5.13 We only outline the proof

and refer to the end of the proof of [Gou14, Proposition 3.16] for the details. The probability
measure dmj = (1/pj)

∑pj

i=1 h
(i)
j dν

(i)
j is invariant and ergodic for the shift T (see, for example,

[Sar99, Lemma 11]). Fix r close enough to Rμ so that the conclusions of Theorem 3.6
hold. Let Oj be the set of points where the Birkhoff sums (1/n)

∑
1≤k≤n ϕr ◦ T k converge to

cj =
∫
ϕrdmj . By the Birkhoff ergodic theorem, mj(Oj) = 1. We first deduce that αj(Oj ∩

ΣA,j) > 0. Using that T∗αj is absolutely continuous with respect to αj , we then deduce that
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αj(Oj) > 0. Then, using that φ∗αj(· ∩E∗) is absolutely continuous with respect to λRμ , we
deduce that λRμ(φ(Oj ∩ E∗)) > 0. Finally, direct computation shows that φ(Oj ∩ E∗) ⊂ U(cj).
This proves that λRμ(U(cj)) > 0.

We now conclude the proof of Lemma 5.2.

Proof. As U(cj) is invariant and λRμ is ergodic, we thus have λRμ(U(cj)) = 1. This holds for all
j, so we finally obtain that every U(cj) intersect, so that cj does not depend on j. �

5.5 End of the proof of Proposition 5.1
We want to prove that P̃j(ϕr)/P (r) tends to one when r tends to Rμ. According to
Proposition 4.12, the assumptions of Proposition 3.7 are satisfied, so that

eP̃j(r) − 1 =
∫

(eϕr−ϕRμ − 1) dmj

+
∫

(eϕr−ϕRμ − 1)
1
pj

( pj−1∑
i=0

h
(i)
j − h̃

(i)
j,r

)
dν

(i)
j . (29)

Lemma 4.5 and (23) show that |P (r)| has order of magnitude
√
Rμ − r. We actually show

that

eP̃j(r) − 1 =
∫

(ϕr − ϕRμ) dmj + o
(√

Rμ − r
)
.

We then combine this with Lemma 5.2 to complete the proof of Proposition 5.1.

Lemma 5.16. We have∫
(eϕr−ϕRμ − 1)

1
pj

( pj−1∑
i=0

h
(i)
j − h̃

(i)
j,r

)
dν

(i)
j = o

(√
Rμ − r

)
.

Proof. According to Theorem 3.3, the functions h(i)
j are bounded away from zero and infinity on

the support of ν(i)
j . We can thus replace ν(i)

j with mj , which is itself dominated by the measure m.
Thus, we just need to show that for every i,

1√
Rμ − r

∫ ∣∣eϕr−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,r

∣∣ dm −→
r→Rμ

0.

Let rn be a sequence converging to Rμ such that

1√
Rμ − rn

∫ ∣∣eϕrn−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,rn

∣∣ dm −→
n→+∞ α ∈ [0,+∞].

According to Corollary 4.13, ∫ ∣∣h(i)
j − h̃

(i)
j,rn

∣∣ dm −→
n→+∞ 0,

so up to taking a subsequence,
∣∣h(i)
j − h̃

(i)
j,rn

∣∣ converges to zero m-almost everywhere.
We now focus on 1/

√
Rμ − rn

∣∣eϕrn−ϕRμ − 1
∣∣. We show that

1√
Rμ − r

∫ ∣∣eϕr−ϕRμ − 1
∣∣ dm � 1. (30)

Differentiating the expression eϕr−ϕRμ (x), we obtain(
d

dr
ϕr(x)

)
eϕr−ϕRμ (x).
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Weak relative Ancona inequalities yield

eϕr−ϕRμ (x) =
H(e, x|r)/H(x1, x|r)

H(e, x|Rμ)/H(x1, x|Rμ) � H(e, x1|r)
H(e, x1|Rμ) � 1. (31)

Thus, Lemma 4.8 shows that ∣∣∣∣ ddr (eϕr−ϕRμ (x))
∣∣∣∣ � 1√

Rμ − r
ϕ(x). (32)

Integrating this inequality, we obtain∣∣eϕr−ϕRμ (x) − 1
∣∣ � ϕ(x)

√
Rμ − r. (33)

Integrating with respect to m, we finally obtain (30). In addition,
1√

Rμ − rn

∣∣eϕrn−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,rn

∣∣ � ϕ
∣∣h(i)
j − h̃

(i)
j,rn

∣∣,
so that

1√
Rμ − rn

∣∣eϕrn−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,rn

∣∣
converges to zero m-almost everywhere.

Finally, we deduce from Corollary 4.13 that
∣∣h(i)
j − h̃

(i)
j,rn

∣∣ is uniformly bounded, hence

1√
Rμ − rn

∣∣eϕrn−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,rn

∣∣ � ϕ.

We apply the dominated convergence theorem, so that
1√

Rμ − rn

∫ ∣∣eϕrn−ϕRμ − 1
∣∣∣∣h(i)

j − h̃
(i)
j,rn

∣∣ dm −→
n→+∞ 0.

In other words, α = 0, which concludes the proof. �
Lemma 5.17. We have∫

((eϕr−ϕRμ − 1) − (ϕr − ϕRμ)) dm = o
(√

Rμ − r
)
.

Proof. Differentiating the integrand, we obtain(
d

dr
ϕr

)
(eϕr−ϕRμ − 1).

Fix R ≤ Rμ and let
ϕR = sup

R≤r≤Rμ

|eϕr−ϕRμ − 1|.

For every R ≤ r ≤ Rμ, according to Lemma 4.8,∣∣∣∣ ddr [
(eϕr−ϕRμ − 1) − (ϕr − ϕRμ)

]∣∣∣∣ ≤ ϕϕR
1√

Rμ − r
.

Integrating this inequality over r varying between R and Rμ, we obtain∣∣(eϕR−ϕRμ − 1) − (ϕR − ϕRμ)
∣∣ ≤ ϕϕR

√
Rμ −R.

It is thus enough to prove that ∫
ϕϕR dm −→

R→Rμ

0.
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Consider a sequence rk converging to Rμ such that∫
ϕϕrk dm −→

k→∞
α.

According to (33),
∫
ϕR dm converges to zero, so up to taking a subsequence, ϕrk converges to

zero m-almost everywhere. Hence, ϕϕrk converges to zero m-almost everywhere. In addition,
according to (31), ϕr is uniformly bounded. We apply the dominated convergence theorem, so
that ∫

ϕϕrk dm −→
R→Rμ

0.

In other words, α = 0, which concludes the proof. �
We can now prove Proposition 5.1.

Proof. We combine Lemmas 5.16 and 5.17 and (29) to show that

eP̃j(r) − 1 =
∫

(ϕr − ϕRμ) dmj + o
(√

Rμ − r
)
.

According to Lemma 5.2, the integral in the right member does not depend on j. Choose j′ so
that the pressure is maximal. Then, for every j,

eP̃j(r) − 1 = eP (r) − 1 + o
(√

Rμ − r
)
,

hence,

eP̃j(r) − 1 = P (r) + o(P (r)) + o
(√

Rμ − r
)
.

We deduce from Lemma 4.5 and from (23) that |P (r)|/√Rμ − r is bounded away from zero and
infinity. Thus,

eP̃j(r) − 1 = P (r) + o(P (r)).

Consequently, for every j, P̃j(r) converges to zero as r tends to Rμ, so that

P̃j(r) ∼ eP̃j(r) − 1, r → Rμ.

This also proves that

P̃j(r) ∼ P (r), r → Rμ,

which concludes the proof. �

6. Asymptotic of the second derivative of the Green function

Our goal here is to prove the following proposition. We still assume that μ is not spectrally
degenerate.

Proposition 6.1. When r → Rμ, we have

I(2)(r) = ξI(1)(r)3 +O(I(1)(r)2),

for some ξ > 0.

808

https://doi.org/10.1112/S0010437X22007448 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007448


Local limit theorems in relatively hyperbolic groups II

We introduce some notation. We define for r < Rμ the function

Φr(γ) =

∑
γ′ G(e, γ′|r)G(γ′, γ|r)

G(e, γ|r) .

By definition,

I(2)(r) =
∑
n≥0

∑
γ∈Ŝn

H(e, γ|r)Φr(γ) = H(e, e|r)
∑
n≥0

Lnr (1E∗Φr ◦ φ)(∅).

According to Theorem 3.3, for any f : Γ ∪ ∂Γ̂ → R such that f ◦ φ : ΣA → R is in Hρ,β,

∑
n≥0

Lnr (1E∗f ◦ φ)(∅) =
k∑
j=1

cf (j, r)
|P̃j(ϕr)|

+O(1), r → Rμ.

In addition, according to (24),

I(1)(r) ∼ ξ(r)
P (r)

, r → Rμ.

Finally, Proposition 5.1, shows that |P̃j(ϕr)|/P (r) converges to one. Hence,∑
n≥0

Lnr (1E∗f ◦ φ)(∅) ∼ I(1)(r)cf , r → Rμ, (34)

where cf only depends on f . In other words (1/I(1)(r))
∑

n≥0 Lnr (1E∗f ◦ φ)(∅) converges.
However, Φr ◦ φ /∈ Hρ,β. The goal of the next subsection is to transform Φr in order to apply (34).

6.1 A partition of unity
We start with a rough study of Φr. Let γ ∈ Γ and let [e, γ] = (e, γ1, . . . , γd̂(e,γ)−1, γ) be a relative

geodesic from e to γ. For every k ≤ d̂(e, γ), denote by Γk the set of γ′ ∈ Γ whose projection
on [e, γ] is at γk. If there are more than one such projections, we choose the closest to γ. Also
denote by γ̃k the projection of γ′ on the union Hk of parabolic subgroups containing γ−1

k−1γk.
Lemma 2.5 shows that any relative geodesic from e to γ′ passes within a bounded distance of
γk−1. In addition, [Sis13, Lemma 1.13 (1)] shows that the exit point from Hk of any such relative
geodesic is within a bounded distance of γ̃k. Thus, any relative geodesic from e to γ’ passes first
within a bounded distance of γk−1 and then within a bounded distance of γ̃k. In addition, any
relative geodesic from γ′ to γ passes within a bounded distance of γ̃k, then of γk. Weak relative
Ancona inequalities imply that for every γ′ ∈ Γk,

G(e, γ′|r)G(γ′, γ|r)
G(e, γ|r)

� G(e, γk−1|r)G(γk−1, γ̃k|r)G(γ̃k, γ′|r)G(γ′, γ̃k|r)G(γ̃k, γk|r)G(γk, γ|r)
G(e, γk−1|r)G(γk−1, γk|r)G(γk, γ|r) .

We thus obtain that
G(e, γ′|r)G(γ′, γ|r)

G(e, γ|r) � G(γk−1, γ̃k|r)G(γ̃k, γk|r)
G(γk−1, γk|r) G(γ̃k, γ′|r)G(γ′, γ̃k|r).

We then sum over all γ′ ∈ Γk. Let Hγk
be the union of all parabolic subgroups in Ω0 containing

γ−1
k−1γk. Then γ−1

k−1γ̃k ∈ Hγk
. We can decompose the sum over γ′ ∈ Γk according to the projection

on γ̃k ∈ Hγk
. Bounding

∑
G(γ̃k, γ′|r)G(γ′, γ̃k|r) by I(1)(r), where γ̃k is fixed and the sum is over
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all γ′ projecting on γ̃k, we finally obtain∑
γ′∈Γk

G(e, γ′|r)G(γ′, γ|r)
G(e, γ|r) � I1(r)

∑
γ̃k∈Hγk

G(γk−1, γ̃k|r)G(γ̃k, γk|r)
G(γk−1, γk|r) .

We then construct a function Υr as follows. For every γ ∈ Γ, we choose a relative geodesic
from e to γ, using the automaton G. Let γ1 be the first point after e on this relative geodesic.
Note that γ1 coincides with the first increment σ1 on this relative geodesic. In general, we denote
by σk = γ−1

k−1γk the kth increment. In addition, let Hσ1 be the union of all parabolic subgroups
in Ω0 containing σ1. We set

Υr(γ) =
∑

σ∈Hσ1

G(e, σ|r)G(σ, σ1|r)
G(e, σ1|r) .

This function Υr only depends on the first element of the relative geodesic [e, γ]. In other
words, the function Υr ◦ φ(x) only depends on the first symbol of x ∈ ΣA. The estimate above
yields

Φr(γ) � I1(r)
d̂(e,γ)−1∑
k=0

Υr ◦ T k([e, γ]), (35)

where T is the left shift on relative geodesic, that is, T ([e, γ]) = (e, γ−1
1 γ2, . . . , γ

−1
1 γ). Note that

Υr is not bounded. Indeed, assuming that σ1 is only in one parabolic subgroup H1 to simplify,
then Υr(γ) is essentially given by

∑
σ∈Hσ1

G
(1)
1,r(e, σ1)
G(e, σ1|r) .

This quantity is not bounded.
However, to prove Proposition 6.1, we need to estimate Lr(Υr ◦ φ)(x). Recall that X1

x is the
set of symbols σ that can precede x in ΣA. Seeing x and σ as elements of Γ,

Lr(Υr ◦ φ)(x) =
∑
σ∈X1

γ

H(e, σx|r)
H(e, x|r)

∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)
G(e, σ|r) .

Therefore, weak relative Ancona inequalities show that

Lr(Υr ◦ φ)(x) �
∑
j

∑
σ,σ′∈Hj

G(e, σ′|r)G(σ′, σ|r)G(σ, e|r).

We rewrite this as

Lr(Υr ◦ φ)(x) �
∑
j

I
(2)
j (r).

As μ is not spectrally degenerate, we obtain

Lr(Υr ◦ φ)(x) � 1. (36)

We only gave a rough estimate. To obtain a precise asymptotic, we replace the decomposition
of Γ into subsets Γk as previously by a continuous decomposition, using a partition of unity. We
construct such a partition of unity adapting the arguments of [GL13, Lemma 8.5].
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We first introduce the following terminology. Consider a relative geodesic α that we write
α = (α−m, . . . , α−1, α0, α1, . . . , αn). Let l̂(α) = d̂(α−m, αn) be the relative length of α (here
n+m) and let l(α) be its total length, defined by

l(α) =
n∑

k=−m+1

d(αk−1, αk).

Note that if α, α′ are two relative geodesic with the same endpoints, we do not have l(α) = l(α′)
in general. However, the distance formula given by [Sis13, Theorem 3.1] shows that

1
λ1
d(α−m, αn) − c1 ≤ l(α) ≤ λ1d(α−m, αn) + c1

and so
1
λ2
l(α) − c2 ≤ l(α′) ≤ λ2l(α) + c2.

Our goal is to construct a partition of unity κα associated to such a relative geodesic α.
Write α = (α−m, . . . , α−1, α0, α1, . . . , αn) and suppose that α0 = e. To simplify, let α− and α+

be the endpoints of α, that is, α− = α−m and α+ = αn. Denote by αl the sub-relative geodesic
of α from α− to e and by αr the sub-relative geodesic from α1 to α+.

Consider two constants K1 and K2 that we choose later. Assume that l(αl) ≥ 2K1 and
l(αr) ≥ 2K1. Denote by A(K1) the set of γ ∈ Γ such that:

(i) there either exists a relative geodesic from γ to α+ whose distance from α1 is at least
K1; or

(ii) there exists a relative geodesic from α− to γ whose distance from e is at least K1.

Also denote by B(K2) the set of γ ∈ Γ such that:

(i) any relative geodesic from γ to α+ passes within K2 of α1;
(ii) and any relative geodesic from α− to γ passes within K2 of e.

In other words, A(K1) = B(K1)c. Note that B(K2) is not empty and that A(K1) is not empty,
for l(αl) ≥ 2K1 and l(αr) ≥ 2K1.

The following is a simple consequence of the fact that triangles are thin along transition
points [DG20, Lemme 2.4] and that transition points are within a bounded distance of points on
a relative geodesic [Hru10, Proposition 8.13].

Lemma 6.2. For fixed K2, if K1 is large enough, then the closures of A(K1) and B(K2) in the
Bowditch compactification ΓB are disjoint.

As ΓB is compact, there exists a continuous function fα on ΓB taking values in [0, 1], that
vanishes on A(K1) and which is equal to one on B(K2).

We now finish the construction of the partition of unity associated with α. Let n1 = n1(α)
be the largest integer such that translating n1 times the relative geodesic α, on the right, the
length on the left is still at least K1. Formally,

n1(α) = sup{k ≥ 0, l((T−kα)l) ≥ K1}. (37)

Similarly, let n2 = n2(α) be the largest integer such that translating n2 times α on the left, the
length on the right is at least K1. That is,

n2(α) = sup{k ≥ 0, l((T kα)r) ≥ K1}. (38)
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Let A′(K1) be the set of γ such that for every k ∈ [−n1, n2 − 1]:

(i) there either exists a relative geodesic from γ to α+ whose distance from αk+1 is at
least K1; or

(ii) there exists a relative geodesic from α− to γ whose distance from αk is at least K1.

Let B′(K2) be the set of γ such that there exists k ∈ [−n1, n2 − 1] such that:

(i) any relative geodesic from γ to α+ passes within K2 of αk+1;
(ii) and any relative geodesic from α− to γ passes within K2 of αk.

Again, if K1 is large enough, the closures of A′(K1) and B′(K2) in the Bowditch compactification
are disjoint.

For technical reasons, we further need to truncate relative geodesics. Letting β be any rel-
ative geodesic with β0 = e, denote by β(2K1) the shortest sub-relative geodesic of β such that
l((β(2K1))l) ≥ 2K1 and l((β(2K1))r) ≥ 2K1. In other words, we truncate β on the left (respec-
tively, on the right) as soon as the length on the left (respectively, on the right) is at least 2K1.
Note that if K1 is large enough, whenever γ ∈ B′(K2), we have

Σ =
n2∑

k=−n1

f(Tkα)(2K1)
(α−1

k γ) ≥ 1. (39)

Thus, there exists a function gα, which is continuous on the Bowditch compactification, which
is equal to one on A′(K1), which is equal to the sum Σ above on B′(K2) and whose values are
between one and Σ. We set

κα =
fα(2K1)

gα
.

Denote by α′
+ the right endpoint of α(2K1) and by α′− the left endpoint of α(2K1). According

to Lemma 2.5, the fact that a relative geodesic from γ to α′
+ passes within K2 of α1 and a

relative geodesic from α′− to γ passes within K2 of α0 means that γ projects on α approximately
between α0 = e and α1. More precisely, the projections on α(2K1) which are the closest to α′

+

and to α′− are within a bounded distance of α1 and e, respectively. We deduce that the sum
Σ is bounded by some constant that only depends on K2 and K1. Roughly speaking, κα is a
continuous function whose successive images by the shift mimics the decomposition of Γ into the
subsets Γk.

Let α = (α−k, . . . , α0, α1, . . . , αl) be a relative geodesic, with α0 = e. Whenever l(αl) < 2K1

or l(αr) < 2K1, we set Ψr(α) = 0. Otherwise, we set

Ψr(α) =
1

I(1)(r)

∑
γ∈Γ

κα(γ)
G(α−, γ|r)G(γ, α+|r)

G(α−, α+|r) . (40)

This defines a function Ψr on the set of relative geodesics α with α0 = e.
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According to the previous discussion, κα(γ) �= 0 can only happen if the projection of γ
on α(2K1) lies between e and α1, up to a bounded distance. Choosing K1 large enough, the
same is true replacing α(2K1) with α. Indeed, let α− and α+ be the endpoints of α and let
α′− and α′

+ the endpoints of α(2K1). If K1 is large enough, then a relative geodesic from γ
to α′− passes within a bounded distance of e if and only if a relative geodesic from γ to α−
also passes within a bounded distance of e. Similarly, a relative geodesic from γ to α+ passes
within a bounded distance of α1 if and only if the same is true for a relative geodesic from
γ to α′

+. Weak relative Ancona inequalities thus show that for any k large enough so that
Ψr(T k[e, γ]) �= 0,

Ψr(T k[e, γ]) � Υr(T kγ). (41)

Hence, the function Ψr will replace the function Υr in (35) to obtain a more accurate
estimate.

Proposition 6.3. Let γ ∈ Γ and let αγ be the relative geodesic from e to γ given by the
automaton G. Then,

Φr(γ) = I(1)(r)
d̂(e,γ)−1∑
k=0

Ψr(T kαγ) +O(I(1)(r)).

Proof. Consider γ ∈ Γ. To simplify things, denote by α the relative geodesic from e to γ. Let
m1 be the smallest integer such that l((Tm1α)l) ≥ K1 and m2 the largest integer such that
l((Tm2α)r) ≥ K1. By the definition of Ψr,

d̂(e,γ)−1∑
k=0

Ψr(T kα) =
m2∑

k=m1

Ψr(T kα)

=
1

I(1)(r)

m2∑
k=m1

∑
γ′∈Γ

κ(Tkα)(γ
′)
G(α−1

k , γ′|r)G(γ′, α−1
k γ|r)

G(α−1
k , α−1

k γ|r) .

Translating on the left by α−1
k and replacing γ′ with α−1

k γ′ in the sum, we obtain

d̂(e,γ)−1∑
k=0

Ψr(T kα) =
1

I(1)(r)

∑
γ′∈Γ

( m2∑
k=m1

κ(Tkα)(α
−1
k γ′)

)
G(e, γ′|r)G(γ′, γ|r)

G(e, γ|r) .

Recall that

Φr(γ) =
∑
γ′∈Γ

G(e, γ′|r)G(γ′, γ|r)
G(e, γ|r) .

We are thus looking for the elements γ′ ∈ Γ such that

m2∑
k=m1

κ(Tkα)(α
−1
k γ′) �= 1. (42)
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Suppose there exists i ∈ [m1,m2 − 1] such that any relative geodesic from γ′ to γ passes
within K2 of αi+1 and that any relative geodesic from e to γ′ passes within K2 of αi. Fix
k ∈ [m1,m2 − 1] and consider the translated relative geodesic T kα. Then, any relative geodesic
from α−1

k γ′ to the right endpoint of T kα passes within K2 of α−1
k αi+1 and any relative geodesic

from the left endpoint of T kα to α−1
k γ′ passes within K2 of α−1

k αi.
In particular, α−1

k γ′ ∈ B′(K2), where B′(K2) is the set constructed as above, using the
relative geodesic T kα. Hence,

gTkα(α−1
k γ′) =

n2∑
j=−n1

f(T j(Tkα))(2K1)
((T kα)−1

j γ′).

Note that (T kα)j = αk+j , so that

gTkα(α−1
k γ′) =

m2−k∑
j=m1−k

f(Tk+jα)(2K1)
(α−1

k+jγ
′) =

m2∑
j=m1

f(T jα)(2K1)
(α−1

j γ′).

In particular, we see that
m2∑

k=m1

κTkα(α−1
k γ′) = 1.

We proved that whenever (42) holds, then for every i ∈ [m1,m2 − 1], either a relative geodesic
from γ′ to γ remains at a distance at least K2 from αi+1 or a relative geodesic from e to γ′

remains at distance at least K2 from αi. We again use Lemma 2.5. Let αk+1 be the projection
of γ′ the closest to γ on α. If K2 was chosen large enough, then we necessarily have k ≥ m2

or k ≤ m1 − 1. Also let Hαk
be the union of parabolic subgroups in Ω0 containing α−1

k αk+1

and let α̃k be the projection of γ′ on Hαk
. According to [Sis13, Lemma 1.13(1)], the exit point

from Hαk
of any relative geodesic from e to γ′ is within a bounded distance of α̃k. Thus, any

such relative geodesic passes first within a bounded distance of αk and then within a bounded
distance of α̃k. Similarly, any relative geodesic from γ′ to γ passes first within a bounded dis-
tance of α̃k and then within a bounded distance of αk+1. Weak relative Ancona inequalities
yield

G(e, γ′|r)G(γ′, γ|r)
G(e, γ|r) � I(1)(r)

G(αk, α̃k|r)G(α̃k, αk+1|r)
G(αk, αk+1|r) .

Also recall that (39) is uniformly bounded. Consequently, we have

∣∣∣∣Φr(γ) − I(1)(r)
d̂(e,γ)−1∑
k=0

Ψr(T kα)
∣∣∣∣ � I(1)(r)

∑
0≤k<m1

∑
σ∈Hαk

G(αk, σ|r)G(σ, αk+1|r)
G(αk, αk+1|r)

+ I(1)(r)
∑

m2≤k≤d̂(e,γ)

∑
σ∈Hαk

G(αk, σ|r)G(σ, αk+1|r)
G(αk, αk+1|r) .

By definition, m1 and d̂(e, γ) −m2 are bounded by K1 and d(αk, αk+1) ≤ K1. In particular,

∑
σ∈Hαk

G(αk, σ|r)G(σ, αk+1|r)
G(αk, αk+1|r)
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is uniformly bounded. We thus have

Φr(γ) − I(1)(r)
d̂(e,γ)−1∑
k=0

Ψr(T kα) � I(1)(r),

which concludes the proof. �

6.2 Truncating Ψr

We say that a function f defined on relative geodesic α satisfying α0 = e is locally Hölder if for
every n ≥ 1, as soon as α and α′ coincide in the relative ball (for the distance d̂) of center e and
radius n, |f(α) − f(α′)| ≤ Cρn, for some C ≥ 0 and some 0 < ρ < 1.

A similar function Ψr is defined in [Gou14] for hyperbolic groups. It is proved there that for
every r, Ψr is continuous, locally Hölder and that Ψr uniformly converges to a locally Hölder
function ΨRμ , as r tends to Rμ. However, in our situation, such properties do not hold, so we
cannot directly apply the strategy in [Gou14]. We are going instead to truncate Ψr such that
our new function only depends on a finite number of symbols.

Precisely, fix a constant N ∈ N and denote by α(N) the relative geodesic α restricted to
[−N,N ]. If d̂(e, α−) ≤ N and d̂(e, α+) ≤ N , then α(N) = α. We set Ψ(N)

r (α) = Ψr(α(N)). Let
us fix another constant D and define Ψ(D,N)

r (α) as follows. If one of the increments α−1
k−1αk

of α satisfies d(α−1
k−1αk) ≥ D, for some k between −N + 1 and N , then we set Ψ(D,N)

r (α) = 0.

Otherwise, we set Ψ(D,N)
r (α) = Ψ(N)

r (α). To simplify notation, we use the following conven-
tion. Whenever d̂(e, α−) ≤ N , we set α−N = α− and, similarly, whenever d̂(e, α+) ≤ N , we set
αN = α+.

Our goal is to prove estimates that will allow us to replace Ψr with Ψ(D,N)
r . We start with

the following lemma.

Lemma 6.4. If N is large enough, depending on K1 and K2, then for every relative geodesic α,
we have κα = κα(N) .

Proof. First note that if N ≥ 2K1, α
(N)
(2K1) = α(2K1), so that fα(2K1)

(γ) = 0 if and only if
f
α

(N)
(2K1)

(γ) = 0. In particular, κα(γ) = 0 if and only if κα(N)(γ) = 0. Hence, we can assume that

fα(2K1)
(γ) �= 0. We want to prove that if N is large enough, then the sum Σ defined by (39) is

the same for α and for α(N). By the definition of f , the fact that fα(2K1)
(γ) �= 0 implies that any

relative geodesic from γ to the right endpoint of α(2K1) passes within a bounded distance of α1

and any relative geodesic from γ to the left endpoint of α(2K1) passes within a bounded distance
of e. Thus, the number of k in the sum defining Σ such that f(Tkα)(2K1)

(α−1
k γ) �= 0 is finite, with

a bound depending only on K1 and K2. If N is large enough, the same holds replacing α with
α(N) and for any such k, f(Tkα)(2K1)

(α−1
k γ) = f(Tkα(N))(2K1)

(α−1
k γ). This concludes the proof. �

Thus,

Ψr(α(N)) =
1

I(1)(r)

∑
γ∈Γ

κα(γ)
G(α(N)

− , γ|r)G(γ, α(N)
+ |r)

G(α(N)
− , α

(N)
+ |r)

.

In other words, when replacing Ψr(α) with Ψr(α(N)), we do not have to replace κα with κα(N) .
This will be very convenient in the following.
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Proposition 6.5. Let ε > 0. Then for N large enough and for D large enough (depending
on N), for every r ≤ Rμ and for every n,∣∣∣∣

n−1∑
k=0

∑
γ∈Ŝn

H(e, γ|r)(Ψr ◦ T k([e, γ]) − Ψ(D,N)
r ◦ T k([e, γ]))

∣∣∣∣
≤ ε

n−1∑
k=0

∑
γ∈Ŝn

H(e, γ|r)Ψr ◦ T k([e, γ]).

Proof. We first show that we can replace Ψr by Ψ(N)
r , that is, we prove that if N is large enough,

then ∣∣∣∣
n−1∑
k=0

∑
γ∈Ŝn

H(e, γ|r)(Ψr ◦ T k([e, γ]) − Ψ(N)
r ◦ T k([e, γ]))

∣∣∣∣
� ε

n−1∑
k=0

∑
γ∈Ŝn

H(e, γ|r)Ψr ◦ T k([e, γ]). (43)

Let n and let k ≤ n− 1. Set α = T k([e, γ]). Then, according to Lemma 6.4,∑
γ∈Ŝn

H(e, γ|r)(Ψr ◦ T k([e, γ]) − Ψ(N)
r ◦ T k([e, γ]))

=
1

I1(r)

∑
γ∈Ŝn

H(e, γ|r)

×
∑
γ′∈Γ

κα(γ′)
(
G(α−, γ′|r)G(γ′, α+|r)

G(α−, α+|r) − G(α−N , γ′|r)G(γ′, αN |r)
G(α−N , αN |r)

)
.

We rewrite∣∣∣∣G(α−, γ′|r)G(γ′, α+|r)
G(α−, α+|r) − G(α−N , γ′|r)G(γ′, αN |r)

G(α−N , αN |r)
∣∣∣∣

=
(
G(α−, γ′|r)G(γ′, α+|r)

G(α−, α+|r)
)∣∣∣∣1 − G(α−N , γ′|r)G(γ′, αN |r)G(α−, α+|r)

G(α−N , αN |r)G(α−, γ′|r)G(γ′, α+|r)
∣∣∣∣

and ∣∣∣∣1 − G(α−N , γ′|r)G(γ′, αN |r)G(α−, α+|r)
G(α−N , αN |r)G(α−, γ′|r)G(γ′, α+|r)

∣∣∣∣
=

∣∣∣∣1 − G(α−N , γ′|r)G(α−, α+|r)
G(α−N , α+|r)G(α−, γ′|r)

G(α−N , α+|r)G(γ′, αN |r)
G(α−N , αN |r)G(γ′, α+|r)

∣∣∣∣.
We now show that ∣∣∣∣1 − G(α−N , γ′|r)G(α−, α+|r)

G(α−N , α+|r)G(α−, γ′|r)
G(α−N , α+|r)G(γ′, αN |r)
G(α−N , αN |r)G(γ′, α+|r)

∣∣∣∣ (44)

is arbitrary small when N is large enough. Let

uN (γ′) =
G(α−N , γ′|r)G(α−, α+|r)
G(α−N , α+|r)G(α−, γ′|r)
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and

vN (γ′) =
G(α−N , α+|r)G(γ′, αN |r)
G(α−N , αN |r)G(γ′, α+|r) ,

so that (44) can be written as |1 − uN (γ′)vN (γ′)|. Assume that κα(γ′) �= 0. Then fα(2K1)
(γ′) �= 0

and so any relative geodesic from γ′ to the left endpoint of α(2K1) passes within K1 of e. This
implies that relative geodesics from α−N to γ′ and from α− to α+ fellow-travel for a time at
least N ′, where N ′ tends to infinity as N tends to infinity. Strong relative Ancona inequalities
show that ∣∣1 − uN (γ′)

∣∣ ≤ CρN
′
.

Similarly, one can prove that ∣∣1 − vN (γ′)
∣∣ ≤ CρN

′
.

In addition, weak relative Ancona inequalities imply that vN (γ′) is bounded. This yields∣∣1 − uN (γ′)vN (γ′)
∣∣ ≤ vN (γ′)|1 − uN (γ′)| + |1 − vN (γ′)| ≤ C ′ρN

′
.

Hence, ∣∣∣∣ ∑
γ∈Ŝn

H(e, γ|r)(Ψr ◦ T k([e, γ]) − Ψ(N)
r ◦ T k([e, γ]))

∣∣∣∣
≤ C ′ρN

′ 1
I(1)(r)

∑
γ∈Ŝn

H(e, γ|r)
∑
γ′∈Γ

κα(γ′)
G(α−, γ′|r)G(γ′, α+|r)

G(α−, α+|r)

= C ′ρN
′ ∑
γ∈Ŝn

H(e, γ|r)Ψr ◦ T k([e, γ]).

Thus, if N is large enough, then (43) holds.
Let us compare Ψ(D,N)

r ◦ T k([e, γ]) and Ψ(N)
r ◦ T k([e, γ]) now. Let α = T k[e, γ]. Then,

Ψ(D,N)
r ◦ T k([e, γ]) − Ψ(N)

r ◦ T k([e, γ]) is non-zero only for elements γ such that there exists j
between −N + 1 and N such that d(αj−1, αj) ≥ D. Denote by γ0 = e, γ1, . . . , γn = γ successive
elements on [e, γ], so that αj = γ−1

k γj+k. Hence, Ψ(D,N)
r ◦ T k([e, γ]) − Ψ(N)

r ◦ T k([e, γ]) is non-
zero only for elements γ such that there exists j between −N + k + 1 and N + k such that
d(γj−1, γj) ≥ D.

Let Ŝn≥D be the set of γ ∈ Ŝn such that one of the increments of the relative geodesic [e, γ]
between −N + k + 1 and N + k has length at least D. In addition, for a fixed j between −N +
k + 1 and N + k, let Ŝn,j≥D be the subset of Ŝn≥D of elements γ such that the first such increment
is at step j. Then,∑

γ∈Ŝn

H(e, γ|r)(Ψ(N)
r ◦ T k([e, γ]) − Ψ(D,N)

r ◦ T k([e, γ]))

=
1

I(1)(r)

∑
γ∈Ŝn

≥D

H(e, γ|r)
∑
γ′∈Γ

κα(γ′)
G(α−N , γ′|r)G(γ′, αN |r)

G(α−N , αN |r)

=
1

I(1)(r)

N+k∑
j=−N+k+1

∑
γ∈Ŝn,j

≥D

H(e, γ|r)
∑
γ′∈Γ

κα(γ′)
G(α−N , γ′|r)G(γ′, αN |r)

G(α−N , αN |r) .
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Fix j. For γ ∈ Ŝn, we write γ = γ1σγ2, where γ1 ∈ Ŝj−1, σ is in a factor H′
k and γ′ ∈ Ŝn−j . If

γ ∈ Ŝn,j≥D, then d(e, σ) ≥ D. Weak relative Ancona inequalities show that

H(e, γ|r) � H(e, γ1|r)H(e, σ|r)H(e, γ2|r).
In addition, using (41), we can replace Ψr with Υr in the right member of the sum above. We
obtain ∑

γ∈Ŝn

H(e, γ|r)(Ψ(N)
r ◦ T k([e, γ]) − Ψ(D,N)

r ◦ T k([e, γ]))

�
N+k∑

j=−N+k+1

∑
γ∈Ŝn,j

≥D

H(e, γ1|r)H(e, σ|r)H(e, γ2|r)Υr(T kα). (45)

Recall that X1
x is the set of symbols that can precede x in ΣA. More generally, Xm

x is the set of
words of length m that can precede x. Decompose the sum over γ as follows:∑

γ∈Ŝn

H(e, γ|r)(Ψ(N)
r ◦ T k([e, γ]) − Ψ(D,N)

r ◦ T k([e, γ]))

�
N+k∑

j=−N+k+1

∑
γ2∈Ŝn−j

∑
σ∈X1

γ2
d(e,σ)≥D

∑
γ1∈Xj−1

σγ2

H(e, γ1|r)H(e, σ|r)H(e, γ2|r)Υr(T kα).

Note that Υr(T kα) only depends on the kth increment of [e, γ]. In particular, for j �= k, we can
factorize the sum over γ1, σ, γ2 by Υr(T kα). Hence, we can bound the terms j �= k by

Υr(T kα)
N+k∑

j=−N+k+1

∑
γ2∈Ŝn−j

H(e, γ2|r)
∑
σ∈X1

γ2
d(e,σ)≥D

H(e, σ|r)
∑

γ1∈Xj−1
σγ2

H(e, γ1|r).

Corollary 2.10 shows that ∑
σ∈X1

γ2

H(e, σ|r)

is uniformly bounded. Thus, for large enough D,∑
σ∈X1

γ2
d(e,σ)≥D

H(e, σ|r) ≤ ε

2N

∑
σ∈X1

γ2

H(e, σ|r). (46)

Let us focus on the term j = k. We can still factorize the sum over γ1 by Υr(T kα). We want to
bound the sum over σ. According to the definition of Υr, we thus need to bound∑

σ∈X1
γ2

d(e,σ)≥D

H(e, σ|r)
∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)
G(e, σ|r)

=
∑
σ∈X1

γ2
d(e,σ)≥D

∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)G(σ, e|r).
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As μ is not spectrally degenerate, the sum∑
σ∈X1

γ2

∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)G(σ, e|r)

is uniformly bounded. Thus, for large enough D,∑
σ∈X1

γ2
d(e,σ)≥D

∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)G(σ, e|r)

≤ ε

2N

∑
σ∈X1

γ2

∑
σ′∈Hσ

G(e, σ′|r)G(σ′, σ|r)G(σ, e|r). (47)

When j is fixed, there is a unique way of decomposing γ as γ1σγ2. Hence, combining (45), (46),
and (47), we obtain ∑

γ∈Ŝn

H(e, γ|r)(Ψ(N)
r ◦ T k([e, γ]) − Ψ(D,N)

r ◦ T k([e, γ]))

�
N+k∑

j=−N+k+1

ε

2N

∑
γ∈Ŝn

H(e, γ|r)Ψ(N)
r ◦ T k([e, γ])

≤ ε
∑
γ∈Ŝn

H(e, γ|r)Ψ(N)
r ◦ T k([e, γ]). (48)

Finally, combining (43) and (48), we obtain the desired inequality. �
Recall that we want to compare I(2)(r) and I(1)(r). As we saw,

I(2)(r) =
∑
n≥0

∑
γ∈Ŝn

H(e, γ|r)Φr(γ).

Proposition 6.3 thus yields

I(2)(r) = I(1)(r)
∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψr(T k[e, γ]) +O(I(1)(r)2).

We want to prove that
I(2)(r) = ξI(1)(r)3 +O(I(1)(r)2),

so that we only have to deal with

I(1)(r)
∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψr(T k[e, γ]).

In view of Proposition 6.5, we can replace Ψr with Ψ(D,N)
r .

We now consider the set ΣA,Z of (finite or infinite) sequences x = (xn) indexed by Z such
that xn ∈ Σ and for every n, xn and xn+1 are adjacent edges in the automaton G. The map T
still defines a shift on ΣA,Z.

As Ψ(D,N)(α) only depends on the truncated geodesic α(N), Ψ(D,N) can be extended to a func-
tion defined on finite or infinite relative geodesics. For any x ∈ ΣA,Z, (. . . , x−n, . . . , x0, . . . .xn, . . .)
defines such a relative geodesic, so Ψ(D,N) ◦ φ is a well-defined function on ΣA,Z. We will omit the
reference to φ and see Ψ(D,N) as a function on ΣA,Z to simplify. In addition, because Ψ(D,N)(α)
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only depends on the truncated relative geodesic α(N) and vanishes on relative geodesics α whose
increments are too long, the induced function on ΣA,Z only depends on a finite number of symbols.

For a continuous function f : ΣA,Z → R, we define

Ṽn(f) = sup{|f(x) − f(y)|, x−n = y−n, . . . , x0 = y0, . . . , xn = yn}.
Letting 0 < ρ < 1, we say that f is ρ-locally Hölder if there exists C ≥ 0 such that

∀n ≥ 1, Vn(f) ≤ Cρn.

As before, we do not ask anything on V0(f) and f can be unbounded. Say that f is locally Hölder
if it is ρ-locally Hölder for some ρ. Define the Hölder norm Dρ as

Dρ(f) = sup
n

Ṽn(f)
ρn

.

In addition, let Hρ be the set of bounded ρ-locally Hölder functions and define the norm

‖ · ‖ρ = Dρ + ‖ · ‖∞
on this space. Then, (Hρ, ‖ · ‖ρ) is a Banach space.

We want to use Proposition 6.3 and apply the transfer operator to Ψ(D,N)
r . To apply this

operator, we first need to transform Ψ(D,N)
r into a function only depending on the future, that

is, a function on ΣA. We start by proving the following.

Lemma 6.6. Fix D and N . The functions Ψ(D,N)
r are ρ-locally Hölder and uniformly bounded.

They uniformly converge in (Hρ,β , ‖ · ‖ρ,β) to a function Ψ(D,N)
Rμ

, as r tends to Rμ.

Proof. We first show that Ψ(D,N)
r is uniformly bounded. Recall that

Ψ(D,N)
r (α) =

1
I(1)(r)

∑
γ∈Γ

κα(γ)
G(α−N , γ|r)G(γ, αN |r)

G(α−N , αN |r) .

Denote by Γk the set of γ whose projection on α(N) is on αk+1, where we choose the projection
which is the closest to αN . In addition, let Hk be the union of parabolic subgroups containing
α−1
k αk+1. Then, weak relative Ancona inequalities, together with Lemma 2.5 show that

∑
γ∈Γk

G(α−N , γ|r)G(γ, αN |r)
G(α−N , αN |r) � I(1)(r)

∑
σ∈Hk

G(αk, σ|r)G(σ, αk+1|r)
G(αk, αk+1|r) .

As κα is bounded, we thus have

Ψ(D,N)
r (α) ≤ Cα,

where Cα only depends on α. Actually, because Ψ(D,N)
r (α) is non-zero for a finite number of α

which only depends on N and D, Cα also only depends on D and N . Moreover, Ψ(D,N)(α) only
depends on α(N), so it is ρ-locally Hölder and ‖Ψ(D,N)‖ρ,β is bounded by some number only
depending on D and N .

Finally, because Ψ(D,N)(α) only depends on a finite number of symbols, pointwise convergence
is equivalent to convergence in (Hρ,β , ‖ · ‖ρ,β). Let us fix α and prove that Ψ(D,N)

r (α) converges to
a function Ψ(D,N)

Rμ
(α), as r tends to Rμ. To do so, we express Ψ(D,N)

r as a sum using the transfer
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operator. We introduce a function ψr on Γ as follows. We set

ψr(γ) = κα(γ)
G(α−N , γ|r)G(γ, αN |r)
G(α−N , αN |r)H(e, γ|r)

for any relative geodesic α such that Ψ(N,D)
r (α) �= 0. Otherwise, we set ψr = 0. Weak relative

Ancona inequalities imply that γ 
→ G(α−N , γ|r)G(γ, αN |r) can be extended to ∂Γ̂. As κ is
defined on the whole Bowditch compactification, ψr can also be extended to Γ ∪ ∂Γ̂, so ψr ◦ φ is
a function on ΣA. Note that

Ψ(D,N)
r (α) =

1
I(1)(r)

1
H(e, e|r)

∑
n≥0

Lnr (1E∗ψr ◦ φ)(∅). (49)

We want to apply 4.13 to prove that Ψr converges, so we have to transform ψr into a locally
Hölder function. First, ψr is defined using the function κα which is only continuous. We again
have to truncate ψr to conclude our proof.

Fix N ′ and let γN ′ be the N ′th element on the relative geodesic [e, γ] whenever d̂(e, γ) ≥ N ′

and γN ′ = γ otherwise. Set then

ψ(N ′)
r = κα(γN ′)

G(α−N , γ|r)G(γ, αN |r)
G(α−N , αN |r)H(e, γ|r) .

The functions ψr and ψ(N ′)
r implicitly depend on α and on N and D. Actually, Lemma 6.4 shows

that they do not depend on α, but only on α(N).

Lemma 6.7. For every ε > 0, for every N , and every D, there exists N ′
0 such that for every

N ′ ≥ N ′
0, for every α, and for every r < Rμ,∣∣ψr − ψ(N ′)

r

∣∣ ≤ ε.

Proof. Let ε > 0. The function κα is continuous on the Bowditch compactification. Endow this
compactification with any distance d. We can extend the definition of γN ′ to any infinite relative
geodesic α declaring αN ′ to be the N ′th point on α. Then αN ′ uniformly converges to the conical
limit point defined by α, as N ′ tends to infinity. Thus, for any δ > 0, if N ′ is large enough, then
d(γ, γN ′) ≤ δ. Note that this can be easily directly shown if one chooses the shortcut metric on
the Bowditch compactification defined in [GP13, Definition 2.6]. By compactness, κα is uniformly
continuous. Hence, for N ′ large enough,

∣∣κα(γN ′) − κα(γ)
∣∣ ≤ ε. Thus,

∣∣ψr(γ) − ψ(N ′)
r (γ)

∣∣ ≤ ε
G(α−N , γ|r)G(γ, αN |r)
G(α−N , αN |r)H(e, γ|r) � Cαε,

where Cα only depends on α. The integer N ′
0 a priori depends on α, because of Cα in the upper-

bounded above and because uniform continuity of κα depends on α. However, ψr and ψ(N ′)
r are the

null function except for a finite number of relative geodesics α which only depends on N and D.
This concludes the proof. �

To show that Ψ(D,N)
r (α) converges, it is enough to prove it is Cauchy, that is for every ε > 0,

there exists r0 < Rμ such that for any r, r′ ∈ [r0, Rμ),∣∣Ψ(D,N)
r (α) − Ψ(D,N)

r′ (α)
∣∣ ≤ ε.

Fix ε > 0. Let N ′ be given by Lemma 6.7 so that for every r < Rμ,∣∣ψr − ψ(N ′)
r

∣∣ ≤ ε.
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According to (49),∣∣Ψ(D,N)
r (α) − Ψ(D,N)

r′ (α)
∣∣

� 2ε+
1

I(1)(r)

∣∣∣∣ ∑
n≥0

Lnr (1E∗ψ
(N ′)
r ◦ φ)(∅) −

∑
n≥0

Lnr′(1E∗ψ
(N ′)
r′ ◦ φ)(∅)

∣∣∣∣.
We thus only need to prove that

1
I(1)(r)

∑
n≥0

Lnr (1E∗ψ
(N ′)
r ◦ φ)(∅)

converges, as r tends Rμ. Note that the functions γ 
→ G(α−N , γ|r)G(γ, αN |r)/G(α−N , αN |r)
and γ 
→ κα(2K1)

(γN ′) are bounded and locally Hölder, so ψr ◦ φ lies in Hρ,β.
To prove that the above sum, we need to prove that ψr ◦ φ uniformly converges to ψRμ ◦ φ.

This is not obvious and so we truncate ψr as we truncated Ψr. Fix another constant D′. For
γ ∈ Γ let [e, γ] = (e, γ1, . . . , γn = γ) be the relative geodesic from e to γ given by the automa-
ton G. If one of the increments of [e, γ] is at least D′, set ψ

(D′,N ′)
r (γ) = 0. Otherwise, set

ψ
(D′,N ′)
r (γ) = ψ

(N ′)
r (γN ′). As ψr ◦ φ is bounded and locally Hölder, the same proof as the proof

of Proposition 6.5 shows that for every η > 0, for large enough N ′ and D′,

1
I(1)(r)

∑
n≥0

Lnr (1E∗
∣∣ψ(N ′)
r ◦ φ− ψ(N ′,D′) ◦ φ∣∣)(∅) ≤ η. (50)

Remark 6.1. It might seem strange that we first had to truncate κα when defining ψ(N ′)
r , before

truncating again to define ψ(D′,N ′)
r . However, to apply the same strategy as in Proposition 6.5,

we needed to know a priori that our function was locally Hölder.

Once again, to prove that

1
I(1)(r)

∑
n≥0

Lnr (1E∗ψ
(N ′)
r ◦ φ)(∅)

converges, it is enough to prove that this quantity is Cauchy, as r tends to Rμ. In view of (50),
we thus only need to prove that

1
I(1)(r)

∑
n≥0

Lnr (1E∗ψ
(N ′,D′)
r ◦ φ)(∅)

converges. The function ψ
(N ′,D′)
r ◦ φ is bounded and locally Hölder. Moreover, whenever x, y, z

are fixed, r 
→ G(x, y|r)G(y, z|r)/G(x, z|r)H(e, y|r) is a continuous function. It converges to
G(x, y|Rμ)G(y, z|Rμ)/G(x, z|Rμ)H(e, y|Rμ), as r tends to Rμ. Hence, ψ(N ′,D′)

r ◦ φ converges to
a function ψ

(N ′,D′)
Rμ

◦ φ. In addition, ψ(N ′,D′)
r ◦ φ only depends on a finite number of symbols,

so this convergence also holds in (Hρ,β , ‖ · ‖ρ,β). Now that every parameter is fixed, we set
f = 1E∗ψ

(N ′,D′)
Rμ

◦ φ for convenience. We are left to proving that

1
I(1)(r)

∑
n≥0

Lnr f(∅)

converges, as r tends to Rμ, which is a direct consequence of (34). �
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6.3 From the double-sided to the one-sided shift
As announced, to study

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψ(D,N)
r (T k[e, γ]),

we express this sum with the transfer operator and then use Theorem 3.3, exactly as in the proof
of Lemma 6.6. However, we cannot apply the transfer operator to the function Ψ(D,N)

r , which
depends both on past and future.

We use the following trick.

Lemma 6.8. Let f be a ρ-locally Hölder function on ΣA,Z. Then, there exist ρ1/2-locally Hölder
functions g and u on ΣA,Z such that

f = g + u− u ◦ T.
Moreover, g(x) = g(y) as soon as xn = yn for every non-negative n, so that g induces a function
on ΣA. In addition, if f is bounded, then g and u also are bounded and the maps

f ∈ (Hρ, ‖ · ‖ρ) 
→ g ∈ (Hρ1/2 , ‖ · ‖ρ1/2), f ∈ (Hρ, ‖ · ‖ρ) 
→ u ∈ (Hρ1/2 , ‖ · ‖ρ1/2)

are continuous.

This is proved in [PP90, Proposition 1.2] for finite-type shifts. However, the proof does not
use that the set of symbols is finite.

According to Lemma 6.6, the functions Ψ(D,N)
r are bounded and locally Hölder on ΣA,Z and

they converge in (Hρ,β , ‖ · ‖ρ,β) to a function Ψ(D,N)
Rμ

. We thus obtain from Lemma 6.8 functions

Ψ̃(D,N)
r , r ≤ Rμ defined on ΣA and functions u(D,N)

r defined on ΣA,Z such that

Ψ(D,N)
r = Ψ̃(D,N)

r + u(D,N)
r − u(D,N)

r ◦ T.
For any x ∈ ΣA of length n,

n−1∑
k=0

Ψ(D,N)
r (T kx) =

n−1∑
k=0

Ψ̃(D,N)
r (T kx) + u(D,N)

r (x) − u(D,N)
r (Tnx).

The functions u(D,N)
r are bounded by some number that only depends on D and N , so

n−1∑
k=0

Ψ(D,N)
r (T kx) =

n−1∑
k=0

Ψ̃(D,N)
r (T kx) +OD,N (1).

Thus,

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψ(D,N)
r (T k[e, γ])

=
∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψ̃(D,N)
r (T k[e, γ]) +OD,N (I(1)(r)). (51)
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As Ψ̃(D,N)
r only depends on the future, we rewrite this as

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψ̃(D,N)
r (T k[e, γ])

= H(e, e|r)
∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
r ◦ T k

)
(∅). (52)

6.4 Proof of Proposition 6.1: convergence of I(2)(r)/I(1)(r)3

We first prove that the quantity (52) is asymptotic to ξD,NI(1)(r)2, as r tends to Rμ, where ξD,N
is some number only depending on D and N . As Ψ(D,N)

r converges in (Hρ,β , ‖ · ‖ρ,β) to Ψ(D,N)
Rμ

,

we deduce from Lemma 6.6, up to changing ρ, that Ψ̃(D,N)
r converges in (Hρ,β , ‖ · ‖ρ,β) to Ψ̃(D,N)

Rμ
.

We thus only need to prove that

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

(∅)

is asymptotic to ξD,NI(1)(r)2. Recall that Lr(u · v ◦ T ) = vLr(u), so that

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

=
∑
n≥0

n∑
k=1

Lkr (Ψ̃(D,N)
Rμ

Ln−kr 1E∗)

=
∑
k≥1

Lkr
(

Ψ̃(D,N)
Rμ

∑
n≥0

Lnr 1E∗

)
. (53)

From Corollary 4.13, we deduce that for any r close enough to Rμ and for any x ∈ ΣA,

∑
n≥0

Lnr 1E∗(x) =
k∑
j=1

1
P̃j(r)

pj∑
i=1

h̃
(i)
j,r(x)

∫
1E∗ dν̃

((i−n) mod pj)
j,r +O(1). (54)

Let

αi,j,r =
∫

1E∗dν̃
((i−n) mod pj)
j,r ,

so that αi,j,r converges to αi,j , as r tends to Rμ. We now estimate

∑
k≥1

Lkr
(

Ψ̃(D,N)
Rμ

k∑
j=1

1
P̃j(r)

pj∑
i=1

αi,j,rh̃
(i)
j,r

)
(∅).

According to (19), h̃(i)
j,r(∅) converges to h(i)

j (∅), as r tends to Rμ, so we can start the above sum
at k = 0. Fix j and let 1 ≤ i ≤ pj . We use again Corollary 4.13 to obtain∑

k≥0

Lkr (Ψ̃(D,N)
Rμ

h̃
(i)
j,r)(∅)

=
∑
j′

1
|P̃j′(r)|

pj′∑
i′=1

h̃
(i′)
j′,r(∅)

∫
Ψ̃(D,N)
Rμ

h̃
(i)
j,r dν̃

((i′−n) mod pj′ )
j′,r +O(1). (55)
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We show that for every j′, i′, ∫
Ψ̃(D,N)
Rμ

h̃
(i′)
j′,r dν̃

((i′−n) mod pj′)
j′,r

converges, as r tends to Rμ. Write∫
Ψ̃(D,N)
Rμ

h̃
(i′)
j′,r dν̃

((i′−n) mod pj′)
j′,r =

∫
Ψ̃(D,N)
Rμ

(h̃(i′)
j′,r − h

(i)
j ) dν̃

((i′−n) mod pj′)
j′,r

+
∫

Ψ̃(D,N)
Rμ

h
(i)
j dν̃

((i′−n) mod pj′)
j′,r .

Corollary 4.13 shows that ν̃
((i′−n) mod pj′)
j′,r weakly converges to ν

((i′−n) mod pj′ )
j′ , so that the second

integral in the right-hand term converges. We show that the first converges to zero. Let mj′,r

be the measure defined by dmj′,r = (1/pj′)
∑pj′

i′=1 h
(i)
j′,rdν

(i′)
j′,r. According to [Sar99, Proposition 4],

mj′,r is Gibbs and according to [Sar99, Proposition 2], the functions h(i)
j′,r are bounded away from

zero and infinity on the support of ν(i)
j′,r, so that

ν
(i′)
j′,r([x1 . . . xn]) ≤ CH(e, x1 . . . xn|r) ≤ CH(e, x1 . . . xn|Rμ).

Using (10), we see that the measure ν
(i′)
j′,r is dominated by the measure m on cylinders. As

Ψ̃(D,N)
Rμ

(h̃(i′)
j′,r − h

(i)
j ) is locally Hölder, we have∣∣∣∣

∫
Ψ̃(D,N)
Rμ

(h̃(i′)
j′,r − h

(i)
j ) dν̃

((i′−n) mod pj′)
j′,r

∣∣∣∣ �
∫ ∣∣∣∣Ψ̃(D,N)

Rμ
(h̃(i′)
j′,r − h

(i)
j )

∣∣∣∣ dm.
Finally, because Ψ̃(D,N)

Rμ
is bounded, we have∣∣∣∣

∫
Ψ̃(D,N)
Rμ

(h̃(i′)
j′,r − h

(i)
j ) dν̃

((i′−n) mod pj′ )
j′,r

∣∣∣∣ �
∫

|h̃(i)
j,r − h

(i)
j | dm.

According to Corollary 4.13, this last quantity converges to zero.
Now, (19) shows that h̃(i′)

j′,r(∅) converges and so we deduce from (55) that

∑
k≥0

Lkr (Ψ̃(D,N)
Rμ

h̃
(i)
j,r)(∅) =

∑
j′

ξi,jj′,D,N,r

|P̃j′(r)|
,

where ξi,jj′,D,N,r converges, as r tends to Rμ. Also recall that we proved in Proposition 5.1 that
P̃j(r) ∼ P (r) for every j, so (23) yields

O

( k∑
j=1

1
P̃j(r)

)
= O(I(1)(r)).

Finally, we get from (53) and (54) that

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

=
∑
j,j′

ξj,j
′

D,N,r

|P̃j(r)||P̃j′(r)|
+O(I(1)(r)),

where ξj,j
′

D,N,r converges. Consequently,

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

=
ξD,N,r
P (r)2

+O(I(1)(r)),
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where ξD,N,r converges to some ξD,N . Therefore,

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

(∅)

is asymptotic to ξD,NI(1)(r)2, as r tends to Rμ.
We thus deduce from (51) and (52) that

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

H(e, γ|r)Ψ(D,N)
r (T k[e, γ]) = ξD,NI

(1)(r)2 + oD,N (I(1)(r)2). (56)

Also note that we deduce from (53) that

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

=
∑
k≥1

Lkr
(

Ψ̃(D,N)
Rμ

∑
n≥0

Lnr 1E∗

)

and so according to (23), we have

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

� I(1)(r)
∑
k≥1

Lkr Ψ̃(D,N)
Rμ

.

Thus, (36) and (41) show that

∑
n≥0

Lnr
(

1E∗

n−1∑
k=0

Ψ̃(D,N)
Rμ

◦ T k
)

� I(1)(r)2.

Hence,

ξD,N � 1. (57)

We finally conclude the proof of Proposition 6.1.

Proof. Recall that

I(2)(r) =
∑
γ∈Γ

H(e, γ|r)Φr(γ) =
∑
n≥0

∑
γ∈Ŝn

Φr(γ).

According to Proposition 6.3,

I(2)(r) = I(1)(r)
∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) +O(I(1)(r)).

We need to prove that I(2)(r)/I(1)(r)3 converges, as r tends to Rμ. It is thus enough to show
that

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ])

converges.
Fix ε > 0. Choose sequences Dl and Nl that tend to infinity, as l tends to infinity. As we want

to apply Proposition 6.5, the sequence Dl will actually depend on the sequence Nl. According
to (57), we can assume, up to taking a sub-sequence, that ξDl,Nl

converges to some constant ξ.
We show that the above sum also converges to ξ. According to Proposition 6.5, we can choose
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Nl and Dl so that for any l large enough,

1
I(1)(r)2

∣∣∣∣ ∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) −
∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψ(Dl,Nl)
r (T k[e, γ])

∣∣∣∣
≤ ε

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]).

Fix a large enough l so that this inequality is satisfied and so that |ξDl,Nl
− ξ| ≤ ε. Now that l is

fixed, we set D = Dl and N = Nl. We thus have

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) − ξ

≤ 1
1 − ε

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψ(D,N)
r (T k[e, γ]) − ξ.

Hence, (56) shows that whenever r is close enough to Rμ,

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) − ξ ≤ 1
1 − ε

ξD,N − ξ ≤ ε

1 − ε
+ ξ

(
1

1 − ε
− 1

)
.

Similarly

ξ − 1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ])

≤ ξ − 1
1 + ε

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψ(D,N)
r (T k[e, γ])

and so whenever r is close enough to Rμ,

ξ − 1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) ≤ ξ

(
1 − 1

1 + ε

)
− ε

1 + ε
.

As ε is arbitrary, this shows that

1
I(1)(r)2

∑
n≥0

∑
γ∈Ŝn

n−1∑
k=0

Ψr(T k[e, γ]) −→
r→Rμ

ξ.

Finally, we already know that I(2)(r)/I(1)(r)3 is bounded away from zero, independently of r, so
that ξ �= 0. This concludes the proof. �

Theorem 4.1 is a direct consequence of Proposition 6.1.

7. From the Green asymptotics to the local limit theorem

We can finally prove Theorem 1.1. We first deduce from Theorem 4.1 the following.

Corollary 7.1. Let Γ be a non-elementary relatively hyperbolic group. Let μ be a finitely
supported, admissible, and symmetric probability measure on Γ. Assume that the corresponding
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random walk is non-spectrally degenerate along parabolic subgroups. Then, for every γ1, γ2,
there exists Cγ1,γ2 > 0 such that

d

dr
(G(γ1, γ2|r)) ∼

r→Rμ

Cγ1,γ2
1√

Rμ − r
.

Proof. For γ1 = γ2 = e, this is a direct consequence of Theorem 4.1, combined with [Dus22,
Lemma 3.2] which relates the derivatives of the Green function with the sums I(k)(r). Note that
by equivariance, we only need to prove the result with γ2 = e. According to Lemma 2.7, an
asymptotic of d/dr(G(γ, e|r)) is given by an asymptotic of∑

γ′∈Γ

G(γ, γ′|r)G(γ′, e|r).

Consider γ ∈ Γ and set

fr(γ′) =
G(γ, γ′|r)
G(e, γ′|r) .

Let f̃r = fr ◦ φ. Then, ∑
γ′∈Γ

G(γ, γ′|r)G(γ′, e|r) = H(e, e|r)
∑
n≥0

Lnr f̃r(∅).

As γ is fixed, f̃r is uniformly bounded. Strong relative Ancona inequalities also imply that f̃r can
be extended to a function on ΣA which lie in Hρ,β . If f̃r were uniformly converging to a function
f̃ , as r tends to Rμ, then we could directly conclude the proof, using (23). However, exactly like
for Ψr, this uniform convergence does not necessarily hold and we have to truncate f̃r. We can
apply the same strategy as for the proof of Proposition 6.1 to conclude. �

Theorem 1.1 follows directly from Corollary 7.1 and [GL13, Theorem 9.1]. Corollary 1.2 thus
follows from [Gou14, Proposition 4.1]. Beware that the symmetry assumption on the measure
μ is needed here, see the remarks in [Gou14, Section 4].
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