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Local limit theorems in relatively hyperbolic
groups II: the non-spectrally degenerate case

Matthieu Dussaule

ABSTRACT

This is the second of a series of two papers dealing with local limit theorems in relatively
hyperbolic groups. In this second paper, we restrict our attention to non-spectrally
degenerate random walks and we prove precise asymptotics of the probability py, (e, e) of
going back to the origin at time n. We combine techniques adapted from thermodynamic
formalism with the rough estimates of the Green function given by part I to show that
pn(e,e) ~ CR"n=3/2, where R is the inverse of the spectral radius of the random
walk. This both generalizes results of Woess for free products and results of Gouézel
for hyperbolic groups.

1. Introduction

Consider a finitely generated group I' and a probability measure p on I'. We define the py-random
walk on T, starting at v € ', as X,] = g1 ...¢gn, where (gx) are independent random variables
of law p in T'. The law of X, is denoted by p,(7,7’). For v = e, it is given by the convolution
powers p*™ of the measure p.

We say that p is admissible if its support generates I' as a semigroup. We say that p is
symmetric if 4(y) = p(y~1). Finally, if 4 is admissible, we say that the random walk is aperiodic
if p,(e,e) > 0 for large enough n. The local limit problem consists in finding asymptotics of
pn(e,e) when n goes to infinity. In many situations, if the y-random walk is aperiodic, one can
prove a local limit theorem of the form

pn(e,e) ~ CR™"n™, (1)

where C' > 0 is a constant, R > 1, and a € R.

If I' = Z¢ and p is finitely supported and aperiodic, then classical Fourier computations show
that pp(e,e) ~ Cn~%? if the random walk is centered and py(e,e) ~ CR™™n~%? with R > 1 if
the random walk is non-centered. If I' is a non-elementary Gromov-hyperbolic group and pu is
finitely supported, symmetric and aperiodic, then one has p,(e,e) ~ CR "n=3/2, with R > 1,
see [Goul4] and references therein.

Free products are a great source of examples for various local limit theorems, see, for example,
[Car88, Car89, CG12]. Woess proved in [Woe86] that for a special class of nearest-neighbor
random walks on free products, called the ‘typical case’ in [Woe00], one has a local limit of
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the form (1), with o = 3/2. This ‘typical case’ should be considered informally as a situation
where the random walk only sees the underlying tree structure of the free product, and not what
happens inside the free factors. Thus, in some sense, this coefficient 3/2 is consistent with the
hyperbolic case [Goul4]. Our main goal in this series of two papers is to extend Woess’ results
to any relatively hyperbolic group.

We give more details on relatively hyperbolic groups in §2.1. Recall for now that a finitely
generated group I is relatively hyperbolic with respect to a collection of subgroups € if it acts
via a geometrically finite action on a proper geodesic Gromov hyperbolic space X, such that
Q is exactly the set of stabilizers of parabolic limit points for this action. Let g be a set of
representatives of conjugacy classes of elements of €2. Such a set () is finite.

Let 1 be a probability measure on a relatively hyperbolic group I'. Denote by R, the
inverse of its spectral radius, that is, the radius of convergence of the Green function G(x,y|r),

defined as
G(z,ylr) = pala,y)r
n>0

This radius of convergence is independent of x,y. Let H € )y be a parabolic subgroup. Denote
by py the first return kernel to H associated to the measure R,u. Say that a probability
measure u is spectrally degenerate along H € €y if the spectral radius of py is one and that
1 is non-spectrally degenerate if, for every H € g, it is not spectrally degenerate along H.
This definition is independent of the choice of Q. It was introduced in [DG21] and appeared
to be crucial in the study of the stability of the Martin boundary of relatively hyperbolic
groups.

In part I, we introduced the notion of spectral positive recurrence and proved a weaker form
of (1) under this assumption, namely that there exists C' such that

o lR n 73/2 pn( )<CR n 73/2

In this part II, we prove a precise local limit theorem like (1), with o = 3/2, for non-spectrally
degenerate measures on relatively hyperbolic groups. As it was proved in part I, non-spectrally
degenerate random walks are spectrally positive recurrent, so our assumptions here are stronger,
but we prove a more precise result. We insist on the fact that our methods in both papers are
very different and that this paper is not an enhanced version of part I, as it uses the results of
part I. We make further comments in § 2.3.

Our main goal is to prove the following.

THEOREM 1.1. Let I' be a non-elementary relatively hyperbolic group. Let p be a finitely
supported, admissible, symmetric, and non-spectrally degenerate probability measure on T'.
Assume that the corresponding random walk is aperiodic. Then, for every v, € T, there exists
C,, > 0 such that

pn(’Y7 '7/) ~ Cw,v’R;nn_3/2'

If the p-random walk is not aperiodic, similar asymptotics hold for pay(vy,v') if the distance
between ~y and +' is even and for pa,+1(7y,~') if this distance is odd.

This generalizes Woess’s results [Woe86] on free products and known results on hyper-
bolic groups (see [GWS86, Lal93, GL13, Goul4]). As a corollary, we also obtain the
following.

COROLLARY 1.2. Let I' be a non-elementary relatively hyperbolic group. Let p be a finitely
supported, admissible, symmetric, and non-spectrally degenerate probability measure on T'.
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Assume that the corresponding random walk is aperiodic. Denote by q,(x,y) the probability
that the first visit in positive time at y starting at x is at time n. Then,

an (7, ’Y,) ~ C%'y’R;:nnig/Q-

In [Ger81], Gerl conjectured that if a local limit of the form py(e,e) ~ CR™™n~“ holds
for a finitely supported random walk, then « is a group invariant. This conjecture was dis-
proved by Cartwright in [Car89]. He gave examples of local limit theorems on Z? x Z%, with
a = d/2 and examples on the same groups with a = 3/2. Actually, if d # 3, then one can only get
a =d/2 if d > 5. There are some computations to explain why in [Car88] (see also [Woe00]). In
[DG21, Proposition 6.1], we gave a geometric explanation of this fact and proved that if a
parabolic subgroup H is virtually abelian of rank d < 4, the random walk cannot be spec-
trally degenerate along H. As a particular case, we thus obtain the following corollary, for
low-dimensional Kleinian groups.

THEOREM 1.3. Let I' be the fundamental group of a geometrically finite hyperbolic manifold of
dimension n < 5. Let p be a finitely supported, admissible, and symmetric probability measure
onI'. Assume that the y-random walk is aperiodic. Then, for every v, € T', there exists C, , >
0 such that

pn(’% 7/) ~ 0777/R;nn73/2'
If the p-random walk is not aperiodic, similar asymptotics hold for pay(vy,v') if the distance
between ~y and +' is even and for pa,11(7,~') if it is odd.

Let us now give some details on the proofs. We have the same approach as Gouézel and
Lalley in [GL13, Goul4] and we begin by explaining their work.

The first step in both papers is to obtain an asymptotic differential equation satisfied by
the Green function. Throughout this paper, we use the following notation: if two functions
f and g satisfy that there exists some constant C' > 0 such that f < Cg, then we write f < g.
In addition, if f < g and g < f, then we write f < g. Whenever we need to be specific about the
constant, or about its dependence on some parameters, we write the full inequalities to avoid
being unclear. In [GL13, Goul4], the authors proved that

2 3
%G(e,eh) = (iG(e,eV}) , (2)

the implicit constant not depending on 7. Integrating these inequalities yields

d 2 (d -
<er(e, e\r)) - <er(6, e\RH)> =R, —r,
so that, assuming (d/dr)G (e, e|R,) = +oo (which is proved in [GL13, Goul4]), one obtains

d 1
JG(e,e\r) = \/T

The rigorous way to proceed is to transform these a priori estimates (2) into an equivalent when
r tends to R, that is,

T Gleelr) ~ u C’(;;G(e,eh"))g). (3)

d?“2 r—R

Once this is established, one can prove that

d C’

L Gleyelr) ~

dr r—Ry, Ru—r
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Finally, one can obtain asymptotics of p,(e, e) from asymptotics of (d/dr)G(e, e|r) using Taube-
rian theorems and spectral theory. To go from (2) to (3), Lalley and Gouézel used thermodynamic
formalism. Precisely, they use Cannon’s result and choose a finite automaton that encodes short-
lex geodesics in the hyperbolic group I'. They then define some potential function depending on
r on the path space of this automaton, using the Green function. To prove that this potential
function is Holder continuous, they use the strong Ancona inequalities (see § 2.4 for more details).
They then apply the Ruelle-Perron—Frobenius theorem to the associated transfer operator to
derive asymptotic properties of the first and second derivatives of the Green function, when r
tends to R, which, in turn, leads to (3).

Brief outline of the paper

We first compile in §2 the tools and results that are needed in the following. We also review
in §3 the results of Sarig on thermodynamic formalism for countable shifts. The remaining
sections are devoted to adapting the proofs of Lalley and Gouézel to the relatively hyperbolic
case.

Note that the first step, that is, obtaining an asymptotic differential equation satisfied by
the Green function, is given by the results proved in part I. Precisely, [Dus22, Theorem 1.5]
shows that (2) holds again in our situation. In the present paper, we mainly focus on the sec-
ond step, that is deriving a precise equivalent such as (3) from the a priori estimates (2).
We first give in §§4 and 5 an estimate for the first derivative of the Green function, in terms
of the spectral data of a suited transfer operator. We then give in §6 an estimate of the
second derivative. Combining these two estimates leads to (3). There are several difficulties
here.

First, we do not have a finite automaton encoding geodesics. Anyway, geodesics are not so
much interesting for our purpose. Indeed, Ancona inequalities that are used in [GL13, Goul4]
to prove Holder continuity do not hold along geodesics, but along relative geodesics in relatively
hyperbolic groups. On the other hand, we proved in part I that there exists an automaton with
finite set of vertices and countable set of edges that encodes relative geodesics, see precisely
[Dus22, Theorem 4.2]. We use this automaton instead.

However, the associated path space will not be finite but countable. We thus have to
use thermodynamic formalism for countable Markov shifts, which is more delicate to han-
dle than thermodynamic formalism for Markov shifts of finite type. For example, there
are situations where Ruelle-Perron-Frobenius theorem, which is a crucial tool in [Goul4],
does not hold for countable shifts. We thus prove that the Holder continuous function
analogous to that introduced in [GL13, Goul4] is positive recurrent (using the terminol-
ogy of Sarig in [Sar99]), which is sufficient to mimic some of the arguments of Lalley and
Gouézel.

Another difficulty is that the family of transfer operators (L,),< R, we introduce does not
vary continuously in r for the operator norm. However, looking carefully at the proofs of
[GL13, Goul4], one only needs continuity of the spectral data associated to this family of oper-
ators. We use an enhanced version of perturbations results due to Keller and Liverani [KL99] to
prove this sort of continuity.

Finally, the last step, that is, getting the local limit theorem from the asymptotics of the
Green function, is a combination of Tauberian theorems and spectral theory. We are able to
use directly the results of [GL13] and so we have nothing to prove there to conclude. We also
deduce Corollary 1.2 from Theorem 1.1 using directly results of [GL13]. We give more details
in §7.
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2. Some background

2.1 Relatively hyperbolic groups

We first recall definitions and basic properties of relatively hyperbolic groups. More details are
given in part I [Dus22]. Consider a finitely generated group I' acting discretely and by isometries
on a proper and geodesic hyperbolic space (X, d). We denote the limit set of I by AT, that is, the
set of accumulation points in the Gromov boundary dX of an orbit I" - 0, 0 € X. A point £ € AT’
is called conical if there is a sequence () of I' and distinct points &1, & in AT such that 7,
converges to & and 7, converges to & for all ( # & in AI'. A point £ € AT is called parabolic
if its stabilizer in I is infinite, fixes exactly £ in A" and contains no loxodromic element. The
stabilizer of a parabolic limit point is called a (maximal) parabolic subgroup. A parabolic limit
point £ in AT is called bounded parabolic if is stabilizer in I is infinite and acts cocompactly on
AT\ {¢}. Finally, the action is called geometrically finite if the limit set only consists of conical
limit points and bounded parabolic limit points.

DEFINITION 2.1. The group I is relatively hyperbolic with respect to € if it acts geometrically
finitely on such a hyperbolic space (X, d) such that the stabilizers of the parabolic limit points
are exactly the elements of ). In this situation, I' is said to be non-elementary if its limit set is
infinite.

One might choose different spaces X on which I' can act geometrically finitely. However,
different choices of X give rise to equivariantly homeomorphic limit sets AI'. We call this limit
set the Bowditch boundary of I' and we denote it by dpT.

Let I" be a relatively hyperbolic group with respect to a collection of subgroups Q. Let g
be a set of representatives of conjugacy classes of elements of 2. Such a set {2y is necessarily
finite, according to [Bow12, Proposition 6.15]. Fix a finite generating set S for I'. Denote by
I the Cayley graph associated with the infinite generating set consisting of the union of S and
of all parabolic subgroups H € . Endowed with the graph distance, that we write ci, the graph
[ is hyperbolic.

A relative geodesic is a geodesic in the graph I. A relative quasi-geodesic is a path of adjacent
vertices in T, which is a quasi-geodesic for the distance d. Following Osin [Osi06], a path is
called without backtracking if once it has left a coset YH, for H € (), it never goes back to
it. Relative geodesic and relative quasi-geodesic satisfy the following property, called the BCP

property.

PROPOSITION 2.1 (BCP property). For all A > 1 and ¢ > 0, there exists a constant C) . such
that for every pair (a1, ag) of relative (A, ¢)-quasi geodesic paths without backtracking, starting
and ending at the same point in I, the following hold:

(i) if oy travels more than C) . in a coset, then oy enters this coset;
(ii) if a1 and gy enter the same coset, the two entering points and the two exit points are
O\ c-close to each other in Cay(I', S).

We need to study both geodesics in Cay(I",.S) and relative geodesics in the following. We
use the following terminology. Let a be a geodesic in Cay(T',S) and let 71,72 > 0. A point v on
a is called an (11, 7n2)-transition point if for any coset vo’H of a parabolic subgroup, the part
of a consisting of points at distance at most 1y from ~ is not contained in the 7;-neighborhood
of ’YQH.

Transition points are of great importance in relatively hyperbolic groups. They stay close to
points on relative geodesics in the following sense.
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LEMMA 2.2 [HrulO, Proposition 8.13]. Fix a generating set S. For every large enough n1,m2 > 0,
there exists r > 0 such that the following holds. Let o be a geodesic in Cay(T', S) and let & be
a relative geodesic path with the same endpoints as «. Then, for the distance in Cay(T',S), any
(m, n2)-transition point on « is within r of a point on & and, conversely, any point on & is within
r of an (n1,n2)-transition point on a.

2.2 Relatively automatic groups
Hyperbolic groups are known to be strongly automatic, meaning that for every generating set
S, there exists a finite directed graph G = (V, E,v,) encoding geodesics. It is quite implicit in
Farb’s work [Far94, Far98], although not formally stated, that relatively hyperbolic groups are
relatively automatic in the following sense.

Let T be a finitely generated group and let 2 be a collection of subgroups invariant by
conjugacy and such that there is a finite set €}y of conjugacy classes representatives of subgroups

in Q.

DEFINITION 2.2. A relative automatic structure for I with respect to the collection of subgroups
Qp and with respect to some finite generating set S is a directed graph G = (V, E,v,) with
distinguished vertex v, called the starting vertex, where the set of vertices V is finite and with
a labelling map ¢ : £ — S U UHer ‘H such that the following holds. If w = ey,..., e, is a path
of adjacent edges in G, define ¢(e1,...,e,) = ¢(e1) ... ¢(en) € I'. Then:

(i) no edge ends at v, except the trivial edge starting and ending at v,;

(ii) every vertex v € V can be reached from v, in G;

(iii) for every path w = ey, ..., ey, the path e, ¢(e1), p(e1e2),..., () in I is a relative geodesic
from e to ¢(v), that is, the image of e, p(e1), d(e1e2),...,o(7y) in [ is a geodesic for the
metric d;

(iv) the extended map ¢ is a bijection between paths in G starting at v, and elements of T.

Note that the union S U UHGQO ‘H is not required to be a disjoint union. Actually, the inter-
section of two distinct subgroups H, H' € Q¢ can be non-empty. Also note that we require the
vertex set V' to be finite. However, the set of edges is infinite, except if all subgroups H in Qg
are finite.

If there exists a relative automatic structure for I' with respect to ¢ and S, we say that I’
is automatic relative to 2o and S. The following was proved in part 1.

THEOREM 2.3 [Dus22, Theorem 4.2]. Let I" be a relatively hyperbolic group and let Qy be a
finite set of representatives of conjugacy classes of the maximal parabolic subgroups. For every
symmetric finite generating set S of I', ' is automatic relative to )y and S.

Along the proof of this theorem, a lot of technical lemmas about relative geodesics were
proved in [Dus22]. We use some of them repeatedly in this paper, so we restate them for con-
venience. We use the same notation as previously and so we fix a relatively hyperbolic group
I' and a finite set €2y of conjugacy classes of parabolic subgroups.

LEMMA 2.4 [Dus22, Lemma 4.5]. For every K >0, there exists C' > 0 such that the follow-
ing holds. Let (x1,...,&p,...) and (2},...,2},,...) be two infinite relative geodesics such that
d(z1,2}) < K and x,, and x|, converge to the same conical limit point {. Then, for every j > 1,

there exists ij such that d(z;,«} ) < C.
J

LEMMA 2.5 [Dus22, Lemma 4.16]. Let (e,v1,...,7,) and (e,7{,...,7,) be two relative
geodesics. Assume that the nearest point projection of ~y), on (e,v1,...,7v,) is at 7. If there
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are several such nearest point projection, choose the closest to v,. Then, any relative geodesic
from =}, to 7y, passes within a bounded distance of v, for the distance d. Moreover, if v, # e,
then any relative geodesic from e to =y, passes within a bounded distance of ~;_1.

2.3 Spectrally degenerate measures
We now consider a group I', hyperbolic relative to a collection of subgroups 2. We fix a finite
collection Qg = {H1,..., Hn} of representatives of conjugacy classes of Q2. We assume that I is
non-elementary. Let p be a probability measure on I', R, the inverse of the spectral radius of
the p-random walk and G(v,~'|r) the associated Green function, evaluated at r, for r € [0, R,,].
If v =4/, we simply use the notation G(r) = G(v,v|r) = G(e,e|r).

We denote by py the first return transition kernel to Hy. Namely, if h, b’ € Hy, then pg(h, h')
is the probability that the y-random walk, starting at h, eventually comes back to Hj and that
its first return to Hy is at A’. In other words,

pk(h, h/) = IP’h(EIn 2 17Xn = h/,Xl, Ce 7Xn—1 ¢ Hk)

More generally, for r € [0, R,|, we denote by py , the first return transition kernel to H;, for ru.
Precisely, if h,h’ € Hy, then

Prr(h b)Y =" > () p(v ) - () ().
n2171,¢7’Yn 1
Hi

We then denote by p,(gng the convolution powers of this transition kernel, by Gy, (h, h'|t) the
associated Green function, evaluated at ¢t and by Ry(r) the inverse of the associated spectral
radius, that is, the radius of convergence of the power series ¢ — Gy ,.(h, h'|t). For simplicity,
write Ry = Ri(Ry). If h = I/, we simply write G, »(t) = Gj»(h, h|t) = G, (e, elt).

According to [Dus22, Lemma 3.4], for any r € [0, R,], for any k € {1,..., N},

Grr(h,h'11) = G(h,B'|r).

In addition, because I' is non-elementary, it contains a free group and, hence, is non-amenable.
It follows from a result of Guivarc’h (see [Gui80, p. 85, Remark b)]) that G(R,) < +oo. Thus,
Gi,g, (1) < +oo. In particular, Ry > 1.

DEFINITION 2.3. We say that p (or, equivalently, the random walk) is spectrally degenerate
along Hy if Ry = 1. We say it is non-spectrally degenerate if, for every k, Ry > 1.

This definition was introduced in [DG21] to study the homeomorphism type of the Martin
boundary at the spectral radius. As explained in [Dus22, §3.3], it should be thought of as a
notion of a spectral gap between the spectral radius of the random walk on the whole group
and the spectral radii of the induced walks on the parabolic subgroups. Very roughly speaking,
the random walk is not spectrally degenerate if the driving probability measure p does not give
too much weight to the parabolic subgroups. Let us give more details on this intuition now. For
simplicity, we only consider the case of free products which was studied by Woess in [Woe86]
and by Candellero and Gilch in [CG12]. We first need to introduce some notation.

Let I' = T'g % I'1 be a free product of two groups. Then, I' is hyperbolic relative to the conju-
gates of the free factors Iy and I';. Consider a symmetric probability measure pg, respectively
11, whose finite support generates I'g, respectively I'y. For any 0 < 8 < 1, set

p=Bu1 + (1= B)uo-
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Then, i is a symmetric probability measure whose finite support generates I'. Such a probability
measure is called adapted to the free product structure: the random walk driven by u can only
move inside one of the free factors at each step.

In this situation, the Green function G, of ;1 and the Green function G, of po can be related
by the following formula. For every x,y € L'y, for every r < R,

Gplr.lr) _ Grol:91G0(r)) @
Guleelr) ~ Guolerelco(r)”

where (p is a continuous function of r, see [Woe00, Proposition 9.18] for an explicit formula. We
always have (o(R,) < R,. A similar formula holds for z,y € I';.

Actually, because p is adapted to the free product structure, the first return kernel pr , can
be written as

pror(e,x) = (1 = B)ruo + wodez,

where wy is the weight of the first return to e associated to ru, starting with a step in I'y. Thus,
[Woe00, Lemma 9.2] shows that for any z,y € Ty,

1
Gror(z,ylt) = 1—710075(;“0 <fC,y '

) ®

1—U}0t

In particular, for ¢t =1,

1
Gro,r(f’3>y|1) = 1_ wOGuo (xay

and so we recover (4) with ¢(r) = ((1 — 8)r)/(1 — wo).

Following Woess [Woe00], we call the situation where (;(R,) < R; (the inverse of the spectral
radius of ;) the ‘typical case’. We prove that the ‘typical case’ is exactly the case where the
measure is not spectrally degenerate.

ProproSITION 2.6. Consider an adapted random walk on a free product I' =T *xI'y. The
random walk is spectrally degenerate along Ty if and only if (o(R,) = Ry,-

Proof. Applying (5) tot =14 € and r = R, we obtain

1 (I1-=PB)Ru(1+¢)
1 = .
GFo,Ru(I’m +€) 1—U}0(1+€)G'u0 (x’y ’ 1—11)0(1—}—6)
If € > 0, then
(1-P)Ru(1+¢) (1-P)Ry
= (o(Ry)-
1—w0(1+6) > 1_w0 CO( N)
Thus, there exists ¢ > 1 such that Gr, r, (v, ylt) is finite if and only if there exists z > (o(R,)
such that G, (x,y|z) is finite, which concludes the proof. O

Hence, in the context of adapted random walks on free products, to check whether the random
walk is non-spectrally degenerate, one has to check whether ¢;(R,) < R; or not. This problem was
studied by Candellero and Gilch. More specifically, in [CG12, § 7], they construct both spectrally
degenerate and non-spectrally degenerate measures. In particular, in their example A, T; = Z%,
where d; > 5. Then, if § is close enough to zero, the random walk is spectrally degenerate along
['g. Similarly, if 3 is close enough to one, the random walk is spectrally degenerate along I';. In
the middle case, the random walk is not spectrally degenerate.

Let us also mention their example F, where I'g = Z° and I'y = Z5. They construct measures
o and gy such that the adapted measure p is spectrally degenerate for every (3. More precisely,
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they show there exists a critical parameter (. such that the following classification holds. For
B < B¢, u is spectrally degenerate along 'y and is not spectrally positive recurrent. For 3 > 8., u
is spectrally degenerate along I'y and is not spectrally positive recurrent. On the other hand, for
8 = Be, p is spectrally positive recurrent. This yields a random walk which is spectrally degen-
erate, but which is spectrally positive recurrent. In this situation, one has a local limit theorem
of the form (1) with o = 3/2. This leads to the conjecture that spectral positive recurrence is a
sufficient condition to obtain a = 3/2.

Unfortunately, it seems difficult to construct (non-)spectrally degenerate measures on
general relatively hyperbolic groups, so we do not know yet any example beyond free prod-
ucts, except low-dimensional Kleinian groups, according to Theorem 1.3. A reasonable approach
would be to try to adapt the method of Candellero and Gilch in the following way. Consider
a relatively hyperbolic group I'" and choose a parabolic subgroup H. Start with an admissible,
finitely supported and symmetric measure pg on I' and an admissible, finitely supported and
symmetric measure gy on H. Define then p = Bug + (1 — 8) . One would expect i to be spec-
trally degenerate along H for small enough 3. However, to actually prove that it is spectrally
degenerate, one would need to prove a sort of continuity of the Green function and its derivatives
with respect to the driving measure, which would, in turn, require some new material. Similar
difficulties occur when trying to construct non-spectrally degenerate measures.

Finally, let us now recall some consequences of spectral degeneracy proved in [Dus22].
Let T' be a relatively hyperbolic group. We introduce the following notation. We write

IPry = > G, yINGEW AP ) . GED 4B G (W, A ).

7(1)7,,,77(k)er

Then, I%)(r) is related to the kth derivative of the Green function. For a precise statement, we
refer to [Dus22, Lemma 3.2]. For instance, we have the following.

LEMMA 2.7 [Dus22, Lemma 3.1]. For every v, €T, for every r € [0, R,], we have

d
2, GOy, 2lr) =Y G r)G (v, 72lr).
vyer

If H is a parabolic subgroup, we also write

)= Y G AVnGaW, @) . G ED AP G (E, ).

N RO

Once Qo = {H1,...,Hn} is fixed, we also write I ( ) = I;Z)(r) for simplicity.

One of the main results of part I is that whenever 7(1 (r) < +oo for every parabolic subgroup
H € Qg, then

1®(r) = (1MW (r))?.
This is a consequence of the following result.

PROPOSITION 2.8 [Dus22, Proposition 5.6]. For every r € [0, R,,), we have
IA)(r) @)
I(l)(r))3 =1+ Z Ij
J
In particular, if i is non-spectrally degenerate, then

I (r) < 1V (r))3,
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The following results were also proved in part I. Note that we do not need to assume that
1 is non-spectrally degenerate.

LEMMA 2.9 [Dus22, Lemma 5.4]. There exists some uniform C >0 such that for every
r € [0, R,], for every m,

Z He,~|r) < C.

v€Sm
COROLLARY 2.10 [Dus22, Corollary 5.5]. For every parabolic subgroup H € Qy and every
r € [0, R,], we have 17({1)(7") < 400.

Finally, we also use the following.

PROPOSITION 2.11 [Dus22, Proposition 5.8]. If y is non-spectrally degenerate, then

d

= Glee|Ry) = +oc.
arpr—n, & A1) = oo

2.4 Relative Ancona inequalities
We consider a finitely generated group I', hyperbolic relative to a collection of subgroups (2. Let
Qo be a finite set of representatives of conjugacy classes. We also consider a probability measure
p on I'; whose finite support generates I' as a semigroup and denote by R, the inverse of its
spectral radius. As soon as I' is non-elementary, it is non-amenable, so that R, > 1 according to
Kesten’s results [Kesb9)].

In the case where I' is hyperbolic, Ancona proved that the Green function G is roughly
multiplicative along geodesics. Precisely, there exists C' > 1 such that if x,y,z are elements
along a geodesic in this order, then

SG@ )G, 2) < G, ) < CGle,y)Gly.2) (©

See [Anc88| for more details. The proof also works for the Green function evaluated at r, when
r < R,. Actually, the lower bound is always true, so that the content of Ancona inequalities
really is

G(z,z|r) < CG(z,y|r)G(y, z|r).

In [Goul4], Gouézel proved that these inequalities still hold at r = R, and that the constant
C is uniform in r, when the measure is symmetric. He also gave a strengthened version of them.
Namely, if x,2’,y,y" are four points such that geodesics [z,y| from z to y and [2/,y'] from 2z’ to
y' fellow travel for a time at least n, then for r € [1, R,,],

/ /
G(x,y|7“)G(x Y ’7’) -1 < Cpn7 (7)
G, ylr)G(x, y'|r)
where C' >0 and 0 < p <1 are uniform (see [Goul4, Theorem 2.9]). This strengthened ver-
sion of Ancona inequalities was proved at r < R, in [INOOS8]. It was also already proved at
the spectral radius by Gouézel and Lalley in the case of co-compact Fuchsian groups (see
[GL13, Theorem 4.6]). It allowed the authors to obtain Holder regularity for Martin kernels on
the Martin boundary and then to use thermodynamic formalism to deduce local limit theorems
in hyperbolic groups in [Goul4, GL13].
Back to relatively hyperbolic groups, inequalities similar to (6) were obtained by Gekhtman,
Gerasimov, Potyagailo, and Yang in [GGPY21]. Recall that if « is a geodesic in the Cayley graph
Cay(I',S), a point on « is called a transition point if it is not deep in a parabolic subgroup. It is
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proved in [GGPY21] that if x, y, z are elements on a geodesic in this order and if y is a transition
point on this geodesic, then (6) holds. The proof actually works for G(-,-|r) whenever r < R,,.

Because of our automatic structure, it is more convenient for us to work with relative
geodesics rather than transition points on actual geodesics. We fix a generating set S and consider
the Cayley graph and the graph I' associated with S.

DEFINITION 2.4. Let I' be a relatively hyperbolic group and let u be a probability measure on
I' with Green function G. Let R,, be the inverse of the spectral radius of u. If » € [1, R,], say that
w satisfies the weak r-relative Ancona inequalities if there exists C' > 0 (which depends on r)
such that for every x,y, z € I' such that their images in I lie in this order on a relative geodesic,

1

CG(x,y[’r)G(y,z\r) < G(z, z|r) < CG(x,y|r)G(y, z|r).

Say that p satisfies the weak relative Ancona inequalities up to the spectral radius if it satisfies
the r-relative Ancona inequalities for every r € [1, R,] with a constant C' not depending on 7.

We also need the following enhanced version of relative Ancona inequalities.

DEFINITION 2.5. We say that two relative geodesics [z,y| and [2/,y] c-fellow travel for a time
n, for some ¢ > 0, if there exist distinct points 71, ...,7, which are at distance in Cay(T",S) at
most ¢ from points on [z, y| and points on [2/,y'].

DEFINITION 2.6. Let I' be a relatively hyperbolic group and let p be a probability measure on
I' with Green function G. Let R, be the inverse of the spectral radius of p. If r € [1, R,], say
that u satisfies the strong r-relative Ancona inequalities if for every ¢ > 0, there exist C' > 0 and
0 < p <1 such that if x,2’,y,y’ are four points such that relative geodesics [x,y| from x to y
and [2/, '] from 2’ to y' c-fellow travel for a time at least n, then

G(z,y|lr)G(«,y|r)
-1 < "
Gy Gy =

Say that p satisfies the strong relative Ancona inequalities up to the spectral radius if it satis-
fies the strong r-relative Ancona inequalities for every r € [1, R,] with constants C' and p not
depending on r.

Remark 2.1. Tf p satisfies the strong or weak relative Ancona inequalities, then the reflected
measure fi, defined by ji(v) = u(y~1) also satisfies them. Indeed, if G is the Green function of
the reflected measure, then G(z,y) = G(y, ).

The following is proved in [DG21].

THEOREM 2.12. LetI' be a non-elementary relatively hyperbolic group and let i1 be a symmetric
probability measure on I" whose finite support generates I'. Then p satisfies both the weak and
strong relative Ancona inequalities up to the spectral radius.

Actually, these inequalities are stated in [DG21] using the Floyd distance, which is a suitable
rescaling of the distance in Cay(I', S). However, [GP16, Corollary 5.10] relates the Floyd distance
with transition points and Lemma 2.2 relates transition points with points on a relative geodesic.
We deduce the above theorem combining these two results with [DG21, Theorem 1.6].
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3. Thermodynamic formalism

3.1 Transfer operators with countably many symbols

We follow here the terminology of Sarig and recall some facts proved in [Sar99, Sar03]. We
consider a countable set ¥ (the set of symbols), and a matrix A = (a5, )s sy, With entries zeros
and ones (the transition matrix). We then define

Yh={r=(21,...,2n), 2, € ¥,n > 0,Vi,ap, 4, = 1}
and

05y ={z = (21,...,2n,...), 2 € X,Vi, g, 2,,, = 1}.

Note that in the definition of ¥%, n can be zero, so that the empty sequence, that we denote by
0, is in X%. We also define

EA = EZ @] 322’(4.

If s1,..., 85 € X, we define the cylinder [s1,...,58) as {x € X4, 21 = 51,..., T = Sk}
Let T: ¥4 — ¥4 be given by

T((x1,y...,2n)) = (T2,...,Tp)

if (z1,...,2,) € ¥% and
T((z1,.. yTn,y...)) = (T2, ..., Tp,y.. ")

if (1,...,2n,...) € 9X%. We call T the shift map and we call the pair (X4,7) a Markov shift.

We say that the Markov shift is irreducible if for every s, s’ € X, there exists N, such that
there exists € ¥4 with 71 = s and 2’ € ¥4 with 2} = s’ such that T™etz = 2/. In other words,
one can reach any cylinder [¢'] from any cylinder [s] with a finite number of iterations of the
shift. We say it is topologically mixing if for every s, s’ € X, there exists N, such that for every
n > Ngp, there exists z € ¥4 with 21 = s and 2/ € 4 with #} = &’ such that T"z = 2’.

In [Sar99], everything is stated only using 0%%. However, up to considering a ceme-
tery symbol x;, we can see finite sequences (z1,...,2,) in X% as infinite ones, of the form
(1,...,%p,24,...,x,...). Thus, we can apply the terminology and results of [Sar99] to Ya. In
addition, for technical reasons, it will be convenient to assume that the empty sequence is not a
preimage of itself by the shift. This can be done, for example, using a second cemetery symbol.

We also define a metric on X 4, setting d(x,y) = 27", where n is the first time that the two
sequences = and y differ.

If ¢ : ¥4 — R is a function, define

Va() = sup{[e(z) — o), 21 = y1,. - B0 = yn}-
For p € (0,1), such a function ¢ is called p-locally Holder continuous if it satisfies
AC,Vn > 1, V() < Cp™.

It is called locally Holder continuous if it is p-locally Holder continuous for some p. Note that
nothing is required for Vj(¢) and, in particular, ¢ can be unbounded. We can always change
the metric d on X4, defining d,(z,y) = p", where n is the first time that the two sequences z
and y differ (and 0 < p < 1). A p-locally Holder continuous function is then a locally Lipschitz
function for this new metric.
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If ¢ is locally Holder continuous, we denote by ¢, = Zz;é @ o T* its nth Birkhoff sum. We
also define its transfer operator L, as

Lof() =) W f(y).

Ty=x

It acts on several spaces of functions. We are interested in one in particular, described in the
following, on which the transfer operator has a spectral gap. By definition, we have

(Lof) @)= > e Wr(y).

Try=x
We also define, for s € X,

Zn(p,s) = Z e#n (@),

Tre=zx

wes
For every s, (1/n)log Z, (¢, s) has a limit P(¢p,s). If the Markov shift is irreducible, then it is
independent of s and we denote it by P(y). Moreover, P(yp,s) > —oo and if |[£,1] e < 400,
then P(y,s) < +oo. We refer to [Sar99, Theorem 1] for a proof. Independence of s is proved
under the assumption that the Markov shift is topologically mixing, although the proof only
requires that it is irreducible. We call P(yp,s) the Gurevic pressure of ¢ at s, or simply its
pressure.

We say that ¢ is positive recurrent if for every s € X, there exist My > 1 and Ag > 0 such
that for every large enough n, Z,(¢,s)/A\2 € [M; 1, My]. If it is the case, then one necessarily has
log As = P(, s). The main result of [Sar99] is that positive recurrence is a necessary and sufficient
condition for convergence of the iterates of the transfer operator L, (see [Sar99, Theorem 4] for
a precise statement).

If the set of symbols ¥ is finite, then every Holder continuous function is positive recurrent.
Actually, we can say a little more in this case. The convergence of L7 is exponentially fast.
Precisely, if the Markov shift is topologically mixing, there exist A > 0, a positive function h and
a measure v and constants C' > 0 and 0 < 6 < 1 satisfying, for all p-Holder continuous function
fand all n € N,

Hxncgf—h/fdy < comlf].

This is the so-called Ruelle—Perron—Frobenius theorem. Equivalently, A is a positive eigenvalue
of the operator L, acting on the space of Holder continuous functions and the remainder of the
spectrum is contained in a disk of radius strictly smaller than A. In other words, £, acts on this
space with a spectral gap

When the set of symbols is countable, it can happen that the convergence is not expo-
nentially fast (see [Sar99, Example 1]). However, there are sufficient conditions for this to
hold, studied by Aaronson, Denker, and Urbaniski among others (see [ADU93, ADO1]; see
also [Gou04]).

DEFINITION 3.1. Say that the Markov shift (¥4, 7) has finitely many images if the set
{T'[s],s € 3}

is finite. Equivalently, there is only a finite number of different rows (and, thus, a finite number
of different columns) in the matrix A.
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Fix 0 < p < 1. Let 3 be the partition generated by the image sets, that is, 3 is the o-algebra
generated by {T'[s],s € X}. Then, define for a p-locally Holder continuous function f,

[f(z) — f(y)|
D, af = sup sup —————=",
PP bel z,yeb dp(-r: y)
where we recall that d,(x,y) = p", where n is the first time that the two sequences = and y differ.
Denote then || f||, 8 = || flloc + Dy af and define

Bys = {f, 1 fllps < +o0}.

Then, (B, 3, - ||5,3) is a Banach space.

Having finitely many images is a sufficient condition to have a spectral gap on (B, 3, || - |/5,3)-
Indeed, Mauldin and Urbariski introduced in [MUO1] the BIP property, which is automatically
satisfied if the shift has finitely many images. Moreover, they proved that the BIP property is a
sufficient condition for locally Holder functions to have a Gibbs measure, whereas Sarig proved
in [Sar99] that having a Gibbs measure is a sufficient condition to be positive recurrent and to
have a spectral gap. In particular, we have the following two results.

PROPOSITION 3.1. Let (X 4,T) be a topologically mixing countable Markov shift having finitely
many images. Let ¢ be a locally Hélder continuous function with finite pressure P(y). Then,
 is positive recurrent.

Proof. As ¢ is locally Holder, the sum
D Vale) =D sup{le(z) — o)l 11 =y, w0 =yu} <C Y p"
n>1 n>1 n>1

is finite. Thus, [Sar03, Theorem 1] shows that ¢ has a Gibbs measure. Consequently,
[Sar99, Theorem 8] shows that ¢ is positive recurrent. O

THEOREM 3.2 Sarig [Sar03, Corollary 3] and [Sar99, Theorem 4]. Let (X4,7) be a topologi-
cally mixing countable Markov shift having finitely many images. Let ¢ be a locally Hélder
continuous function with finite pressure P(p). Then there exist a o-finite measure v and a func-
tion h bounded away from zero and infinity such that Llv = e’ @y and Loh = e @) h. There
also exist C' > 0 and 0 < < 1 such that for every f € B, g,

He—”P(@cgf—h/fdy

< CO"[|fllp,5-
p.B

Moreover, v is supported on 0¥’ and both measures v and m defined by dm = hdv are ergodic.

The fact that v is ergodic is not stated in Corollary 3 but in Corollary 2 of [Sar03]. Ergodicity
of m follows (see the remarks after [Sar99, Theorem 4]). Finally, the fact that h is bounded away
from zero and infinity is deduced from the fact that the shift has finitely many images, see
[Sar99, Proposition 2].

Actually, we never really use the | - ||, 3 norm and all our bounds in the following are on the
p-Holder norm, that is, we both bound || - ||c and D,, which is defined by

(@) — £
D, f= LA LA
ol = S )

Obviously, a bound on D, is stronger than a bound D, 3. Moreover, when bounding D, f, we have
to bound |f(x) — f(y)|/dy(z,y). We always assume that « and y start with the same element,
otherwise d(z,y) = p and one can, thus, bound |f(z) — f(y)|/dp(z,y) by 207 f]lco-
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One issue we have to deal with, when applying these results to random walks on relatively
hyperbolic groups in the next subsection, is that our Markov shift will not be topologically
mixing. It will not even be irreducible (but will have only finitely many recurrent classes). This
issue was already addressed in [Goul4] for a Markov shift with finitely many symbols, as we now
explain.

In the following, we consider a countable Markov shift (¥4,7) with set of symbols ¥ and
transition matrix A and we assume that it has finitely many images. If the Markov shift is
irreducible, but not topologically mixing, then there is a minimal period p > 1 such that for any

symbol s € X, if T~"[s] N [s] # 0, then n = pk for some k > 0. Then, one can decompose the set
of symbols as a finite union > = 2541) U 2542) -l fo), such that for i € Z/pZ, if a5 ¢ =1 and
s €Y@ then ¢ € 20D We call such a decomposition a cyclic decomposition. We denote by
f(j) the subset of ¥4 of sequences that begin with an element of EX), so that the shift map
T maps ifj) to i%Jrl). Moreover, in this case, TP acts on iﬁ) and the induced Markov shift is
topologically mixing. Using this decomposition together with Theorem 3.2, we get that if ¢ is
locally Holder continuous function with finite pressure P(y) and if the Markov shift has finitely
many images, then there are positive functions A" on ifj) and probability measures v(*) on ix)
with [ h®dy(®) = 1 such that for f € B, g,

p
e‘”P(W)ng - Zhu) /fdz/((z_”) mod p) < CO"|| fll,8-
i=1

p,B

Assume that the Markov shift is not irreducible. Then, because it has finitely many images,
one can first decompose X as ¥ =X 40U X 41 U---X4 4, such that if a path starts at s € X 4,
then it never reaches s again and for s,s’ € ¥, one can reach s’ starting at s and conversely if
and only if s and s’ are in the same subset ¥4 ;, j > 1. More formally, the decomposition of
3. satisfies the following properties.

(i) If s € ¥4, then for all n > 1, T7"[s] N [s] = 0.
(ii) If there exist n,n’ such that T-"[s] N [s'] # § and T—"'[s') N [s] # 0, then there exists j > 1
such that s,s" € ¥4 ;.
(ili) Conversely, if s, s’ lie in the same ¥4 j, 7 > 1, then there exist n, n’ such that T7"[s] N [s'] # 0
and T~ [s'] N [s] # 0.

We call ¥ 4 o the transient component of > and the sets ¥4 ;, j > 1, the biconnected components
of Y. All the non-trivial dynamical behavior of the Markov shift happens in the biconnected
components. We denote by fA,j the subset of ¥4 of sequences z that stay in 3 A,j, that is, for
every n, T, € X4 j. We similarly call the sets ) Aj,J = 1 the biconnected components of Sa.

Then, EAJ is stable under the shift map 7" and we can apply the above discussion to EAJ. If
¢ is a locally Holder continuous function on ¥4, denote by ¢, its restriction to the component
3 A,j> With associated transfer operator £, .. Denote the pressure of ; by P;j(¢). Then, L, has
a spectral gap and e’ () is its dominant eigenvalue. Let P(¢) be the maximum of all the P;(p)
and call a component X 4 ; maximal if Pj(p) = P(p).

DEFINITION 3.2. We say that ¢ is semisimple if one cannot reach a maximal component from
another. That is, for every two maximal components ¥4 ;, X4, j # j', for any two symbols
s€Xaj, s €Xay, foranyn>1, T "[s]N[s'] =0.

Elaborating on ideas of Calegari and Fujiwara from [CF10], Gouézel proved in [Goul4] a
spectral gap theorem for the transfer operator of a semisimple Holder continuous function, when
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the set of symbols is finite. His proof works for a countable set of symbols, if the Markov shift has
finitely many images and the Holder continuous function is positive recurrent, because it is based
on a spectral decomposition over the sets & A,j» on which one applies the Ruelle-Perron-Frobenius
theorem (that we replace here with Theorem 3.2). Thus, combining Theorem 3.2 and the proof
of [Goul4, Theorem 3.8], we obtain the following.

THEOREM 3.3. Let (¥4,T) be a countable Markov shift with finitely many images. Let ¢ be a
locally Holder continuous function with finite maximal pressure P(p). Assume that ¢ is semisim-
ple. Denote by ¥4 1, . . -SA,k the maximal components, with corresponding period p1, . .., p; and
consider a cyclic decomposition

SRS TRS/

Then, there exist functions hg-i) and probability measures uj(.i) with [ hgi)duj(i) = 1 and such that

E;yj(i) — D modp; g £¢h§i) = h§i_1) mod p; Moreover, for f € B, 3,

J
e PO 53 a0 / § =) mod )
j=11i=1

for some C' > 0 and 0 < 6 < 1. Finally, the functions hy) are bounded away from zero and infinity

on the support of y](.i).

< CO"||fllp,8:
p.B

We also obtain the following result, again proved in [Goul4] for finite sets of symbols, which
applies in our situation (see [Goul4, Lemma 3.7]).

LEMMA 3.4. Let (34,T) be a countable Markov shift with finitely many images. Let ¢ be a
locally Hélder continuous function with finite maximal pressure P(p). Let s € ¥ and assume that
there is a path starting with s that visits k maximal components. Then, for any non-negative
function f with f > 1 on the set of paths starting with s, one has

LIf(0) > CnFtenf @),
where we recall that () is the empty sequence in 3% . In particular, for k = 2, if p is not semisimple,
then
L£21(0) > Cne@).

3.2 Perturbation of the pressure
In [Goul4], Gouézel proves a perturbation theorem for finite sets of symbols (see precisely [Goul4,
Proposition 3.10]). Its proof remains valid for countable shifts with finitely many images. Denote
by ||/l g the operator norm for operators acting on (B, g,|| - [|,3). To apply Gouézel’s pertur-
bation theorem, one needs to control ||£, — £¢|Hp,ﬁ' However, estimating this norm will be very
difficult in this paper, so we need finer results, that are based on the following theorem, proved
by Keller and Liverani [KL99].

Consider a Banach (V|| - ||) endowed with a norm |- |, satisfying |- |, < C| - || for some
uniform C. Letting £ : V — V be a linear operator, let

£ = sup {[[Lv]|, [Jo]| < 1}
denote the operator norm of £ associated with || - || and let

£~y = sup {| Lo, 0]l < 1}
be the operator norm of £: (V,||-||) = (V,| - |w)-
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THEOREM 3.5. Consider a family of bounded operators L, : (V.|| - ||) — (V.|| - ||), with r varying
in (0, R]. Assume there exist 0 < 0 < M and C > 0 and there exists a function 7(r) converging
to zero as r tends to R such that the following hold.

(i) For every n, for every v € V, |L'hv|yw < CM"|v]y.
(ii) For every r < R, for every n, for every v € V, ||[L™| < Co™||v|| + CM"™|v]s.
(iii) For every r < R, ||£, — Lg|| < 7(r).

S—w —

For fixed p > 0 and p’ > 0 let
Ap,p’ = {Z € C, ‘Z’ >0+ p7d(za SpeC(ER)) = p/}'

Then, for any p,p’ > 0 there exist By < 1 and Ky > 0 and there exists vy such that for every
B < fo, for every r € [ro, R] for every z z € A, y:

(a) the operator zI — L, : (V.|| -||) — (V,| - ||) is invertible;
(b) the operator norm |H(zl - L’“)_l‘” is bounded independently of r;
(¢) the norm ||| satisfies |||(zI — £,)7' — (2 — ER)*lH‘S_W < Kot (r)P.

S—w

Moreover, By only depends on p and can be explicitly computed whenever o + p < M. Indeed,
one can then choose
By = log((0 +p)/0)

log(M/o)

In particular, By converges to zero as p tends to zero and converges to one as p tends to M — o.

For a proof, we refer to [Ball8, A.3]. Note that it is asked there that for every r, |L]'v|,, <
CM™"|v|y, whereas our condition (i) only requires that this holds for r = R. However, the proof
in [Ball8, A.3] only uses this inequality for r = R.

Let us apply this to transfer operators. Consider a countable shift with finitely many images
(Xa,T) and a family of locally Holder functions f,, for r € (0, R]. Let £, = Ly, be the associated
transfer operator. Assume that for every r, the maximal pressure P, of f,. is finite and that
@ and v{"
J J 4 4
with L. Define the measure m; as dm; = (1/p;) S0, hD ay®.

Let m = )~ m;. Consider the Banach space (V = H,3,| - || = |- [|,,3) on V = H, 3, endowed
with the norm |- |, = |- |lz1on). As m is finite, we have |-|, < CJ-||. We deduce from
Theorem 3.5 the following.

fr is semisimple. Let h be the functions and measures given by Theorem 3.3, associated

THEOREM 3.6. With the same notation as previously, assume there exists o such that 0 < o <
eP® and that there exist C > 0 and a function 7(r) converging to zero as r tends to R such that
the following hold.

(o) For every r < R, for every n, for every v € V,
I£70]| < Co™||v]| + Ce™ R vl

(8) For every r < R, 1L, — Lall,_, < 7(r).

S—w

Then, for every r which is close enough to R, there exist numbers ﬁj(r) and eigenfunctions

Bﬁ and eigenmeasures DJ(Q of L, associated with the eigenvalue efi() such that
koo N ,
e gy = Y e PO ST / gar{T < 007g]
= i—1 P,
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The functions iLy) and the measures DJ@

(4)

have the same support as hj @)

and Vi respectively.

}NzngH is uniformly bounded. Finally, }ﬁgzz A ‘w converges to zero as r tends to R

J
and ’7](2 weakly converges to V](-l)

as r tends to R.

Proof. As Lr has a spectral gap according to Theorem 3.3, there exists o9 < e/® such that the
spectrum of Lr outside of the disk of radius oy exactly consists of the eigenvalue e, with
eigenfunctions h;i) and eigenmeasures I/J(-i)

choosing ,z()')such that 09 < o + p < ef’®. Indeed, condition (i) there is satisfied with M = %
1

because v is an eigenmeasure of Lp associated with eP’®. In addition, conditions (ii) and (iii)

are direct consequences of assumptions («) and (f). O

. The result is then a consequence of Theorem 3.5,

Note that fh dl/ # 0 for r close enough to R, because fh( 2 @ — 1 and |h h(i)‘
(

converges to zero. One can, thus, normalize h] » declaring [ h(Z dV l) = 1. We make thls assump-

tion in the following. We still have that Hh H is uniformly bounded and that |h hy)‘w

converges to zero. The following result allows us to obtain a precise asymptotic of PN Pr in
the following sections.

ProprosITION 3.7. Under the assumptions of Theorem 3.6,
. 1 pi—1 . . .
Bt / I (S e G SR P
7N =0

) duj(-i).

where dm; = (1/p;) > 24 i

Proof. As h( ) are eigenfunctions of £, and hJ r s normalized, we have
_ 7 (@) 5 (@)
= /ErhM duj .

R0 — e — [ (LR - ea?) ).

Consequently,

Note that for any function g, £,.g = Lr(efr~/rg). In particular,
efi() _ ePr = /ER(efoRfng — h§-i)) dyj(-i).

Using that dV](i) is an eigenmeasure of L associated with the eigenvalue ef’®, we obtain

(Pir)—Pr / (18— D) a0

_ / (e =Ir — )R — nP) ) + / RO D — / eI 4.

As fh fh(z du = 1, we thus obtain
eli(r—=Pr _ | — /(efrfR _ 1)(%2 _ h;’)) dVJ('Z) + /(efoR _ 1)h§1) dVg(‘i)~

This holds for every 4, which concludes the proof summing over ¢ and then dividing by p;. 0O
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4. Asymptotic of the first derivative of the Green function

In this section, we assume that I" is hyperbolic relative to €2 and choose a system of representatives
of conjugacy classes Qo = {H1,..., Hn} of elements of Q2. We consider a probability measure p
on I' that satisfies weak and strong relative Ancona inequalities up to the spectral radius and
we denote by R, the inverse of this spectral radius. Note that we do not need to assume that
the measure p is symmetric but only that relative Ancona inequalities are satisfied.

We assume that p is not spectrally degenerate. According to Proposition 2.11, we
have (d/dr),—g,G(e,e|r) = +oo, or equivalently IMW(R,) = 400 by Lemma 2.7. Tn addition,
Proposition 2.8 shows that

1®(r) < (1M (r))?.

Our goal in the following sections is to obtain a more precise statement, transforming = into ~,
when r — R,,. Precisely, we prove the following.

THEOREM 4.1. Under these assumptions, there exists & > 0 such that
1) ~ (1)
r—R

s

To do so, we use thermodynamic formalism, adapting [Goul4, GL13].

4.1 Transfer operator for the Green function

We choose a generating set S of I' as in Theorem 2.3, so that I' is automatic relative to ¢y and
S, where €y is a finite set of representatives of conjugacy classes of the parabolic subgroups Let
G = (V,E,v,) be a graph and ¢ : ' — S UJycq, H be a labelling map as in the definition of a
relative automatic structure.

The set of vertices V is finite. Moreover, if o € ¥ =S U UHer ‘H and if v € V, there is at
most one edge that leaves v and that is labelled with o. Thus, the set of edges E is countable.
Set ¥ = E and consider the transition matrix A = (as ¢ )s scx, defined by as ¢ = 1 if the edges s
and s’ are adjacent in G and a, ¢ = 0 otherwise. We then define ¥%, ¥4 and X 4 as previously.
According to the definition of a relative automatic structure, elements of ¥4 represent relative
geodesics and relative geodesic rays.

We decompose g = S5U U'HEQQH as follows. The sets H; N'H, are finite if j # k (see,
e.g., [DS05, Lemma 4.7]). We can, thus, consider H), = Hj, \ U;j,H; and Hfy = 3o \ UpHj,. Then,
H{, remains finite and the sets H;, are disjoint. By analogy with free factors in a free product,
we introduce the following terminology.

DEFINITION 4.1. We call the sets H) the factors of the relatively automatic structure

Paths of length n in G beginning at v, are in bijection with the relative sphere S,,. Moreover,
infinite paths in G starting at v, give relative geodesic rays starting at e. Denote by E, C E
the set of edges that starts at v,. The labelling map ¢ can be extended to infinite paths. When
restricted to infinite words starting in F,, it gives a surjective map from paths beginning at v, to
the Gromov boundary of the graph I, which is by definition the set of conical limit points of I,
included in the Bowditch boundary. Restricting the distance d,(x,y) = p~™" to E, this induced
map is continuous, endowing the Bowditch boundary with the usual topology. A formal way of
restricting our attention to elements of the group and to conical limit points is to consider the
function 1z, on ¥4 which takes value one on sequences in ¥4 beginning with an edge in E, and
that takes value zero elsewhere. This function 1g, is locally Holder continuous.

We have the following, which proves that every locally Holder continuous function with finite
pressure is positive recurrent, according to Proposition 3.1.
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LEMMA 4.2. The Markov shift (¥4,T) has finitely many images.

Proof. If an edge s in ¥ ends at some vertex v in G, then the only edges s’ such that asy =1
are those that start at v. Thus, if two edges end at the same vertex v, they have the same row
in the matrix A. The lemma follows, because there is only a finite number of vertices. O

Recall that R, is the inverse of the spectral radius of the p-random walk on I'. Also recall
that for r € [0, R,,], we write H (e, y|r) = G(e, y|r)G (v, e|r). For r € [1, R,], we define the function
@p on X% by ¢, (0) =1 and

B B H(e,¢(z)|r) \ H(e,¢(x1...2p)|r)
or(x=21,...,2,) = log <H(6W¢(T:U)|T)> = log <H(e,¢>($;..mn)| >

Using equivariance of the Green function, we also have

or(r=21,...,2 )—log< Hle, ¢(@s .. 2n)lr) )
" o H(p(z1), d(x1 .- 20)|7)
LEMMA 4.3. For every r € [1, R,], the function ¢, can be extended to Y. It is then locally
Hélder continuous on X 4.

Proof. Let n > 1 and let z,y € ¥% be such that =1 =y1,...,2, = y,. Hence, in I', we have
o(x1) = d(y1), .., d(xn) = &(yn). This means that relative geodesics from e to ¢(x) and from
d(x1) = o(y1) to ¢(y) fellow-travel for a time at least n — 1. According to strong relative Ancona
inequalities, we thus have, for some C' > 0 and 0 < p < 1,

Gle, 6(2)r)G (). d(y)lr) )
G(o(r1), ¢(x)|r)G (e, p(z)|r) 1 < Cp".

Weak relative Ancona inequalities also show that

G(e, ¢(2)|r)G(e(y1), ¢(y)lr) = %G(e,¢($1)IT)G(¢($1),¢($)|T)G(¢(y1),¢(y)!7‘)

and because x; = y;1, we obtain
Gle, oG (D), w)lr) > oy Gle, d(y)IG (o), $(z)lr).

Thus, G(e, ¢(z)|r)G(p(y1), d(y)|r)/G(P(x1), p(x)|r)G(e, ¢(x)|r) is bounded away from zero, so

that
(_He@l) N Heowl)
! g( H(o(z1), ol >|r>) o (H<¢<y1>,¢><y>|r>>‘
Gle, o)) G (o), bw)lr)
=G ' (). 6@, )
This proves that if x = (z1,...,2y,...) € 0%, then the sequence ¢,(z1,...,z;) is Cauchy,

n
so that it converges to some well-defined limit ¢, (z). This extended function ¢, on X4 still
satisfies (8), so that it is locally Holder continuous. O

< Cp". (8)

We denote by L, the transfer operator associated with the function ¢,.
LEMMA 4.4. For every r € [1, R,], the function ¢, has finite pressure and is positive recurrent.

Proof. As noted previously, because the Markov shift has finitely many images, Proposition 3.1
shows that any locally Holder function with finite pressure is positive recurrent. Thus, we only
need to prove that ¢ has finite pressure, which is equivalent to proving that ||£,1]|c < 400
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by [Sar99, Theorem 1]. For z € ¥4, let X! be the set of symbols that can precede z in the
automaton G. Then, by weak relative Ancona inequalities

0= X s <SS el

oeX] k=0 ocH],
This last sum is bounded by Corollary 2.10, which concludes the proof. g
Let P;(r) be the pressure of the restriction of ¢, to a component X 4 ; of the Markov shift and
let P(r) be the maximal pressure, that is, the maximum of the P;(r). Recall that we declared that

the empty sequence is not a preimage of the empty sequence. This will simplify the following.
The main reason for introducing this function ¢, is that

£215.0) = s 3 Hlealr)
vESn

where we recall that 1z, is the function on X4 that takes value one on paths that start at v,
in the automaton G and zero elsewhere. Indeed, to prove Theorem 4.1, we want to understand
IM(r) = >_ver H(e,7|r). Thus, we want to understand the behavior of }° s H(e,v|r), which
is thus the same as understanding the behavior of LI'15, ().

4.2 Continuity properties of the transfer operator
Our goal in this subsection is to prove that the map r — L, is continuous in a weak sense. We
begin by the following result.

LEMMA 4.5. There exists C' > 0 such that for all r € [1, R,,),

1 <ZHe’y\)<C

1
C/R,—r VR, -1
Proof. Let Ii(r) =>_ H(e,v|r) and F(T) = r2I;(r). According to [Dus22, Lemma 3.2],

‘(r) =2r)_G(e,y "G, 7Ir)G(y, elr).

Proposition 2.8 gives
1)
C' — F(r)?
and Proposition 2.11 gives F'(R,) = +oo. Thus, integrating the inequality above between 7 and
R,,, we obtain

<c

< C'(R, — ),

which leads to the desired inequality. ]
We also prove the following.

LEMMA 4.6. For any r € [1, R,], P(r) < 0. Moreover, P(R,) = 0 and ¢, is semisimple.

Proof. 1f P(r) were positive, then Theorem 3.3 would show that

ee‘ ZHeV\

'YES'n

£T1E* ((b)
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tends to infinity. However, Lemma 2.9 shows that this quantity is bounded, so we obtain a
contradiction.

If P(R,) were negative, then Zwe g, H (e,7y|r) would converge to zero exponentially fast,
according to Theorem 3.3. In particular, nyer H (e, ~|r) would be finite, that is, using Lemma 2.7,
(d/dr);,=r,G(e, e|r) would be finite. This would be a contradiction with Proposition 2.11.

Finally, if ¢, were not semisimple, then Lemma 3.4 would again show that Zv cs, Henlr)
would tend to infinity, because we already know that P(R,) = 0. Again, Lemma 2.9 shows that
this quantity is bounded. O

Let h§i) and l/](-i) be the functions and measures given by Theorem 3.3, associated with

Lpg,. Let m; be the measure defined as dm; = (1/p;) fjlhg)dl/(z) According to [Sar99,
Proposition 4], m; is a Gibbs measure. However, we have to apply this proposition to each
component Y4 ; of the shift, so that we do not have that m;([z1,...,z,]) < H(e,z1...2,|R,,)
for any cylinder [z1,...,x,]. We still deduce that there exists C' > 0 such that for any n, for any

cylinder [x1, ..., x,],
mj([x1...2n)) S CH(e,x1 ... 20| Ry). 9)

Furthermore, letting m = Zj m;, there exists C >0 such that for any n, for any cylinder
[1...2y,) in the support of one of the measures m;;,

1
6H(€,$1 o xp|Ry) <m([xe, ..., xn]) S CH(e, 1 ... xn|Ry). (10)

PROPOSITION 4.7. There exists a non-negative function ¢ on X 4, possibly taking the value +oo
on 0% 4, which is integrable with respect to the measure m and such that for every x € ¥4 and
for every 1 <r,r’' <R,

lor(@) — o ()] < 20(x) /|1 — 7).
Integrating over r, this proposition is a direct consequence of the following lemma.

LEMMA 4.8. There exists a non-negative function ¢ on X 4, possibly taking the value +o0o on
0X 4, which is integrable with respect to the measure m and such that for every x € ¥ 4 and for
every 1 <r < Ry,

d 1

— ()| < p(x) —.
| S o)
Proof. Fix x € ¥ 4. We compute the derivative of r — ¢,.(x). To simplify the notation, we identify
x with ¢(x) € I'. We obtain

d d H(e,z|r) d d 9
. log ——~210 = D oo r2H (e, x|r) — — log r2H (21, z|r).
e (r) = ar " o) a8 (e,x|r) o logr (z1,|r)

In [Dus22, Lemma 3.2] we showed that

i@r(ﬂf) _ Z G(e,y|r)G(y, z|r)G(z,e|r) + G(e, z|r)G(x,y|r)G(y, e|r)

dT‘ TH(67‘T|T)
yel’
_Z :Elay’T y,$|T)G(l‘,x1’T) +G($1,$‘T)G(I,y|T)G(y,111‘7“) (11)
rH(zy1,z|r) ’
yel’
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We first give an upper bound for
ZyEF G(@, y’r)GQ/: x\r)G(x, 6‘7’) _ Zyef G(l’l, y’r)G(yv .’E‘T’)G(.’IJ, T ”I“)

rH(e,x|r) rH(xq,x|r)
The remaining term in (11) will be bounded in the same way. Putting together these two sums,
we obtain
1 H(e,x|r)
— G G G -G G G —_—.
TH(€,$|7“) y;‘ (e,y|r) (y,m|r) ($76|T) ($1>y|r) (y,z:]r) ($7$1|T)H(£U1,$|7")

We rewrite this as

1
W yze; G((f, y‘T)G(y, $|7")G(x’ €|’f') <1 _

G(arl,y|r)G(e,x]r)>
G(z1,2|r)Gle,ylr) )
We decompose the sum over I' in the following way. Let n = ci(e, x), so that the relative geodesic
[e, z] has length n. Denote by e, z1, ..., x, successive points on this relative geodesic. In addition,
for 0 < k < n, let I'y, be the set of y € I" whose projection on [e, z] which is closest to z is exactly
at xp.

We use Lemma 2.5 several times. Let us first focus on the sum over I'y. If y € 'y, then
any relative geodesic from y to x passes within a bounded distance of e. Weak relative Ancona
inequalities show that

Gy, z|r) S G(y,elr)G(e, z|r).
Similarly, any relative geodesic from x1 to y passes within a bounded distance of e, hence
G(z1,ylr) S Glay, elr)Gle, ylr).
We also have
G(e,z|r) < G(e, z1|r)G(x1, x|r),

so that
- e, y|r z|r)G(z, e|r — G (21, ylr)Gle, z|r)
e 3 CleunGin G )(1- Gdngen)
S H(e,ylr)(1+ H(e,1r)).
yel’

As H(e,x1|r) is uniformly bounded, we deduce from Lemma 4.5 that

i (1 SlonaGiei)

rH (e, x|r) y;o Gle,ylr) Gy, 2lr) Gz, elr) G(x1,z|r)G(e, y|r)

<1
VR
Let us focus on the sum over I'; now. Let H; be the union of parabolic subgroups containing
x1. Let y € 'y and denote by o its projection on Hi. Then, any relative geodesic from e to y
passes within a bounded distance of o and any relative geodesic from y to x passes first to a
point within a bounded distance of ¢, then to a point within bounded distance of x1. We thus
obtain

Gle,ylr) < Gle, olr)G(o,y|r)
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and
G(y,z|r) < G(y,olr)G(o, 21|r)G(z1, z|r).
Similarly,
G($17y|’/‘)G(€,IL‘|T> < G(l’l,O"T')G(G,SC1|T) < 1
G(z1,z[r)G(e,ylr) ~ G(e,alr) ~

Letting I'T be the set of y whose projection on H; is at o, we obtain

Z Gle, yIr)Gly, z|r)G(x, elr) (1 _ G(x1,y|r)G(e,:n|r))‘

2 Gl olr)Gle, ylr)

<y Y U'Z Jf””ﬂ(a,yrr).

oMy yel'y

e:v|

We bound the sum over y € I'{ by a sum over y € I', so that

G(x1,y|r)G(e, z|r)
e x| Z G(e,ylr)G(y, z|r)G(z,e|r) (1 - G(x1,$|T)G(eay|r))‘

G(e,olr)G(o,z1|r)
«/ U%; G(e, x1|r) '

Suppose now that k& > 2 and consider the sum over I'. For any y € 'y, relative geodesic from
x1 to y and from e to x travel together for a time at least k — 1. We deduce from strong relative
Ancona inequalities that

_ Gz, ylr)Gle, z|r)
G (a1, z[r)G e, ylr)

for some 0 < p < 1. Letting Hj be the union of parabolic subgroups containing m,;_llxk, we also
obtain

:

’ Z Gle,yIr)G y7$‘r)G(x,e|q~)(1 _ G(m,ylr)G(e,xlr))’

He,x|r el G (1, z|r)G(e,y|r)

Z G(xp—1,2p-10|1)G(T)—10, TK|T)
./R = G(xp—1,zk|r)

Putting everything together and letting zg = e, we obtain

i GGl et (1 GG, 2l
rH(e,x\r)E;G( WINGly, @) Gz, e )<1 G(QJLH?‘T)G(%Z/‘T))‘

G(zg, zro|r)G(zko, Tpi1|T)
N <”ZP Y e ) -

= cEH

We now bound

Zp Z mkyaf’kU‘T)G(kay $k+1’7')

k=0 ocH, G(zg, Tpr|r)

by an integrable function independently of » and n. We first prove the following.
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LEMMA 4.9. There exists A such that the following holds. Let H be a parabolic subgroup. For
every x in ‘H and for any 1 <r < R, we have

Z G(e,y|r)G(y, z|r) < (Ad(e,z) + N)G(e, z|r).
yEH

Proof. We write Ggl)(e,x) = (d/dt) ;=1 (G (e, |t)), where G, is the Green function associated
with the first return kernel p, to H. According to Lemma 2.7, it is enough to prove that

G (e, z) < (Ad(e,x) + A)G(e, z|r).
As we are assuming that p is non-spectrally degenerate along H, there exists p < 1 such that for
any x, for any n,
(e, ) < ply) (e, 2) < p",

(n)

where p,; 7 denotes the nth power of convolution of p,. By definition,

(1)6.7} anr e, x)

n>0
Note then that

Yoo i ex) S (p) M,
n>Ad(e,x)+A

As r > 1, for any z, G(e, z|r) > p©®) for some p < 1 and so
G (e,a) = Gle,alr) = pe.

If A is large enough, we thus have

1
> men) < 560 ea),

n>Ad(e,z)+A
so that
GWM(e,z) <2 Z np(™ (e, z) < (2Ad(e, z) + 20)G (e, z|r).
n<Ad(e,z)+A
This concludes the proof. ]

Going back to the proof of Lemma 4.8, we obtain the upper bound

) G ) g
Zp Z $k ﬂjk0'|’f') (SCkO' xk-l—l‘r) < Zpk(Ad(mkaxk—l—l) —|—A)

G(gjka Tk4+1 |T)

k=0 oc€Hy, k=0
We fix N and define gogN) by
n—1
A (@) = 14 3 o (Ad(ag apsa) + A) (13)
k=0
for any word x of length n < N. We extend cpgN) to a function on X4 declaring cpgN) to be

(N

constant on cylinders of length N. For fixed z, the sequence ¢ )(x) is non-decreasing. Let
p1(x) be its limit, possibly infinite if x € 9% 4. We now prove that ¢ is integrable with respect
to m. This is based on the following.
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Letting E be a set, a transition kernel p is a function p: E x E — [0,4+00). We fix a base
point xg € E. We say that p is finite if its total mass is finite, that is,

Zp(:vo,x) < +o00.

zeFE
If the total mass is one, then p defines a Markov chain Z,, on E. Otherwise, p still defines a
chain Z, with transition given by p. We let z, be the increments of this chain. Whenever E is
endowed with a distance d, we say that p is C-quasi-invariant if there exists C such that for
any k,

d(Zk, Zk+1) < C’d(e, Zk+1).

LEMMA 4.10. Let p be a finite C-quasi-invariant transition kernel on a countable metric space
(E,d). Let xo be a fixed point in E. Assume that p has exponential moments in the sense that

Z p To, T ad (z0,2)

z€eE
for some positive . Then, for any 3 > 0, there exists A > 0 and C) such that for any r € E,

Z P (0, ) < Cre™PdE)
n<d(e,z)/\

where p\™) denotes the nth power of convolution of p.
Proof. The proof is contained in the proof of [BHM11, Lemma 3.6}, although the statement and
the assumptions there are different, so we rewrite it for convenience. To simplify the notation,

we assume that the total mass of p is one, so that p defines a Markov chain Z,,. The general
proof is the same. By assumption, we have

E(e®¥@0:21)) = F < +o0.
For any A\, Markov inequality shows that
P( sup dle, Z4) > An) < (/O (ol0/C)supr <pcn dleZ0))
1<k<n o o
As p is C-quasi-invariant, we have for any k < n, letting Zy = x,
d l‘o,Zk Z d +1) < C Z d(l‘o,?:j).
0<j<n—1 1<j<n
As the z; are independent and follow the same law as Z;, we obtain
]P< sup d(e,Zk) > )\n> < e—(a/C))\nEn < en(—(a/C)A—i—logE).
1<k<n
We choose A large enough so that —(a/C)\ + log E < —20. Then,
S (o, x) < d(ivfﬂ)e—wd(e,x) < ¢~Bdle)
n<d(e,x)/\
This concludes the proof. O

We apply this in our situation. Let H be a parabolic subgroup. For any n > 0, we let
py,R, be the first return kernel associated with R, u to the n-neighborhood N, (H) of H. Then,
[DG21, Lemma 4.6] shows that if 7 is large enough, then p,, R, has exponential moments. As it
is defined as the first return associated with R, u, it is C-quasi-invariant for the induced metric
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on N, (H) (it is actually invariant for this distance). Thus, for any 3 > 0, there exists A and Cy
such that
—Bd(e,
ST p{ip (o)  Coem )
n<d(e,z)/\
The Green function associated with p, g, coincides with the restriction of the Green function

associated with R, on N, (H), see [Dus22, Lemma 3.4] for a proof. As there exists ¢ < 1 such
that G(e, z|R,) > ¢¥*®), we can choose A so that

n 1
> bk, (en) < SG(ex|R,)

n<d(e,z)/\
and so
G(e,z|Ry,) <2 Z pfﬂ)%u(e x) ( Z nan e, x)
n>d(e,x)/\ n>d (e,x)
According to Lemma 2.7,
G(e,z|Ry,) Z G(e,y|R.)G(y, x| R,).

( e,
Finally, any point in A, () is within 7 of a point in H, hence for any = € H,

d(e,xz)G(e, z|Ry) Z G(e,y|R.)G(y, x| R,), (14)
yeH

yENn (H)

because 7 is fixed.
(n)

Recall that we want to prove that ; is integrable with respect to m. As ¢~ is
non-decreasing, it is enough to show that there exists a uniform C >0 such that for

any n,
/gogn) dm < C.
(n)

By definition, ¢, is constant on cylinders of the form [z1,...,z,]. According to (9), we just
need to show that for every n,

n—1
> Hle.x|Ry) Y phd(wy, wri) (15)
wES’N k=0

is uniformly bounded.
We decompose z € S™ as & = x1 ...x,. For any y € S*, denote by X7 the set of symbols o
which can follow y in the automaton G. More generally, denote by Xj‘y the set of words of length

4 which can follow y. For fixed k writing og11 = .’E;lxk_i_l and y = x,;l_lx, we have, using weak
relative Ancona inequalities,

Z H (e, z|Ry)d(zk, 2ri1)
zesn
,S Z Z Z H(eﬂxk|Ru)H<eﬂy‘R,u)d(evUk+1)G(eaak+1’Ru)G(0k+1ve|Ru)

pa xT T
€Sk O'k+1€X1 k yEXn’iJlgl_l

5 Z Z Z H(e,xk|RN)H(e,y\R#) Z G(e’U’RH)G(Ua 0k+1|RM)G(0k+1’e|RM)'

A z x
:ckGSk Uk+1€X1k yexnﬁzil oE€H
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Lemma 2.9 shows that
> H(eylR)S1
yeX, it
As p is not spectrally degenerate,
S Gle, 0l Bu)G(o, 01| R) G0k, el Ru) S 1
oc€Hy,
Using again Lemma 2.9,
Z H(e,zx|Ry) S 1
zpESk
Finally, we find that (15) is bounded by C ), L pF for some C. As p < 1, this last sum is
uniformly bounded.

To conclude, we give a similar bound for the remaining term in (11), with an integrable
function ys. We set ¢ = 1 + 2. This concludes the proof. O

The function ¢ is constructed as the non-decreasing limit of functions (™ which are
uniformly integrable and satisfy that for any word z of length n,

1
< ¢ (z) R,—r (16)

d
o)

Let us note that we proved something a bit stronger than [ o™ dm < 1. Indeed, we proved there
exists C' > 0 such that for every n,

Y H(e,z|R,)p™(z) < C. (17)
zesn
We both use (16) and (17) in the following. However, to simplify the notation, we only stated

Lemma 4.8 using ¢ and m.
We also prove the following result. We do not use in full generality, but only for z = ().

PROPOSITION 4.11. For every x € X4, there exists C,, such that for every r,r’ < R, and for
every bounded function f,

(Lo f)(@) = (Lo )(@)] < Call fllocv/Ir = 77].

Proof. Fix x € ¥4 and let n = d(e, 7). Let X! be the set of symbols which can precede z in the
automaton G. Then,

(Lef)(x) = (L f)(@) = Y (77 — P 0) f(ow).

ceX]
Differentiating in r the quantity
S~ el f(oa),
ceX]
we obtain
Z i ( or(oz)
(dr(pr aw))e f(ox).

ceXl
Using Lemma 4.8, this is bounded by

17lleo—r— > wlow)es o),
JeXl
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We deduce from weak relative Ancona inequalities that this is bounded by

1
||f”ooﬁ UEZ);% p(ox)H (e, ol|r).

As > cx1¢(ox)H(e,o|r) only depends on z, it is enough to show that this last sum is bounded

independently of r. This is done exactly like showing that the sum (15) is bounded. O

We want to apply Theorem 3.6, so we now prove that the assumptions of this theorem are
satisfied, for 7(r) = /R, — r. Recall that m = >, m;.

PROPOSITION 4.12. There exist constants 0 < o < 1 and C' > 0 such that for every 1 <r < R,
for every n, for every function f € H, g,

1L Fllps < Co™|fllps + C / \fldm

and
/ Ly — L) f|dm < Clflp /B —.

The proof of this proposition is postponed to the end of the section. We first state the
following corollary which is deduced from Theorem 3.6.

COROLLARY 4.13. For every r close enough of R,,, there exist numbers 15]- (r), eigenfunctions 39

. - J?r’
and eigenmeasures 17](? of L, associated with the eigenvalue e’i(") such that for every g € H 0,85
k _ pj . )
H[’?g - Z en(Pj (r)) Z hﬁi / g dﬂj(}(j*”) mod p;) < C'H"Hng,g,
j=1 i=1 P

where C' > 0 and 0 < 0 < 1. The functions BEZ) and the measures ﬁ](i) have the same support as

the functions hgi) and the measures I/](-i), respectively. Moreover,

iLgZsz 5 is uniformly bounded.

Finally,
7 (4) (4)
/‘hw =1 dm — 0
and 133(12 weakly converges to 1/]@ as r tends to R,,.

To conclude, note that Proposition 4.11 yields

1Lrf(0) = L f O S oV I =7 (18)

Consequently,
RS 0) — b @) — 0. (19)

r—Ry,

Indeed, this last estimate (18) shows that we can replace the norm |-|, when applying
Theorem 3.6 with the norm |- |}, defined by

L = 1£0)] + / |l dm.

Although we use (19) in the following, we preferred using the norm |- |,, in the statements and
in the proofs for convenience.

We now prove Proposition 4.12. We use repeatedly strong relative Ancona inequalities to
obtain stronger and stronger continuity statements. We first give an upper bound for ||£] ||~
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and then one for D, g(L} f), that actually use the first upper bound. This will conclude the proof
of the first statement in the proposition. The proof of the second statement is similar but a bit
more technically involved.

Proof. Let f € H, g and let x € 3 4. Denote by S, ¢, the nth Birkhoff sum of ¢, and let X? the
set of words of length n which can precede z in the automaton G. Then,

Ly fx) = 50D f(qm).

veXy

Let f( be the function which is constant on cylinders of length n and which is equal to f
elsewhere. In particular,

F™ (ya) = £(v)
for x € ¥4 and v € X2. As f is p-locally Hélder,
[F™ () = f(ya)| < "Dy s(f).

Hence,

L2 f(@)| < p"Dpp(f) D 50D 4 37 509 £ ().

yeEXD yeXn

To simplify, we identify an element v € X! with the corresponding element in Sm < I'. Note that
ener(®) = H (e, va|r)/H(7y,yz|r). Using weak relative Ancona inequalities, we obtain

1L f(@)| S p"Dp(f) Y H(ey|Ry) + D Hie,v|R)I ™ (va)].
765’" 765‘"

For every v € I', we can use the automaton G and choose a relative geodesic from e to ~
whose increments we denote by z1,...,x,. Let [y] be the corresponding cylinder [z1,...,x,].
Let ST, be the set of 4 € S™ such that the cylinder [v] is in a maximal component. As f () jg

max

constant on cylinders of length n, (10) shows that

S HieA| R (32)] < / £ dm.

VES T ax
In addition, by the definition of maximal components, there exists p’ < e’ (f) = 1 such that

Y. HeAR)IF @) S ()" loo-

YEST\ST

Using that f is p-locally Holder, we obtain

[15®1dm S 00,0 + [ 151 dm.

Lemma 2.9 shows that the sum Zv cgn H(e,7|R,) is bounded independently of n. We thus obtain

1L f ()] < 20" Dps(f) + ()" I flloc + / [fldm < o[ fllps + / |f|dm, (20)

where o = max(p, p’). We can thus control || L} f||co-
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We now focus on D, g(L, f). Let z,2' € ¥4 and let p™ = d,(z,2’), m > 1. We have

Ly f(x) = L7 fal) = Y (5ner0m) — SnerOT)) f ()

veXy

+ Y 0T (f () - f(ya')).

yEXE

On the one hand, using that f is p-locally Holder and using weak relative Ancona inequalities
to bound e5#r(0%) by H(e,~|r) as previously, we obtain

> 0D (fya) — f(va)| S Y He, v R ™Dy p(f)-
veXn ~esn
It follows from Lemma 2.9 that the sum nyeS" H(e,v|R,) is bounded and because
p" = d,(z,2'), we have
> eSO (fyw) = FOa)] S ol £l 5o, ).
vEXZ

On the other hand,

Z (eSnsor(vr) _ eSnvr(’w’))f(,m)
VEXY
_ Z eSnSDT(’y:L‘)(l _ eSn¢T(7$/)_SH¢T(7x))f(ryx).
vEXY

By definition,

(1 - eSnsOr-('ya:’)—Snapr(wa:)) _ (1 . H(e,fyx]r)H(’y,fyx'V))‘
H(vy,vz|r)H (e, v2'|r)

As relative geodesics [e,x] and [e, 2'] fellow travel for a time at least m and because v both
precedes z and 2’ in the automaton G, relative geodesics [e,yx] and [y, v2'] also fellow travel for
a time at least m. Strong relative Ancona inequalities thus yield

‘1 o eSnSOv-(’Y.Z‘/)—SHSDT('Yz)‘ S pm

and so

Z (esnsor('yx) _ eSnwr(vr’))f(wc)

VEXY

Sty S0 f(ya)).

VEXZ

We bound . ¢ xn eSner(0)| f(yz)| by o™||f|l,.5 + [ | f| dm as previously to obtain

L7 (@) — £o7(a)] < <0n||f||p,6 + [ dm) dy(a.2"). (21)

We deduce from (20) and (21) that

12251, 5 S o1l + / fldm,

which concludes the first part of the proposition.
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We now prove that

/ Ly — L) | dm < C|fllps/Bp 7. (22)

The function f is p-locally Holder. As the operator £, — L, is bounded on (H, g, || - ||,5), for
every word © = x7 ...z, of length n and for every y € [z1,...,2y],

(L = Lr)F(W) = (Lr — Lr)F@)] S 0™ lp,5-
Hence,

(L = Lo S 2" fllos + (Lo = Lr,) f(2)].

Fixing r, we choose n large enough so that p" < /R, —r. Let fr be the function which is
constant on cylinders of length n and which is equal to (£, — Lg,,) f(x) elsewhere. To prove (22),
we just need to show that

[ 1l dm 5 1o /B

For every z of length n and for every y in [z1,...,x,], we have
Jely) = 3 (€77 — #mlo) f (o).
ceX}

Differentiating this, we obtain
d

> (ertom))e o (ow).
dr

ceXx}

Using (16), we bound the absolute value of this term by

%HfHoo > e (gz)err o),
RN seX]

Inverting the sum and the derivative is legitimate because weak relative Ancona inequalities
show that e?r(?%) < H(e, o). As in the proof of Lemma 4.8, we show that the sum

Z <’0(n+1)(Ugg)ewr(fmﬂ)
oceX}

is finite. Therefore,

fllso D Hie,o|Ru)e" ) (ow).

d - 1
0] S
dr R”_r ceXl

Integrating this, we obtain

/\fr\dm< 115/ B /Z (e, 0| R,)o ™ (o) dm(z).
oeX]
As x +— ™) (gz) is constant on cylinders of length n, (10) shows that

J15 dm S 1l Ba =7 323 Hee.olR)Hie, ol )" V(oz)

zelSn oeX]

S llpsvVBa =7 Y Hie,ylRu)e™ D (y).

yGSn+l
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According to (17), we thus have

[ 1l S 1l /B

which concludes the proof. O

5. Evaluating the pressure

Our goal in this section is to estimate the numbers P; (1) given by Corollary 4.13 and to compare
them with the maximal pressure P(r). This allows us to obtain a precise estimate of I(}) ().
According to Corollary 4.13, if R, — r is small enough, then

k _ pj . )
g )= e i) ST @) / L, diA" NP o6

Here, 0 < 6 < 1 and k is the number of maximal components for the function ¢g,. Denote by

p the least common multiple of the periods of these components, so that if n > 0 and 0 < ¢ < p,

then dﬁ]((i_np +q) mod p;) only depends on ¢. In particular, we can write

k ~
Lty (0) = Z e(np+q)Pj(<ﬂ7')§q,j (r) + O(6™PF9),
j=1

where ¢, ; is a non-negative function of r defined on some fixed neighborhood of R,. Note that

€,.5(r) only depends on h;,.(f) and on [1g, dﬁ](? and that it is continuous in r according to
Corollary 4.13 and (19). )

If r < Ry, then 3 H(e,v|r) is finite, so the numbers P;(¢,) are negative. Summing over n
and g € {0,...,p— 1}, we obtain

> " H(e,ylr) = Hle,elr) > £rrt1p (0) = Z|P " | O(1),r — Ry, (23)

'YGF n,q

for some non-negative functions ;, which are continuous in r on some neighborhood of R,,.
We have the following result, which shows that the pressure is asymptotically independent
of the maximal components. Its proof is postponed to the following subsections.

PROPOSITION 5.1. Foreveryj € {1,...,k}, P;(¢,)/P(r) tends to one when r tends to R,,, where
P(r) is the maximal pressure of the function @,.

Combining Proposition 5.1 and (23), we obtain that

ZHe'ﬂr Q%—O()THRFL, (24)

[P(r)|

for some non-negative function &, which is continuous in r on some neighborhood of R,,. Recall

that 7MW (r) < \/R, —r and |P(r)| < \/R, — r. Therefore, {(R,) > 0, so that £(r) is bounded

away from zero on a neighborhood of R,,.
The remainder of this section is devoted to proving Proposition 5.1. An analogous result is
proved in [Goul4] for hyperbolic groups. This is done by showing the following.

LEMMA 5.2. For r € [1,R,], [¢rdm; does not depend on j, where m;j is the measure in
Proposition 3.7.
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This lemma, in turn, is proved in several steps.

Step 1. Fix ¢ and define U(c) C oI as the set of points e OI such that if z is an infinite sequence
in 0% defining £ (that is, denoting v, = x1 ... &y, €,71,...,Yn, - . . is a relative geodesic ray that
converges to € in L"), then log H (e, vp|r)/d(e,ym) converges to c. Then, the definition of U(c)
does not depend on the choice of the sequence x,,. Moreover, U(c) is I-invariant, that is, for any
vyeTl,~v-U(e) =Ulc).

Step 2. Define the sequence of measures A, = . s H(e,7|Ry)0y on I'. Define AN as

AN = nf:lxn/ (ixn(r)) (25)

Then, up to a subsequence, Ay converges weakly to a probability measure on oI', which we
denote by Ag, .

Step 3. The limit measure Ag, is ergodic for the action of I' on ar.

Step 4. Let ¢; = [ @, dmy. Then, Ag, (U(cj)) > 0. As Ap, is ergodic and U(c;) is [-invariant, we
thus have Ag,(U(c;)) = 1 for all j. In particular, all the sets U(c;) intersect, which proves that
¢; is independent of j.

5.1 Proof of step 1
We prove here the following lemma.

LEMMA 5.3. The sets U(c) as previously are well defined and are I'-invariant.

Step 1 is stated in [Goul4, §3.5] using the Gromov boundary OI" of I" instead of 8f‘, because
groups are hyperbolic in there and not relatively hyperbolic. It is a consequence of the fact that
geodesics converging to £ € OI' in a hyperbolic group stay within a bounded distance of each
other. This property still holds in our situation as we show in the proof of Lemma 5.3 that we
now present.

Proof. First, let us show that the definition of U(¢) does not depend on the choice of the sequence
z defining £. Assume that z and z’ are two sequences such that, setting v, = z1 ...z, and
v =2 ...x), both sequences e,v1,...,9n,... and e,7],...,7,, ... are relative geodesics con-
verging to . Then, according to Lemma 2.4, for every n, there exists k, such that d(yn,7;, ) <
C, so that H(e,va|r) < H(e,v; |r). We thus have |logH/(e,vu|r)—logH/(e,v; [r)| <
C’. Moreover, because d(vn,7;, ) < C, d(vn,'y,’%) < (O, so that |n—ky| <C” and, thus,
|d(e,~)) —cZ(e,fy,;n)] < C". This proves that log H(e,v,|r)/d(e,vn) and log H (e, |r)/d(e,~,)
have the same limit.

Let vy €T and let £ € U(c). We want to prove that v-¢ € U(c). Consider a sequence x
defining & and a sequence z’ defining v - £, that is, setting v, = z1...2, and 7/, = 2} ..., the
sequence €,7i, .. .,Vn,- - - is a relative geodesic converging to £ and the sequence e,~],..., 7}, ..
is a relative geodesic converging to v -&. Then, v,vy1,...,7Vn,-.. is a relative geodesic start-
ing at v and converging to « - &. According to Lemma 2.4, for every n, there exists k, such
that d(yyn,7;,) < C. This time, the bound C' depends on +, but not on the sequences 7,
and 7. This shows that H(y~!,yn|r) = H(e,yva|r) =< H(e,v;, |r), and because v is fixed,
H(y™ Y ya|r) < H(e,ya|r), so that H(e,yn|r) < H(e, "}, |r). The same proof then shows that
log H (e, yn|r)/d(e, vn) and log H (e, ~/,|r)/d(e,~,) have the same limit. O
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5.2 Proof of step 2
We prove here the following lemma.

LEMMA 5.4. Up to a subsequence, Ay as defined in (25) converges weakly to a probability
measure on OI', which we denote by Ar,,.

An analogous result follows directly from the convergence properties of the transfer operator
L, in [Goul4] and one does not need to extract a subsequence. However, in our situation, we can
only prove convergence of [ fd\, for functions f € B, 3. As our space is not compact and not
even locally compact, this set of functions is not dense in the set of all continuous and bounded
functions for the || - || norm. To fix this problem, we need to consider a compact space that
contains AL so that A N converges to a measure on this compact space (up to a subsequence). We
then prove that this limit measure gives full measure to OI'. The compact space in question is a
version of the Martin boundary that we define. Actually, we deal both with the Martin boundary
and the Bowditch boundary at the same time.

We first define the Green distance at the inverse of the spectral radius as

da(v,7') = —log F(7,7'|R.)F (v, v|Ry),

where F'(v,7'|R,,) is the first visit Green function at R,. More precisely, we have

F(y,yIr) =Y r"P(Xo=7Xn =7, Xp #7,1 <k <n—1), (26)
n>0

where X, is the position of the y-random walk at time k. Note that for r =1, F(vy,7/|1) is the
probability of ever reaching +/ starting at ~.
Using the relation

G(v,7'Ir) = F(7,7|r)G(,~'|r) = F(v,7'|r)G(e. e|r)

(see [Woe00, Lemma 1.13(b)]), we also have that
da(7,7") = —1og G(v,7|Ry) —log G(v',7|Ry) + 2G e, €| Ry).

Actually, the Green distance was introduced by Blachere and Brofferio in [BB07] as dg(7,7') =
—log F(v,7'|1). What we call the Green distance here is, thus, a symmetrized version at the
spectral radius of what they call the Green distance.

In general, in any metric space (X,d), one can consider a compactification given by the
distance called the horofunction compactification. It was introduced by Kuratowski in [Kur35]
and used a lot by Gromov (see, for example, [BGS85]). It is the smallest compact set H such
that the function ¢ : (z,y) — d(x,y) — d(x0,y) extends continuously to X x H, where xg is a
base point. Its homeomorphism type does not depend on xg. The horofunction boundary is the
complement of I" in the horofunction compactification. We refer to [MT18, § 3] for a construction
and many more details.

Define the Martin kernel as

i (1 |R)GH AR,
K " — ) m ) 2
) = Gl RGO el Ry)

The Martin compactification is defined as the horofunction compactification for the Green dis-
tance. In other words, a sequence 7, in I' converges to a point ¢ in the Martin boundary if and
only if the Martin kernel K (-,7,) converge pointwise to a limit function K(-,&). Usually, the
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Martin compactification is defined using the Martin kernel

G(,7)
K(v,y) = =—-~.
07 =G, y)
Again, our Martin compactification is a symmetrized version of the usual Martin compactifica-

tion.

It is proved in [GGPY21] that as soon as weak relative Ancona inequalities are satisfied,
there is a one-to-one continuous map from I' U oI' to the Martin compactification, which is a
homeomorphism on its image. Actually, this is proved for the usual definition of the Martin
boundary. Although the proof still works for our symmetrized version, the terminology is a bit
different and we give a proof for completeness.

LEMMA 5.5. There is a one-to-one continuous map from I' U oI to the Martin compactification,
which is a homeomorphism on its image.

Proof. Let & be a conical limit point and let [e,{) be a relative geodesic ray from e to £. Let
~n be a sequence along [e, ) converging to £. Let v € I' and let 4 be its projection on [e, ) in
. Lemma 2.5 shows that for large enough n, a relative geodesic from v to -, passes within a
bounded distance of 4. In addition, [Dus22, Lemma 4.17] shows that for large enough n, relative
geodesics from e to 7, and from v to «y, fellow travel for an arbitrarily long time, when n goes
to infinity. Then, strong relative Ancona inequalities show that for every -, K (7,7n) converges
to some limit I~(g(7), exactly as in the proof of Lemma 4.3. We thus proved that 7, converges to
a limit that we still denote by £ in the Martin boundary.

More generally, let £ be a conical limit point and let &, be a sequence in I" U or converging
to & Let a be a relative geodesic ray from e to £ and let o, be a (finite or infinite) rela-
tive geodesic from e to &,. Let d, be an arbitrary distance on the Martin compactification.
Then, there exists v, € I' on «,, such that d,,(vn,&,) < 1/n. If §, € I', we can choose &, = 7.
Otherwise, we use what we just proved previously. Up to choosing d(e,’yn) large enough, we
can also assume that ~, converges to £ in I uUar. Thus, there exists a sequence k, going
to infinity such that the projection %, of 7, on « in I' satisfies d(e,’yn) > ky,. In particular,
An converges to € in the Martin boundary, that is, for any ~, K(v,7,) converges to f(g('y).
Let v € I'. Then, according to [Dus22, Lemma 4.17] applied twice, relative geodesics from
e to v, and from v to 7, fellow-travel for an arbitrarily long time, when n goes to infin-
ity. Strong relative Ancona inequalities show that K(v,7,) also converges to K¢(7y). Thus,
d,(§,vn) goes to zero. As d,(vn,&n) < 1/n, we also have that &, converges to £ in the Martin
boundary.

We have, thus, constructed a map from I' U Ol to the Martin compactification. We also
proved that this map is continuous. Let us prove that it is one-to-one. Let & # £’ be two conical
limit points. We just need to prove that £ # & in the Martin boundary. Consider two relative
geodesics [e, &) and [e, &) from e to £ and from e to &'. Let v, and 7/, be a sequence on [e, §) and
[e, &), respectively, converging to & and &', respectively. As £ # £, the projection of 7, on [e,&’) in
r stays within a bounded distance of e. Thus, for large enough n and m, a relative geodesic from
Yn to 7., passes within a bounded distance of e. Weak relative Ancona inequalities show that
K (Y, 7)< H(vn, e|R,). Letting m tend to infinity, we thus have that Ke (y,) < H(vn,e|R,.),
so that I?gf (7n) converges to zero. Weak relative Ancona inequalities also show that if n < m, we
have K (Yn, Ym) < 1/H(e, v, |R,). Letting m tend to infinity, we obtain K¢ (v,) < 1/H (vn, e|R,),
so that f(g(%) goes to infinity. We can thus find n such that f(g('yn) + f(g/ (vn) and so € # &' in
the Martin boundary.
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Finally, we prove that this map is a homeomorphism on its image. Let &, be a sequence in
ruor converging to £ in the Martin compactification. Assume by contradiction that it does not
converge to & in I' U dI. Fix a relative geodesic a from e to € and for every n, a relative geodesic as,
from e to &,. Then, up to choosing a subsequence, we can assume that the projection of a,, on « in
I stays within a uniform bounded distance of e. In particular, if Ym 18 & sequence on « converging
to £ and if vy, is a sequence on «, converging to &, then a relative geodesic from ~,, to -}, passes
within a bounded distance of e, independently of k,m,n. Weak relative Ancona inequalities
show that K (Yo, 7)< H(Ym, e|R,,) so that letting k tend to infinity, K¢, (ym) =< H (Ym, e|Ry).
In particular, K¢, () < C for some uniform C. However, as we saw above, K¢ () tends to
infinity, so there exists m such that K, ¢(ym) > C + 1. Fixing such an m, we obtain a contradiction,
since K¢, (ym) converges to K¢ (7,,) when n tends to infinity. O

We first prove that AN converges to a probability measure on the Bowditch compactification.
We then prove that it also converges to a probability measure on the Martin compactification.

ProrosiTION 5.6. Up to a subsequence, the measure AN weakly converges to a measure Ag,, on
the Bowditch compactification. This limit measure gives full measure to the set of conical limit
points.

Proof. Convergence up to a subsequence follows directly from compactness of the Bowditch
compactification. We just need to prove that any limit measure of AN gives full measure to the set
of conical limit points. Recall that \,, = Zveﬁn H(e,v|Ry)d~ and AN = 25:1 An/(Zle An ().

First, we prove that any limit measure Ag, of AN gives full mass to the Bowditch boundary.
Let K C T" be a compact subset. Then, K is finite, so that for any IV, Zﬁ;l An(K) is bounded,
independently of N. Moreover, according to Proposition 2.11, Zgzl An(T') tends to infinity. This
proves that for any subsequence \ N; of AN, A N, (K) converges to zero when j tends to infinity.
As K is both open and closed in the Bowditch compactification, the Portmanteau theorem shows
that )\RH(K) =0.

Consider a parabolic limit point £ in the Bowditch boundary. As the set of parabolic limit
points is countable, we just need to prove that Agr,({{}) = 0 to conclude. Let H be the cor-
responding parabolic subgroup, that is, H is the stabilizer of £&. Choose Hg € {2y so that H is
conjugated to Hop, say H = ’yoHofyo_l Denote by Ug,, the set of v € I" such that the projection of
~v on yHp in the Cayley graph Cay(T, S) is at d-distance at least n from e. Let V(£,n) be the
closure of U(§,n) in the Bowditch compactification. Then, V' (£, n) contains {£} so we only need
to prove that A, (V' (§,n)) converges to zero when n tends to infinity.

According to the BCP property, if ( € V(&,n), then there exists v € Hp such that oy is
within a bounded distance of a relative geodesic from e to (. In particular, if N is large enough,
for every v/ € V(€,n) NT such that d(e,+') = N, weak relative Ancona inequalities show that

H(e,Y'|Ry) < H(e,nolRy)H (e, v|Ry)H(v0v,7Y' | Ry).

Thus,
N

vyEHo,d(e,y07y)>n k=1

and so

XN(V(‘S,’I’L)) S Z H(ea’ﬂRu)'
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As 7 is fixed, this proves that

A,(V(En) S > H(eRy).

Y€Ho,d(e,y)>n

According to Corollary 2.10, this last term converges to zero when n tends to infinity, which
concludes the proof. ]

We can thus see the measure A\g, as a measure on o'. We fix a subsequence \ N, such that
AN,

., weakly converges to Ag,. We can now prove Lemma 5.4.

Proof. There is a one-to-one and continuous map from I' U Al to the Bowditch compactification,
which is a homeomorphism on its image. As the limit measure Ag, does not give any mass to

the complement of T' U 8T, the Portmanteau theorem shows that A N, also weakly converges to
Ar, on I'UOT. 0

We also prove the following corollary.
LEMMA 5.7. The measure A N, also weakly converges to Ag, on the Martin compactification.

Proof. There is a one-to-one and continuous map from I' U oI to the Martin compactification,
which is a homeomorphism on its image. Let f be a bounded continuous function on the Martin
compactification. Its restriction f to T'UAT also is bounded continuous, so Ay, (f) = An, (f)
converges to g, ( f ). This proves that A N, also weakly converges to Ag, on the Martin
compactification. O

5.3 Proof of step 3
We prove here the following.

LEMMA 5.8. The limit measure \g, Is ergodic for the action of I' on ar.

This step is a bit more complicated. To show that Ag, is ergodic, we follow the strategy
of [MYJ20]. We first prove that Ag, is conformal for the Green distance defined previously.
Let v € I" and let L, the operator of multiplication by ~ on the left.

LEMMA 5.9. For every v, we have

d(L~)sA -
R ) = Relo)

Proof. Direct computation shows that for fixed 79, one has, for any v and any N such that
N > d(eﬁo) + d(e,'y),

(L)« AN (7) = H (0, 7|Ry)/H (e, | R)An (7) = K (70, ) AN (7). (27)

Lemma 2.9 shows that Z d(eo) Zve g, H(e;7|Ry) is bounded. Thus, according to
Proposition 2.11,

N
Zn:NfdA(e,'yo) H(e7 7|RN) .
Y onen H(e,v[Ry) N—oo

Combined with (27), this shows that (L., )«Axy — K (70, -)An) converges to zero in total variation
norm.
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By definition, for fixed 7o, the function K (70, ) is continuous and bounded on the Martin
compactification. Thus, K (7o, -)A N, weakly converges to K (70, - )AR, - Moreover, left multiplica-
tion by 7o on I' extends to a homeomorphism on the Martin compactification, so that (L 70)*/\ Ny
weakly converges to (L, )«Agr,. We have, thus, proved that (L.,)«Ar, = K(70,") AR, O

We use this property to prove the following.
LEMMA 5.10. The measure Ag, on O has no atom.

Proof. Assume in contrast that there exists & € 9I' such that AR, (§) > 0. Consider a sequence
v, converging along a relative geodesic ray to £. Then, weak relative Ancona inequalities show
that if n < m, then K (vy,ym) > C/H (e, yn|R,). Consequently, letting m tend to infinity, we see
that K¢(v,) > C/H(e,Yn|Ry). As d(7n,e) tends to infinity, H(e,v,|R,) converges to zero and
so K¢(7,) tends to infinity. Lemma 5.9 shows that Ar, (1) = f(g(fyn)/\RM (€), which goes to
infinity. This is a contradiction, because Ag, is a probablhty measure. O

In the following, it is simpler to see the measure Ag, as a measure on the Bowditch bound-
ary that gives full mass to the set of conical limit points. We used the symmetrized Martin
boundary to prove Lemmas 5.9 and 5.10. In the hyperbolic setting, using results of Coornaert
(see [C0093]), conformal measures for hyperbolic distances are ergodic. Actually, [Co093] only
deals with geodesic distances and this was generalized by [BHM11] for distances that are hyper-
bolic and quasi-isometric to a word distance, such as the Green distance as long as weak Ancona
inequalities hold (this is also proved in [BHM11]). Comparing a geodesic distance with the Green
distance is more difficult here and we need another approach. We use instead the same strategy
as in [MYJ20, Theorem 4.1] to prove Lemma 5.8, which generalizes Coornaert’s result.

Before proving this proposition, let us introduce some notions of geometric measure theory
from [MYJ20] and some constructions of [DG20] and [Yan22]. Let A be a metric space. A covering
relation C is a subset of the set of all pairs (£, .S) such that £ € S C A. A covering relation C is said
to be fine at £ € A if there exists a sequence .S, of subsets of A with (¢,.5,,) € C and such that the
diameter of S,, converges to zero. Let C be a covering relation. For any measurable subset E C A,
define C(E) to be the collection of subsets S C A such that (§,5) € C for some £ € E. A covering
relation C is said to be a Vitali relation for a finite measure x on A if it is fine at every point
of A and if the following holds: if C' C C is fine at every point of A then for every measurable
subset E, C'(E) has a countable disjoint subfamily {S,} such that x(E\ [J;~; S,) = 0. We use
the letter V to denote a Vitali relation in the following.

Recall that an (71, 72)-transition point on a geodesic « in the Cayley graph Cay(I',S) is a
point « such that for any coset yy’H of a parabolic subgroup, the part of « consisting of points
at distance at most 72 from 7 is not contained in the 7;-neighborhood of yyH. Let £ be a conical
limit point. Following Yang [Yan22], the partial shadow €, ,,(v) at v € I" is the set of points
¢ in the Bowditch boundary such that there is a geodesic ray [e, &) in Cay(T',S) containing an
(11, m2)-transition point in the ball B(y,2n2).

We define the following relation V,, ,, on the Bowditch boundary. For £ parabolic, we declare
(£,{&}) € V1 mp- For € conical, we declare (&, Qy, 1, (7)) € Vi, Whenever € € Q) n, (7). Accord-
ing to [DG20, Proposition 3.3], the relation V,, ,, is fine at every limit point in the Bowditch
boundary.

Let v € I' and let n1,m2 > 0. Consider a neighborhood U of €, », () in the Bowditch com-
pactification. One can choose U such that for any point £ in U, ~ is within a bounded distance of
a transition point on a geodesic from e to £. According to Lemma 2.2, v is within a bounded dis-
tance of a point on a relative geodesic from e to £. In particular, weak relative Ancona inequalities
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imply that there exists a constant C' (depending on 7)) such that for N large enough,

S‘N(Qmﬂnz (’7)) < CS\N(Qme (’7))7
so that
AR, (1,20 (7)) < CAR, (g o (7))

The measure Ag, on the Bowditch boundary gives full measure to the set of conical limit points.
Thus, [DG20, Proposition 3.4] shows that the relation V;, ;, is a Vitali relation for Ag, .
To prove Lemma 5.8, we need the following two results.

LEMMA 5.11 [MYJ20, Theorem 4.2]. Let E be a measurable subset of the Bowditch boundary.
Then, for Ag,-almost every point { € E, one has

)\R“ (E n Sn)

— 1
AR, (Sn) n—oo

for every sequence {S,} such that (§,Sy) € Vy, , for all n and such that the diameter of S,
converges to 0 when n tends to infinity.

For the second result, we need to choose a distance on the Bowditch boundary. To sim-
plify the argument, we choose the shortcut distance, so that the following holds. We refer to
[Yan22, §2.4] for the definition of the shortcut distance.

LEMMA 5.12. For every € >0 and 1 > 0, there exists 1o > 0 such that for every v € I, the
diameter of the complement of y~1Q,, ., () is smaller than e.

Proof. This is exactly the content of the remark inside the proof of [Yan22, Lemma 4.1]. O

Actually, the choice of the distance is not relevant and with a bit of work, one could have
proved the same result for a visual distance on the Bowditch boundary, adapting the arguments of
[MYJ20, Proposition 2.10]. We only chose the shortcut distance to avoid reproving this technical
claim.

We can finally prove Lemma 5.8. Everything is settled so that we can easily adapt the
arguments of [MYJ20, Theorem 4.1]. We still rewrite the proof for convenience.

Proof. Denote by dgI" the Bowditch boundary of I'. Consider a I'-invariant measurable subset
E of the Bowditch boundary, such that Ar,(FE) > 0. Assume, by contradiction, that Ag,(E) < 1.
We fix € > 0 arbitrarily small. For technical reasons, we assume that Ag, (9pl') > 2¢, that is,
e<1/2.

According to Lemma 5.11, if 79 is large enough, for Ag,-almost every £ in E¢,

Ay (B0 Q)
AR, (i iy (n)) - m—oo

whenever ~,, converges to £ along a relative geodesic ray. Take such a £ and such a sequence ~,,.
Up to taking a subsequence, we can assume that 7, ! converges to a point ¢ in the Bowditch
boundary. According to Lemma 5.10, Ag, (¢) = 0.

Then, because the Bowditch boundary is compact, there exists 6 > 0 (not depending on ()
such that the ball centered at ( of radius ¢ has measure at most e. Moreover, according to
Lemma 5.12, there exists 72 > 0 such that the diameter of the complement of v, 1, . (1)
is smaller than ¢. Fixing such an 7 > 0, for large enough n, we have that ¢ & v, Q, 1, (70),
so that the complement of 7, ', 1., (7») is contained in the ball of center ¢ and of radius d.
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In particular,
)‘Ru (0BI"\ ’77;19171,?72 (7n)) < e
As Ar,(0pT") > 2¢, we thus also have

)\Ru (7?:197]1,772 (Vn)) > €.

As F is I'-invariant, we have

)\RM(E N 7;197717772 (’Yn)) = (L%)*)\RH (EN Qmm (’Yn))
Weak relative Ancona inequalities show that if { € Q) ., (75), then

1 1 - 1
< Ke(m) <C(2) —5—~-
Clm) Hle, iR = 0 = OOV e TR
In particular, Lemma 5.9 shows that
_ 1
AR, (E 0y Qi () < C(W)WARH(E N Qs o (V)
s Inldpu
Similarly, we have
_ 1 1
)\Ru(’}lnlgﬂlﬂn(fyn)) 2 0(772) H(e ’Yn|Ru) )‘Ru(in,’%(fyn))'
This proves that
)‘Ru (BN 71;197117?72 (vn)) < C’(772) )\Ru (BN Qmmz (vn))
ARM ('77?19771,172 (7)) )‘Ru (Qm,nz (Yn))

The right-hand side of this last equation converges to zero when n tends to infinity. This
proves that Ag, (E N7, 'y, n(7n))) converges to zero when n tends to infinity, because
AR, (1 'y o (7)) > €. Finally, recall that Ag, (0T \ v,y my (70)) < €, s0 that Ag, (E) < 2e.
As ¢ is arbitrarily small, we get that Ag, (E) = 0, which is a contradiction. U

5.4 Proof of step 4
We prove here the following.

LEMMA 5.13. Let ¢j = f @r dm;. With the notation as previously, we have
)\RH(U(C]')) > 0.
This lemma is a consequence of the two following results. We use the notation o; =), V](i),

where the measures I/](-i) are given by Theorem 3.3.

LEMMA 5.14. The measure Ty« is absolutely continuous with respect to the measure «;.

Proof. Since by Lemma 4.6 the maximal pressure at the spectral radius is zero, we have

RO = Q.
Denote by [r1,...,7,] the cylinder consisting of elements of ¥4 starting with the symbols
z1i,...,Tn. Then, we have
aj([xlv s ,l‘n]) = aj([’Rul[ml,...,mn})'

Moreover, weak Ancona inequalities show that

aj(ERul[;cl,...,:pn]) < CH(e,x1|Ry)oj([xe, ..., Tn))-
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Now, T~ !z, ..., ,] is contained in the union of cylinders of the form [x1, ..., z,], where 21 € S
or r1 € H for some parabolic subgroup. According to Corollary 2.10, the sum ., H(e,o|r)
is uniformly bounded, so that

i (T aa, ... zn)) < Caj([mz,. .., o))

This is true for any cylinder [z, ..., z,]. It follows that a;(T~1E) < Ca;(F) for any measurable
set £ €X4. O

Recall that ¢ maps paths of ¥ 4 that start with v, to I' U ol Let aj(‘ N E.) be the measure
a; restricted to paths that start at v,. Then, ¢.a;(- N Ey) is a measure on OI'.

LEMMA 5.15. The measure qﬁ*aj(-ﬁE*) is absolutely continuous with respect to the
measure AR, -

Proof. The sequence of measures A N, weakly converges to Ag, in the Bowditch compactification.
Recall that according to Lemma 5.7, it also weakly converges to Ag, in I' U ar.

If f is a function defined on 8f‘, then f o ¢ is defined on X 4 and it vanishes on the complement
of E,. We see 9" as the Gromov boundary of the hyperbolic space I' and we endow dI' with a
visual distance d,,, as in [GH90]. Then, there exists € > 0 such that d, (&, &) < e=<&€)e where
(&,&")e is the Gromov product of £ and &', based at e, see [GHI0, Proposition 7.3.10]. In particular,
if f is a bounded locally Hélder continuous function on oI, then fo¢isin B, . Theorem 3.3

shows that EZTW(]” o ¢)(0) converges to Z§:1 b h;i) [(foo) dyj(.(ifn) med 25) - Algo note that

" He,|R,) = Hle,e|R,)Lh, (L. f o #)(0).

€Sy

Let §; = ¢«aj(- N Ey). As the functions hg»i) are bounded away from zero and infinity on the
support of I/J(-i), this proves that for any bounded locally hélder continuous function f on or, we
have

Bi(f) < CAg,(f). (28)

Bounded Hoélder continuous functions are not dense in bounded continuous functions for
the supremum norm, but they are dense in the space of integrable functions for the L!'-norm,
see [AB06, Corollary 3.14]. Let A C 1" be any measurable set. We want to prove that Bi(A) <
CAr,(A). Let € > 0. There exists a bounded locally Hélder continuous function f such that

1F = Lallzror 8, 405,) < €

Then, G;(A) < B;(|f]) + €. As |f] still is locally Hélder continuous, (28) shows that
Bi(A) < CAg,(If]) + e < CAg,(A) + (1 + Ce.
As € is arbitrary, this concludes the proof. O

Those two lemmas allow us to conclude the proof of Lemma 5.13 We only outline the proof

and refer to the end of the proof of [Goul4, Proposition 3.16] for the details. The probability
measure dm; = (1/p;) f; 1 hgl) dl/]@ is invariant and ergodic for the shift T' (see, for example,
[Sar99, Lemma 11]). Fix r close enough to R, so that the conclusions of Theorem 3.6
hold. Let O; be the set of points where the Birkhoff sums (1/n) 3,1, ¢r o T* converge to
¢j = [¢rdm;. By the Birkhoff ergodic theorem, m;(O;) = 1. We first deduce that a;(O; N

iA,j) > 0. Using that Tio; is absolutely continuous with respect to «;, we then deduce that
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a;j(0;) > 0. Then, using that ¢.a;(- N Ey) is absolutely continuous with respect to Ag,, we
deduce that Ag,(¢(O; N E.)) > 0. Finally, direct computation shows that ¢(O; N Ex) C U(c;j).
This proves that Ar,(U(c;)) > 0.

We now conclude the proof of Lemma 5.2.

Proof. As Ul(c;) is invariant and Ag,, is ergodic, we thus have Ag, (U(c;)) = 1. This holds for all
J, so we finally obtain that every U(c;) intersect, so that ¢; does not depend on j. O

5.5 End of the proof of Proposition 5.1
We want to prove that Pj(¢,)/P(r) tends to one when r tends to R,. According to
Proposition 4.12, the assumptions of Proposition 3.7 are satisfied, so that

P —1 = /(e“"r_‘pRu —1)dm;

+/@%9mw_1 <§:h< ~Z) i), (29)

Lemma 4.5 and (23) show that |P(r)| has order of magnitude /R, — . We actually show
that

3“”—1=i/wr—¢aJWW4*% Ry —r).
We then combine this with Lemma 5.2 to complete the proof of Proposition 5.1.

LEMMA 5.16. We have
pj—1
B 1 . . )
/(ew PR 1>pj< Z hy) — hgzq)n) dl/](-z) = o(m).
i=0
Proof. According to Theorem 3.3, the functions hg-i)
the support of I/j(»i). We can thus replace I/](-i) with m, which is itself dominated by the measure m.
Thus, we just need to show that for every i,

=gl

Let r,, be a sequence converging to I, such that

are bounded away from zero and infinity on

}e%_SDR# — 1Hh§-i) }dm — 0.
r—Ry,

1 _ i
e [l D e e o)

According to Corollary 4.13,

/|h W) [dm — 0
(1)_

so up to taking a subsequence, j ‘ converges to zero m-almost everywhere.
We now focus on 1/4/R,, — rn‘e“"rn “"R# - 1’. We show that

|e?r=?Ru — 1] dm < 1. (30)

=l

Differentiating the expression ¥~ ¥#u (z), we obtain

<$@r(x)> ¥ P ().
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Weak relative Ancona inequalities yield
H(e,z|r)/H (x1,x|r) < H(e,xz1|r) <1
H(eul"RlJ«)/H('xla:’C‘Rﬂ) ~ H(evxl‘RM) ~

e‘Pr_GDR‘L (.’L’) —

Thus, Lemma 4.8 shows that

d

(eI @) <

Integrating this inequality, we obtain

‘e‘PTﬂ”R# (x) — 1‘ S e(x)y/ Ry — .

Integrating with respect to m, we finally obtain (30). In addition,

1 3 7 "i
Ve 1[m57 = A5, | < elnf” = A5, |,
so that
1 ra—en, _ 1|0 _ j)
m‘e . H ]Tn‘

converges to zero m-almost everywhere. ' A
Finally, we deduce from Corollary 4.13 that ‘hy) — hgzzn‘ is uniformly bounded, hence

‘esorn PRy, _ 1th) h(l ’<

2T

We apply the dominated convergence theorem, so that
1 / ‘
VR, —Ty

In other words, o = 0, which concludes the proof.

LEMMA 5.17. We have
/((e“"’”_‘DRH —1) = (or — ¢R,))dm = o( R, — r).

Proof. Differentiating the integrand, we obtain
d _
<dr<’0r> (ePr—%Fu — 1),

Pr= sup |efem 1|
R<r<R,

ePrn PR, _ 1Hh§.i) - Bg’ |dm — 0.

Fix R < R, and let

For every R <r < R, according to Lemma 4.8,

d

om0~ (o = gn)] | < P

R, — r
Integrating this inequality over r varying between I and R,,, we obtain
|(e#7 % — 1) — (pr — ¢Rr,)| < ¥PrV/ Ry — R.

It is thus enough to prove that

Prd 0.
/WPR ij)R“
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Consider a sequence rj converging to Iz, such that

/gogprk dm oo

—00

According to (33), [ @R dm converges to zero, so up to taking a subsequence, ©y, converges to
zero m-almost everywhere. Hence, ¢, converges to zero m-almost everywhere. In addition,
according to (31), ®, is uniformly bounded. We apply the dominated convergence theorem, so
that

/cpgoTk dm Py 0.

m

In other words, o = 0, which concludes the proof. ]
We can now prove Proposition 5.1.

Proof. We combine Lemmas 5.16 and 5.17 and (29) to show that
ehil) —1 = /(‘Pr —¢r,) dmj +o(\/Ry—1).

According to Lemma 5.2, the integral in the right member does not depend on j. Choose j' so
that the pressure is maximal. Then, for every j,

eFilr) _ 1 = PO 1+o(m),

hence,

eli —1 = P(r) + o(P(r)) + o(v/Ry—r).

We deduce from Lemma 4.5 and from (23) that |P(r)|//R, — r is bounded away from zero and
infinity. Thus,

efi _ 1= P(r) 4+ o(P(r)).

Consequently, for every j, Pj(r) converges to zero as r tends to R, so that

Pi(r) ~eli™ — 1 r 5 R,
This also proves that
Pj(r) ~ P(r), r— Ry,

which concludes the proof. O

6. Asymptotic of the second derivative of the Green function

Our goal here is to prove the following proposition. We still assume that p is not spectrally
degenerate.

ProprosITION 6.1. When r — R,,, we have
12(r) = 1) + 01,

for some & > 0.
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We introduce some notation. We define for » < R, the function

>y Gle,Y[rG(H vl |

(1) = &lenlr)

By definition,

=3 %" H(elr)®(v) = Heselr) Y L2 (1e. B, 0 6)(0).

n>0 ’yES” n>0
According to Theorem 3.3, for any f: T UL — R such that fo¢: %4 — Ris in H, 3,

k
S Lr1g.fod)(0) = Z]ﬁ O(1),r — Ry.

n>0

In addition, according to (24),

IW() ~ §(r) r— Ry.

P(r)’
Finally, Proposition 5.1, shows that |P;(,)|/P(r) converges to one. Hence,
S Li(pfod)®) ~ T (r)es, T Ry, (34)
n>0

where c; only depends on f. In other words (1/1(V)(r)) Yoz L7 (e, fo¢)(0) converges.
However, ®, o ¢ ¢ H, 3. The goal of the next subsection is to transform @, in order to apply (34).

6.1 A partition of unity
We start with a rough study of ®,.. Let v € I and let [e,y] = (e, 71, . . s Vd(e)—17 v) be a relative

geodesic from e to . For every k < d(e,'y), denote by I'y the set of 4/ € I' whose projection
on [e,] is at 7. If there are more than one such projections, we choose the closest to 7. Also
denote by 4% the projection of 4/ on the union H; of parabolic subgroups containing 'yk__ll'y;f.
Lemma 2.5 shows that any relative geodesic from e to +' passes within a bounded distance of
vk—1- In addition, [Sis13, Lemma 1.13 (1)] shows that the exit point from Hj, of any such relative
geodesic is within a bounded distance of 7. Thus, any relative geodesic from e to 4’ passes first
within a bounded distance of 74_1 and then within a bounded distance of 4. In addition, any
relative geodesic from 4 to v passes within a bounded distance of 4y, then of ;. Weak relative
Ancona inequalities imply that for every 7/ € 'y,

G(e,y'I")G(H,9lr)

G(e,vIr)
_ Gle,-117)G (-1, 37 G Gk, V' I7) G s W) G (T, Vi) G (e, YI7)
A G (e, Vo-1|r)G (Yi—1, 7 |7) G (3, 77 '

We thus obtain that
Gle, NGO Alr)
G(e,v|r) G(Yie—1,7k|T)

We then sum over all 4" € T'y. Let H., be the union of all parabolic subgroups in €y containing
7;:1%- Then ’y,;ll:yk € H,,. We can decompose the sum over 7' € I';, according to the projection

G - 7~ r)G(Y ? r o Y
(V=1 Yk ) G (T V| )G(%,V'V)G(V/’%'r)'

on 3y € Ho, . Bounding 3" G (3%, |r)G(Y, 3x|r) by I (r), where 4 is fixed and the sum is over
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all 4/ projecting on 7, we finally obtain

G(e,'|r)G(Y,7|r) G(Vk—1, Y|m)G (K, Vi )
2 T Gl Sh0 X TR

We then construct a function Y, as follows. For every v € I', we choose a relative geodesic
from e to 7, using the automaton G. Let v be the first point after e on this relative geodesic.
Note that ~; coincides with the first increment o on this relative geodesic. In general, we denote
by o, = 'yl;llfyk the kth increment. In addition, let H,, be the union of all parabolic subgroups
in o containing 1. We set

'7/61—‘16 :Yk: EH’Yk

T, (y) = Z G(e,a\r)G(o,aﬂr).

verty, G(e,o1|r)

This function T, only depends on the first element of the relative geodesic le,7]. In other
words, the function Y, o ¢(x) only depends on the first symbol of & € ¥ 4. The estimate above
yields

i(e)—1
®,.(y) < L(r Z T, o T*([e,~]), (35)

where T is the left shift on relative geodesic, that is, T'([e,]) = (e, 2, - ..,7; ). Note that
T, is not bounded. Indeed, assuming that oy is only in one parabolic subgroup H; to simplify,
then T, (7) is essentially given by

G (e, o)
oz Gleln)”
This quantity is not bounded.

However, to prove Proposition 6.1, we need to estimate £,(Y, o ¢)(x). Recall that X! is the
set of symbols o that can precede = in ¥ 4. Seeing x and o as elements of T,

Lo(Ty 0 6)(x Z He ,ox|r) Z G(6,0/|T)G(UI,0"7")‘

o (e, x|r) o=l G(e,o|r)

Therefore, weak relative Ancona inequalities show that

L (T, o0¢)(x) S Z Z )G (o', o|r)G(o,e|r).

Jj o0'€H;

We rewrite this as

L0 6)(@) £ D17 (r)

As p is not spectrally degenerate, we obtain

Ly (Yro9)(z) S 1. (36)

We only gave a rough estimate. To obtain a precise asymptotic, we replace the decomposition
of I into subsets 'y, as previously by a continuous decomposition, using a partition of unity. We
construct such a partition of unity adapting the arguments of [GL13, Lemma 8.5].
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We first introduce the following terminology. Consider a relative geodesic « that we write
a=(_my. .., 1,00,01,...,05). Let l(a) =d(a_m,,ay) be the relative length of « (here
n+m) and let [(«) be its total length, defined by

n
o) = Z d(ag—1, o).
k=—m+1
Note that if «, o’ are two relative geodesic with the same endpoints, we do not have l(«) = I()
in general. However, the distance formula given by [Sis13, Theorem 3.1] shows that

1
)\—d(oz_m, an) —c1 < (o) < \d(a—m, an) + 1
1

and so
1
—I
A2
Our goal is to construct a partition of unity k. associated to such a relative geodesic a.
Write o = (a—p, ..., a_1,qp,Q1,...,0y) and suppose that ag = e. To simplify, let a_ and a4
be the endpoints of a, that is, a— = a_, and ay = «,. Denote by a; the sub-relative geodesic
of @ from a_ to e and by a, the sub-relative geodesic from «; to .

Consider two constants K; and K, that we choose later. Assume that [(cy) > 2K; and
l(a) > 2K;. Denote by A(K) the set of v € I" such that:

(@) —co <U() < Mal(a) + co.

(i) there either exists a relative geodesic from v to a; whose distance from «; is at least
Ki; or
(ii) there exists a relative geodesic from a_ to v whose distance from e is at least K.

Also denote by B(K3) the set of v € I" such that:

(i) any relative geodesic from v to a4 passes within Ky of ag;
(ii) and any relative geodesic from a_ to 7 passes within K3 of e.
In other words, A(K7) = B(K7)¢. Note that B(K3) is not empty and that A(K7) is not empty,
for (o) > 2K and l(a,) > 2K].
The following is a simple consequence of the fact that triangles are thin along transition

points [DG20, Lemme 2.4] and that transition points are within a bounded distance of points on
a relative geodesic [HrulO, Proposition 8.13].

LEMMA 6.2. For fixed Ky, if K; is large enough, then the closures of A(K;) and B(K2) in the
Bowditch compactification T'g are disjoint.

As T'g is compact, there exists a continuous function f, on I'g taking values in [0, 1], that
vanishes on A(K) and which is equal to one on B(K3).

We now finish the construction of the partition of unity associated with a. Let ny = nq(«)
be the largest integer such that translating n; times the relative geodesic «, on the right, the
length on the left is still at least K;. Formally,

ni(a) = sup{k > 0,1((T""*a);) > K1} (37)

Similarly, let no = na(a) be the largest integer such that translating ny times a on the left, the
length on the right is at least K;. That is,

na(a) = sup{k > 0,1((T*a),) > K1}. (38)
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Let A’(K;) be the set of v such that for every k € [—ni,ny — 1J:

(i) there either exists a relative geodesic from v to a; whose distance from a1 is at
least K7; or
(ii) there exists a relative geodesic from a_ to v whose distance from «y is at least Kj.

Let B'(K3) be the set of v such that there exists k € [—n1,ng — 1] such that:

i) any relative geodesic from v to o passes within Ky of a1;
+ +
(ii) and any relative geodesic from a_ to v passes within K5 of ay.

Again, if K7 is large enough, the closures of A’(K;) and B’(K3) in the Bowditch compactification
are disjoint.

For technical reasons, we further need to truncate relative geodesics. Letting § be any rel-
ative geodesic with By = e, denote by B(2x,) the shortest sub-relative geodesic of 5 such that
((Bek,))) > 2K1 and I((B2k,))r) = 2K1. In other words, we truncate 3 on the left (respec-
tively, on the right) as soon as the length on the left (respectively, on the right) is at least 2K.
Note that if K is large enough, whenever v € B'(K3), we have

n2
S= Y frayee, @) 2 1. (39)
k=—n1

Thus, there exists a function g, which is continuous on the Bowditch compactification, which
is equal to one on A’(K7), which is equal to the sum X above on B’(K3) and whose values are
between one and Y. We set
_ fa(2K1)

Jo

Denote by o/, the right endpoint of a(af,) and by o’ the left endpoint of a(af,). According
to Lemma 2.5, the fact that a relative geodesic from v to o/, passes within Ky of aq and a
relative geodesic from o’ to v passes within K5 of ayp means that v projects on v approximately
between o = e and «;. More precisely, the projections on o) which are the closest to o)
and to o/ are within a bounded distance of a; and e, respectively. We deduce that the sum
Y is bounded by some constant that only depends on K5 and K;7. Roughly speaking, k. is a
continuous function whose successive images by the shift mimics the decomposition of I' into the

Ko

subsets I'.
~
e
aq
. |
Qe
Let a = (a—g,...,a0,01,...,0q7) be a relative geodesic, with ag = e. Whenever [(a;) < 2K,
or l(ay) < 2K7, we set W,.(a) = 0. Otherwise, we set
1 G(Oé_, FYIT)GO% Ck+|7“)
v = — . 40
(@) = Gy 255 a) (40)

This defines a function W, on the set of relative geodesics a with ag = e.
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According to the previous discussion, kq(7) # 0 can only happen if the projection of v
on ;) lies between e and a1, up to a bounded distance. Choosing K; large enough, the
same is true replacing oo,y with «. Indeed, let a— and a4 be the endpoints of o and let
o’ and o/ the endpoints of Q). If Ky is large enough, then a relative geodesic from ~
to o’ passes within a bounded distance of e if and only if a relative geodesic from v to a_
also passes within a bounded distance of e. Similarly, a relative geodesic from ~ to ay passes
within a bounded distance of <y if and only if the same is true for a relative geodesic from
v to o/ . Weak relative Ancona inequalities thus show that for any k large enough so that
\IIT(Tk[euﬁy]) 7é 07

Vo (T¥[e,y]) = Lo (TH). (41)

Hence, the function W, will replace the function Y, in (35) to obtain a more accurate
estimate.

PROPOSITION 6.3. Let v € I' and let o be the relative geodesic from e to 7 given by the
automaton G. Then,

J(G:’Y)*l
(1) =100 Y w(Tray) +0(IV()).
k=0
Proof. Consider v € I'. To simplify things, denote by « the relative geodesic from e to v. Let
my be the smallest integer such that [((T™ «a);) > K; and mgo the largest integer such that
I((T™q),) > K. By the definition of ¥,,

dA(efY)_l m2
U, (Tra) = Z T,.(T*a)
k=0 k=m1
Gy, I G, ap )
K(Tk .
I(l (r) Z Z (e G(akl,ak |r)

k=m1 '€l
Translating on the left by a,;l and replacing " with a,:l'y’ in the sum, we obtain

dA(ev'Y)fl

1 S 1) Gl INGH Al
Z \I]r(Tka) - 71 Z < Z H(Tka)(ak 17/)> : : :
k=0 I0(r) v'€lr Nk=my GleIr)
Recall that
G(e, Y Ir)G(H )
()= :
oyt G(e,7Ir)
We are thus looking for the elements 4" € T" such that
ma
> Eray(ag ) # 1. (42)

k=m1
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Suppose there exists i € [my, mg — 1] such that any relative geodesic from 7' to v passes
within K5 of a;y1 and that any relative geodesic from e to ' passes within Ko of «;. Fix
k € [m1, ms — 1] and consider the translated relative geodesic T*a. Then, any relative geodesic
from a,;ly’ to the right endpoint of T*a passes within Ky of a,%laiﬂ and any relative geodesic
from the left endpoint of 7%« to a,;lfy' passes within K» of o " ay;.

In particular, a; 'y’ € B'(K>), where B'(K3) is the set constructed as above, using the
relative geodesic T*a. Hence,

n2
grralag ') = Z f(Tj(Tka))(2K1>((Tka)j_lW,)'

Jj=-n1
Note that (T*a); = aj.j, so that
mo—k m2
-1
91k a (O‘k ) Z farria ) (25, )( k:-i-fy Z f(Tja)(le)(aj 7)-
Jj=mi—k J=m1
In particular, we see that
m2
Z kpea(og'y) = 1.
k=m1

We proved that whenever (42) holds, then for every i € [my, ma — 1], either a relative geodesic
from +' to v remains at a distance at least Ko from «;.1 or a relative geodesic from e to 7/
remains at distance at least Ko from «;. We again use Lemma 2.5. Let a1 be the projection
of +' the closest to v on «. If Ky was chosen large enough, then we necessarily have k > mo
or k <mj — 1. Also let H,, be the union of parabolic subgroups in {)y containing a,;lakﬂ
and let &y be the projection of 4" on H,, . According to [Sis13, Lemma 1.13(1)], the exit point
from H,, of any relative geodesic from e to 4 is within a bounded distance of éj. Thus, any
such relative geodesic passes first within a bounded distance of aj and then within a bounded
distance of &j. Similarly, any relative geodesic from ' to 7 passes first within a bounded dis-
tance of &j and then within a bounded distance of aj,q. Weak relative Ancona inequalities
yield

Gle,y INGO A a1y Gl Bxlr) Ol oksalr)
Gleolr) ™ Glak, arialr)

Also recall that (39) is uniformly bounded. Consequently, we have

d(ev’Y)_l
(I)r o I(l) \/j Tk' O[k?70-|r (O' ()[k+1|T)
() =100 > W@ S 10 >, > T=grmr s
k=0 0<k<mq O'EHak

+ 1) Z Z O‘ka U| G(o, Oék+1’7”)‘

G(ag, ag1|r
ma<k<d(esy) 9€Hay + ‘ )

By definition, m and cf(e, ) — mg are bounded by K; and d(ay, axy1) < Ki. In particular,

Z G(ag,o|r)G(o, ag1|r)

€M, G(o, ogy1|7)

814

https://doi.org/10.1112/50010437X22007448 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007448

LOCAL LIMIT THEOREMS IN RELATIVELY HYPERBOLIC GROUPS II

is uniformly bounded. We thus have

which concludes the proof. ]

6.2 Truncating ¥,

We say that a function f defined on relative geodesic « satisfying oy = e is locally Holder if for
every n > 1, as soon as « and o/ coincide in the relative ball (for the distance d) of center e and
radius n, |f(a) — f(a/)| < Cp™, for some C' > 0 and some 0 < p < 1.

A similar function ¥, is defined in [Goul4] for hyperbolic groups. It is proved there that for
every r, U, is continuous, locally Hélder and that W, uniformly converges to a locally Holder
function Ug,, as r tends to R,. However, in our situation, such properties do not hold, so we
cannot directly apply the strategy in [Gould]. We are going instead to truncate ¥, such that
our new function only depends on a finite number of symbols.

Precisely, fix a constant N € N and denote by o™ the relative geodesic « restricted to
[~N,N]. If d(e,a_) < N and d(e, ;) < N, then o™ = a. We set \Ing)(a) =U,(a™). Let

us fix another constant D and define W) (a) as follows. If one of the increments aj ' ay

of a satisfies d(a; ' ax) > D, for some k between —N + 1 and N, then we set \Ing’N)(oz) =0.
Otherwise, we set \PgD’N)(a) =g («). To simplify notation, we use the following conven-
tion. Whenever d(e, a_) < N, we set a_y = a_ and, similarly, whenever cZ(e,a+) < N, we set
any = ay.

Our goal is to prove estimates that will allow us to replace ¥, with \IlgD’N). We start with
the following lemma.

LEMMA 6.4. If N is large enough, depending on K and K», then for every relative geodesic a,
we have Ko = K, (N)-

Proof. First note that if N > 2Kq, ag\gl) = a(?K1) 50 that fa@Kl)(v) =0 if and only if

f o (v) = 0. In particular, rq(y) = 0 if and only if £, () = 0. Hence, we can assume that
(2K,
fa(QKl)(fy) # 0. We want to prove that if NV is large enough, then the sum ¥ defined by (39) is

the same for o and for ™). By the definition of f, the fact that Joar,) (7) # 0 implies that any
relative geodesic from v to the right endpoint of a(zx,) passes within a bounded distance of oy
and any relative geodesic from 7 to the left endpoint of a(p,) passes within a bounded distance
of e. Thus, the number of k in the sum defining ¥ such that f(Tka)(zKl)(agl'y) # 0 is finite, with
a bound depending only on K; and Ks. If N is large enough, the same holds replacing o with
a®™) and for any such k, f(Tka)(ZKl)(Oé;l’Y) = f(Tka(N))<2K1) (a,?lfy). This concludes the proof. [

Thus,

o), 41)G(y, o))

G(a(N), aiN) )

1 G
\IIT(Q(N)) = I(T(T) eria(’Y) (

In other words, when replacing ¥, (o) with ¥, (aN)), we do not have to replace o with ).
This will be very convenient in the following.
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PROPOSITION 6.5. Let € > 0. Then for N large enough and for D large enough (depending
on N), for every r < R,, and for every n,

‘Z S Helr) (W o TH(fe,]) = ¥ o T (fe, )

k= O,YGSTL

n—1
<ey D> H(e, )W, o T*([e,7).

@

Proof. We first show that we can replace W, by ¥,”"/ that is, we prove that if IV is large enough,

then

Z > H(eAr) (W 0 T([e,7]) — WY 0 T ([e,]))
k=0 yegn

n—1

Sey > Hienlr) W, o TH([e,). (43)

kJZO»Y Sn
Let n and let k < n — 1. Set a = T%([e,~]). Then, according to Lemma 6.4,

> H(eAr) (¥ 0 T([e,7]) = WY 0 TH([e,1]))

yeSn
. > Hienlr)
= e, y|r
Il ('I") - 7’)/
yeS™

(Gl G ) Glaoy .y NG ax)
x 2 “(”< oz aslr) oz anlr) >

~y'el
We rewrite

‘G(a,v’IT)G(V’,mIT) _ Gla—n,YI")G(H s anlr)
Gla—,aylr) G(a_n,an]r)

— <G(Oé, 7/|T)G(’}/a Oé+|7')> ‘1 . G(OZ,N, ’)/,”I“)G(’y/, OéN|’I“)G(O£,, O{+”I“)
Gla—, ay|r) Gla—n,an|r)Gla—,¥|r)G(Y; ay|r)

and

Gla-n, Y |r)G(, an|r)Gla-, ai|r)
Gla—n, an|r)Gla—, ¥ [r)G(; axlr)
Gla-n, 7 |r)G(a, ay|r) Gla_y, oy [r)G(Y, an|r)
Gla_n,at+|r)Gla_,y'|r) Gla_n,an|r)G(Y, axt|r)|

-

We now show that
Gla-n,7|r)Gla-, ay|r) Gla—n, ar|r)G(Y, an|r)
G(a-n,at|r)G(a—,¥'|r) Gla-n,an|r)G(Y, at|r)

is arbitrary small when N is large enough. Let

‘1 B (44)

uy(y) = Gle=n: V' INGlas, aslr)
G(a-n,at|r)Gla—,'|r)
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and
Gla_n,ar|r)G(y, an|r)
Gla_n,an|r)G(Y, ay|r)’

so that (44) can be written as [1 — un(y")vn(7')]. Assume that rq(7') # 0. Then fo,, (') #0
and so any relative geodesic from +/ to the left endpoint of a2k, passes within Kj of e. This
implies that relative geodesics from a_x to 4/ and from a_ to a, fellow-travel for a time at
least N/, where N’ tends to infinity as IV tends to infinity. Strong relative Ancona inequalities
show that

on(y) =

[1—un(y)| < CpN'.

Similarly, one can prove that
11— on(y)| < CpV

In addition, weak relative Ancona inequalities imply that vy (') is bounded. This yields

1= un(v)on(y)] < on()[1 = un ()] + 11 = on ()] < Y.

Hence,

‘ S He,ylr) (9, 0 TF([e,7]) — U o TH([e, 7]))’

vES”

/ Gla—,¥|Ir)G(; axlr)
< N }{ ’ )
=Cp ](1) Z (e vr) Z o(7) G(a—,a4lr)

765" v'er
=C'pN' > He,|r) W, o TF([e,7]).

yES™
Thus, if N is large enough, then (43) holds.

Let us compare W) o T*([e,7]) and oMo T*([e,7]) now. Let a = T¥[e,v]. Then,
g (PN o T*([e,~]) — M) o T*([e,7]) is non-zero only for elements v such that there exists j
between —N + 1 and N such that d(aj_l,oaj) > D. Denote by v =e€,71,...,7n = 7y successive
elements on [e, 7], so that a; = v, "4k Hence, P T*([e,~]) — oM o T*(le,]) is non-
zero only for elements v such that there exists j between —N + k+ 1 and N + k such that
d(vj-1,7;) = D.

Let SZp, be the set of v € S™ such that one of the increments of the relative geodesic [e, ]
between —N + k + 1 and N + k has length at least D. In addition, for a fixed j between —N +
E+1and N +k, let S’% be the subset of 52 p of elements « such that the first such increment
is at step j. Then, - -

>~ Hle ) () o TH(e,7) = WP o T¥(fe, 7))
yesn

- (1)1(T) > H(eﬁlT)Zna(ry’)G(O‘—NaV'\T)G(v’,aNyr)

I Gla_p,
1682, Lt (a-n,an|r)
N+k
_ 1 / G(OZ_N,’}/"I")G(’}//,O(N‘T)
- I(l)(T) ‘ Z Z 6 ’7| Z K"a(’)/) G(OéfNaOéN|7") .
Jj== N+’€+1yes’>:]§ ~'el
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Fix J- For v € 5™ we write v = y1072, where v1 € $971, ¢ is in a factor Hj, and 7' € Sn=i 1f
v € S> 7, then d(e, o) > D. Weak relative Ancona inequalities show that

H(e,v|r) S H(e,mlr)H (e, ofr)H (e, y2|r).

In addition, using (41), we can replace ¥, with T, in the right member of the sum above. We
obtain

S Hiey|r) (@ o TH(e,7]) — TP 0 T (e, 7))
WES"
N+k
S Y. Y HlemlnH(e olr)H(e,2lr) Y H(Tra). (45)

J=-N+k+1,e8%)

Recall that X! is the set of symbols that can precede x in ¥ 4. More generally, X is the set of
words of length m that can precede . Decompose the sum over « as follows:

>~ Hie, (@) 0 T (e, 9]) — w2 0 T¥([e, 7))
yesn
N+k

S ) > Z H(e,mi|r)H(e,olr)H (e, 72|r) T, (T*a).

Jj=— N+k+1y2€5'n J crEX,72 nexiz
d(e,oc)>D

0’72

Note that Y, (T%«) only depends on the kth increment of [e,~]. In particular, for j # k, we can
factorize the sum over 1, 0, v2 by Y, (T*a). Hence, we can bound the terms j # k by

N+k
TT(TkOZ) Z Z e ')/2|T' Z H(6,0'|’I") Z H(6771|r)'
J=—N+k+1 y,egn—j oeXl, Y1EXS,

d(e,o0)>D

Corollary 2.10 shows that

is uniformly bounded. Thus, for large enough D,

> Heolr) < N H(e,olr). (46)
oeXl, oeXl,
d(e,0)>D
Let us focus on the term j = k. We can still factorize the sum over 4; by Y, (T*a). We want to
bound the sum over o. According to the definition of T,, we thus need to bound

G(e,d'|r)G(d',o|r)
2 o) 3, ==y
oeXl, o’'€Hs ’
d(e,0)>D

Z Z (e,d'|r)G(o', olr)G (o, e|r).

UEXI o’'€Hs
d(e,o)ZD

818

https://doi.org/10.1112/50010437X22007448 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007448

LOCAL LIMIT THEOREMS IN RELATIVELY HYPERBOLIC GROUPS II

As p is not spectrally degenerate, the sum
> Y Gle.d' NG, alr)G(oelr)
oeX}, o'€Ho
is uniformly bounded. Thus, for large enough D,

Z Z (e,0|r)G(o’, o|r)G (o, e|r)

UEXl o'€Hs
d(e, a')>D

< 2N Y Y @ G(d',o|r)G (o, e|r). (47)
O’GXl o EHO’

When j is fixed, there is a unique way of decomposing v as y1072. Hence, combining (45), (46),
and (47), we obtain

Y Hienr) (B o T([e, 7)) = U2 o TH([e, 7))
yeSn
N+k c
. (N) o Tk
3 . o Z H{(e,~|r) W) o T*([e,])
=—N+k+l ES"
< ey H(enlr) ¥ o T¥([e, 7). (48)
vesn
Finally, combining (43) and (48), we obtain the desired inequality. O

Recall that we want to compare I®)(r) and IV (r). As we saw,

Dy =>">" H(e,|r)®.(v).

n>0 yegn
Proposition 6.3 thus yields

1) = 1) Y™ 3 S B 1), (T 1)) + O (1)),

n>0'y€S” k=0

We want to prove that
I®(r) = I (r)? + 01D (r)?),

so that we only have to deal with

> > ZH €. [r) L (T*[e, 7]).

n>0'y€5” k=0

In view of Proposition 6.5, we can replace ¥, with \IlﬁiD’N).

We now consider the set ¥ 47 of (finite or infinite) sequences z = (z,,) indexed by Z such
that x,, € ¥ and for every n, x, and x,4; are adjacent edges in the automaton G. The map T
still defines a shift on EA,Z-

As U(P:N) () only depends on the truncated geodesic al can be extended to a func-
tion defined on finite or infinite relative geodesics. For any x € L4 7, (-.., Ty ..., T0s ... Tn,...)
defines such a relative geodesic, so WPV 6 ¢ is a well-defined function on & A,z We will omit the
reference to ¢ and see ¥(PV) as a function on 3 4z to simplify. In addition, because TN (@)

N) p(D.N)
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only depends on the truncated relative geodesic V) and vanishes on relative geodesics o whose
increments are too long, the induced function on 3 4 7 only depends on a finite number of symbols.
For a continuous function f : ¥4 7 — R, we define

Vn(f) = sup{|f(3:) - f(y)|ax—n =Y-ns---520=Y05---5Tn = yn}
Letting 0 < p < 1, we say that f is p-locally Holder if there exists C' > 0 such that
Vn>1, V,(f) <Cp™.

As before, we do not ask anything on Vj(f) and f can be unbounded. Say that f is locally Holder
if it is p-locally Holder for some p. Define the Holder norm D, as

In addition, let H, be the set of bounded p-locally Hélder functions and define the norm
1Ml = Dp+1 - lloo

on this space. Then, (Hp, || - ||,) is a Banach space.

We want to use Proposition 6.3 and apply the transfer operator to \IlgD’N). To apply this
operator, we first need to transform \IlgD’N) into a function only depending on the future, that

is, a function on X 4. We start by proving the following.

LEMMA 6.6. Fix D and N. The functions \IlgD’N) are p-locally Hélder and uniformly bounded.

)

They uniformly converge in (H, g, || - ||,,3) to a function \Ilggt’N , as r tends to R,,.

Proof. We first show that \I/&D’N) is uniformly bounded. Recall that

1 G(a— r)G(vy, an|r
\Ing’N)(Oé) — Z’{a( ) ( N:PV‘ ) (Vs N’ )
1M (r) G(a-n,an|r)
~yel
Denote by Ty the set of v whose projection on o™¥) is on ag11, where we choose the projection
which is the closest to ap. In addition, let H; be the union of parabolic subgroups containing
a,;lakﬂ. Then, weak relative Ancona inequalities, together with Lemma 2.5 show that

Z G(a-n,7|r)G(v, an|r) SI(I)(T) Z G(ag,o|r)G(o, O‘kJrl‘r)‘

G(a—n,an|r) G (o, agy1|r)

yel'y o€EH

As K, is bounded, we thus have
\IlgD’N)(O‘) < Ca,
where C,, only depends on «. Actually, because \pﬁD’N) () is non-zero for a finite number of «
which only depends on N and D, C, also only depends on D and N. Moreover, WPV )(a) only
depends on o™ so it is p-locally Holder and ||[@(PN)|, 5 is bounded by some number only
depending on D and N.
Finally, because ¥(2-) () only depends on a finite number of symbols, pointwise convergence

is equivalent to convergence in (H, 3, || - ||5,3)- Let us fix & and prove that \Ifq(nD’N)(a) converges to
a function \Iig%DH’N)(a), as r tends to R,,. To do so, we express \If,(aD’N) as a sum using the transfer
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operator. We introduce a function v, on I' as follows. We set

G(a_n,7|r)G(y, an|r)
G(a_n,an|r)H(e,v|r)

for any relative geodesic o such that \IlﬁN’D) (o) # 0. Otherwise, we set ¥, = 0. Weak relative
Ancona inequalities imply that v — G(a_n,7|r)G(7y,an|r) can be extended to O'. As  is
defined on the whole Bowditch compactification, ¥, can also be extended to T' U T, so 1, o ¢ is
a function on ¥ 4. Note that

1
PN 0) = s s ;2 b0 6)0), (49)

We want to apply 4.13 to prove that ¥, converges, so we have to transform 1, into a locally
Holder function. First, 1, is defined using the function k, which is only continuous. We again
have to truncate 1, to conclude our proof.

Fix N’ and let vn/ be the N'th element on the relative geodesic [e, 7] whenever d(e,~) > N’
and vy’ = 7y otherwise. Set then

/ G(a—N77’T)G(77aN|T)
(N) — o (e '
v = RO G ) H e, )

The functions v, and @Z)ﬁN/) implicitly depend on o and on N and D. Actually, Lemma 6.4 shows
that they do not depend on «, but only on a®).

LEMMA 6.7. For every € > 0, for every N, and every D, there exists N such that for every
N’ > Ny, for every o, and for every r < Ry,

‘¢r - ¢7(~N/)
Proof. Let ¢ > 0. The function k,, is continuous on the Bowditch compactification. Endow this
compactification with any distance d. We can extend the definition of vn+ to any infinite relative
geodesic a declaring ay to be the N'th point on «.. Then a s uniformly converges to the conical
limit point defined by «, as N’ tends to infinity. Thus, for any § > 0, if N’ is large enough, then
d(y,vn') < 0. Note that this can be easily directly shown if one chooses the shortcut metric on
the Bowditch compactification defined in [GP13, Definition 2.6]. By compactness, k, is uniformly
continuous. Hence, for N’ large enough, ’I{a(’)/N/) - /{a(*y)| < e. Thus,

<.

/ G(a—n,v|r)G(y, an|r)
(N < Ny y AN <C
"l/}T(’Y) wT‘ (’Y)’ — GG(afN,O[N|T)H(6,’}/|T) ~ 0167
where C,, only depends on «. The integer N/, a priori depends on «, because of Cy, in the upper-

(N')

bounded above and because uniform continuity of x,, depends on .. However, ¥, and ¥, ’ are the
null function except for a finite number of relative geodesics o which only depends on N and D.
This concludes the proof. O

To show that foﬁD’N) () converges, it is enough to prove it is Cauchy, that is for every € > 0,
there exists 1o < R,, such that for any r, 7" € [ro, R,),

(WP () - 0PN ()| <e
Fix € > 0. Let N’ be given by Lemma 6.7 so that for every r < Ry,
[ = iY] <
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According to (49),

9PN () = w17 ()|

et 0 6)(0) = Y Li(1s vl 0 9)()].

n>0

< [
S 2+ ()

We thus only need to prove that

converges, as r tends R,. Note that the functions v +— G(a_n,v|r)G(v,an|r)/G(a—n,an|r)
and 7 = Kagyp) (yn) are bounded and locally Holder, so v, o ¢ lies in H, g.

To prove that the above sum, we need to prove that v, o ¢ uniformly converges to g, o ¢.
This is not obvious and so we truncate 1), as we truncated ¥,. Fix another constant D’. For
v e let [e,v] = (e,71,...,7 =) be the relative geodesic from e to v given by the automa-

ton G. If one of the increments of [e,v] is at least D', set ¢§D/’N,)(7) = 0. Otherwise, set

w,(D,’N/)(W) = praN,)(yN/). As 1, o ¢ is bounded and locally Hélder, the same proof as the proof
of Proposition 6.5 shows that for every n > 0, for large enough N’ and D',

1
o 2 L,
7 (r) nZZO

PN 0 ¢ — WD) 6 p1)(0) < . (50)

Remark 6.1. It might seem strange that we first had to truncate s, when defining @ZJT , before

truncating again to define 1/17, W, However, to apply the same strategy as in Proposmon 6.5,
we needed to know a prior: that our function was locally Holder.

Once again, to prove that

1 . ,
00 > L 1p ™) 0 6) (D)

n>0

converges, it is enough to prove that this quantity is Cauchy, as 7 tends to R,,. In view of (50),
we thus only need to prove that

Zc" NP 6 0)(0)

converges. The function wﬁNl’Dl) o ¢ is bounded and locally Holder. Moreover, whenever x,y, z

are fixed, r — G(x,y|r)G(y, z|r)/G(z, z|r)H (e,y|r) is a continuous function. It converges to

G(z,y|R.)G (y,z]R )/G(z, z|R,)H (e, y]R ), as r tends to R,. Hence, (NV'.D") o ¢ converges to
a function wR )o ¢. In addition, wT ) o ¢ only depends on a finite number of symbols,
so this convergence also holds in (H,g, | -|/,8). Now that every parameter is fixed, we set

f=1g, @/)%JX,’D,) o ¢ for convenience. We are left to proving that
1 n
00 > Lyf()

n>0

converges, as r tends to R, which is a direct consequence of (34). O
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6.3 From the double-sided to the one-sided shift
As announced, to study

n—1
Y>> HeA e N(T e, ),

n>0 yegn k=0

we express this sum with the transfer operator and then use Theorem 3.3, exactly as in the proof
of Lemma 6.6. However, we cannot apply the transfer operator to the function q/ﬁD’N), which
depends both on past and future.

We use the following trick.

LEMMA 6.8. Let f be a p-locally Holder function on ¥ 4 7. Then, there exist p'/%-locally Holder
functions g and u on iA,Z such that

f=9g4+u—uoT.

Moreover, g(x) = g(y) as soon as x,, =y, for every non-negative n, so that g induces a function
on X 4. In addition, if f is bounded, then g and w also are bounded and the maps

feHpll-Np)— g€ ppll N pe), £ Hpll o) —ue (Hyue, |- Il2)
are continuous.

This is proved in [PP90, Proposition 1.2] for finite-type shifts. However, the proof does not
use that the set of symbols is finite.

)

According to Lemma 6.6, the functions \I’an’N are bounded and locally Holder on X 4 7 and

they converge in (H, 3, || - ||,,3) to a function \IIgZ’N) . We thus obtain from Lemma 6.8 functions
\TJ,ED’N), r < R, defined on ¥ 4 and functions u,(nD’N) defined on ¥ Az such that

GON) = GON) 4 (DN) (DN o,

For any = € ¥4 of length n,

3
|
—
3
|
—

p(D:N) (Tk:x) _ @&D,N) (Tk:r:) + Uq(ﬂD,N) (z) — u&D,N) (T"z).

N
0 k=0

e
Il

The functions uan’N) are bounded by some number that only depends on D and N, so

WP (Th) = 30 PV (Ta) + Op (1),

Thus,

n—1
3 ST ST Hen ) WP (THe, 4)

nZO ’*/GSV" k=0

n—1
=30 37 ST Hie ) B2 (THe,A)) + Opn (T0(1)). (51)

n>0 4 gn k=0
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As \if&D’N) only depends on the future, we rewrite this as

S 5 5 HeAln#o0 @ )

n20~egn k=0

= H(e,elr)> L} (1& Z_: oTk>(®) (52)

n>0 k=0

6.4 Proof of Proposition 6.1: convergence of I(? (r)/I(1)(r)3

We first prove that the quantity (52) is asymptotic to §D7NI(1) (r)2, as r tends to R, where {p N

D,N) (D, N)

is some number only depending on D and N. As ol converges in (H, g, | - |/,,3) to ¥y

we deduce from Lemma 6.6, up to changing p, that o) converges in (H, g, || - ||,5,3) to \I/SRM ).

We thus only need to prove that
>y (1E* Z oTk> (0)
n>0 k=0

is asymptotic to &p v I (r)2. Recall that £, (u-v o T) = vL,(u), so that

n—1

Soop(1e Y #pY o1t - SN @O k)
n>0 k=0 n>0 k=1
— Z£k< (D,N) ZﬁnlE*> (53)
k>1 n>0

From Corollary 4.13, we deduce that for any r close enough to R, and for any = € Y4,

k pj )
S LM ( Z Z At / L, diV " 0P 4 o(1). (54)
J=1 i=1

n>0 ]

Let
Qi jr 2/1E*d~((Z ) med pi),

so that «; j, converges to a; ;, as r tends to R,,. We now estimate

k pj
. 1 o
Ser(eeny Loy i'rh('z)) 0
T( R# ]:1 _P](T) P o 5J 7,7 ( )

k>1

According to (19), E;ZZ(Q)) converges to hgi)(Q)), as r tends to R, so we can start the above sum
at k= 0. Fix j and let 1 <17 < p;. We use again Corollary 4.13 to obtain

S LE @R o)

k>0

1 - i = (D,N)7 (i) ;~((&'—n) mod p;)
=3 o M@ [ UV a0 o) (55)
j/ J ’i/:l
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We show that for every j’, 4/,

~((4'=n) mod p;)
!

converges, as r tends to R,,. Write

7(i') ;~((i'—n) mod p;) = (D,N) 7 (i i ((i—n) mod p,/)
R T

—n) mod p. i’ —m) mod p./
Corollary 4.13 shows that I/(,(Z ) mod pyr) weakly converges to Z/J(,(Z ) mod pyr) , so that the second

integral in the right-hand term converges. We show that the first converges to zero. Let mj ;.

be the measure defined by dmj . = (1/p;) Zf/:l hg.f?rduj(., 7), According to [Sar99, Proposition 4],
(i)

mjs  is Gibbs and according to [Sar99, Proposition 2], the functions A /'y ATe bounded away from

zero and infinity on the support of V;f)r, so that
Vj(fz([xl co.xy)) < CH(e,z1...xn|r) < CH(e,x1 ... 20| Ry).
)

Using (10), we see that the measure Vi 18 dominated by the measure m on cylinders. As

= (D,N) /5 (¥
Vi ()
(D,N ) (4)
| | -n
Finally, because ¥ R,

. i hgi)) is locally Holder, we have
=~ (D,N) 7 (i i ((#’—n) mod p./
’/\pgh (RS — ) aiy,' /'
/(I}(DvN)(iL(Z) h(l)) dv (( ) mod pyr) / |h (Z)| dm.
Ry J’ J’s Jir j '
According to Corollary 4.13, this last quantity converges to zero.

j dm.
Now, (19) shows that h( )(Q)) converges and so we deduce from (55) that

3 (D:N)

is bounded, we have

i7j
Zﬁk DN)h )(@) _ Z 3,D,Nr
P 1By (r)
where { 7D N CONVErges, as r tends to I,. Also recall that we proved in Proposition 5.1 that
Pj(r) ~ P(r) for every j, so (23) yields

j=1
Finally, we get from (53) and (54) that
N

Zﬁ"(lbu Z PV oTh) = Y B 0 (),

n>0 = . 5.3" ‘P( )HP ( )’

where f DN, converges. Consequently,

n (D,N) DN
S (1E*Z\PR€N 1+) = 255 4 01 ),

n>0 k=0
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where p v, converges to some {p n. Therefore,

> L (1E* Z Yo T’“) (0)

n>0 k=0

is asymptotic to 51371\11(1)(7“)27 as 7 tends to R,.
We thus deduce from (51) and (52) that

Z Z ZH e,y W PN (T (e 4]) = ep N TN ()2 4 0p n TV (1)?).

n>0 ’\/GS" k=0

Also note that we deduce from (53) that

Zc;l(lE*nzl oTk> ZE’“( DNZ£"1E*>

n>0 k=0 k>1 n>0

and so according to (23), we have

n—l
n k (1) kg, (D,N)
> oLy <1E* Mo ) SIW(r) Y Ly,

n>0 k=0 k>1

Thus, (36) and (41) show that

—_

n—

> (1e S WP o) S 1002

n>0 =0

Ed

Hence,
Ep,n S 1
We finally conclude the proof of Proposition 6.1.
Proof. Recall that

I®(r) =3 H(eAn® () => Y &(7)

~er n>0 yegn

According to Proposition 6.3,

1) = 10 ZZZ‘I’ (T*[es7])) + OV (r)).

n>07€5’n k=0

(56)

We need to prove that I (r) /I (r)? converges, as r tends to R,. It is thus enough to show

that

QZZZ‘P

n20 e gn k=0

converges.

Fix € > 0. Choose sequences D; and NN, that tend to infinity, as [ tends to infinity. As we want
to apply Proposition 6.5, the sequence D; will actually depend on the sequence N;. According
o (57), we can assume, up to taking a sub-sequence, that {p, n, converges to some constant &.
We show that the above sum also converges to £. According to Proposition 6.5, we can choose
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N; and Dj so that for any [ large enough

n—1
ZZZW ) =D D S wPNO (T e, )

n>0 GS" k=0 n>0 'YESA'" k=0

SWQZZZW

n>0 yegn k=0

Fix a large enough [ so that this inequality is satisfied and so that |{p, n, — &| < e. Now that [ is
fixed, we set D = D; and N = N;. We thus have

WQZZZW ¢

TL>0,Y€STL k=0

Slid QZZZ\I’ )(T*le, 7)) — €.

n20 yegn k=0

Hence, (56) shows that whenever r is close enough to Ry,

1 € 1

Similarly

ﬂlQZEZZWT%V

n20 yegn k=0

<o szzwm (T*e,)

n>0 ,yegn k=0

and so whenever r is close enough to Ru»

S Y w1 ) -

n>0 ﬁ/esn k=0

As € is arbitrary, this shows that
QZZZ% N =7 ¢
n>0 ,YGSn k=0

Finally, we already know that I (r) /I (r)3 is bounded away from zero, independently of r, so
that & # 0. This concludes the proof. ([l

Theorem 4.1 is a direct consequence of Proposition 6.1.

7. From the Green asymptotics to the local limit theorem
We can finally prove Theorem 1.1. We first deduce from Theorem 4.1 the following.

COROLLARY 7.1. Let I' be a non-elementary relatively hyperbolic group. Let p be a finitely
supported, admissible, and symmetric probability measure on I'. Assume that the corresponding

827

https://doi.org/10.1112/50010437X22007448 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007448

M. DUSSAULE

random walk is non-spectrally degenerate along parabolic subgroups. Then, for every ~yi,7s,
there exists C., », > 0 such that

d 1

—(G ~ o Oy yyg————.

d’l”( ('71a72|r)) r—R, Y1572 R# —
Proof. For 71 = 72 = e, this is a direct consequence of Theorem 4.1, combined with [Dus22,
Lemma 3.2] which relates the derivatives of the Green function with the sums I*)(r). Note that
by equivariance, we only need to prove the result with 9 = e. According to Lemma 2.7, an
asymptotic of d/dr(G(v,e|r)) is given by an asymptotic of

> Gy A INGH selr).
v el
Consider v € I' and set
G(7,7Ir)
n o 5
P00 = Gl

Let fr = fr o ¢. Then,
Y Gy NG selr) = Hie,elr) Y L7 fr(0).

v el n>0

As ~ is fixed, f, is uniformly bounded. Strong relative Ancona inequalities also imply that f, can
be extended to a function on 3 4 which lie in H o3 If f were uniformly converging to a function
f, as r tends to R,,, then we could directly conclude the proof, using (23). However, exactly like
for U,., this uniform convergence does not necessarily hold and we have to truncate f,. We can
apply the same strategy as for the proof of Proposition 6.1 to conclude. O

Theorem 1.1 follows directly from Corollary 7.1 and [GL13, Theorem 9.1]. Corollary 1.2 thus
follows from [Goul4, Proposition 4.1]. Beware that the symmetry assumption on the measure
i is needed here, see the remarks in [Goul4, Section 4].
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