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A Note on Covering by Convex Bodies

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Gábor Fejes Tóth

Abstract. A classical theorem of Rogers states that for any convex body K in n-dimensional Euclidean

space there exists a covering of the space by translates of K with density not exceeding n log n +

n log log n + 5n. Rogers’ theorem does not say anything about the structure of such a covering. We

show that for sufficiently large values of n the same bound can be attained by a covering which is the

union of O(log n) translates of a lattice arrangement of K .

A classical theorem of Rogers [3] states that for any convex body K in n-dimen-

sional Euclidean space En there exists a covering of the space by translates of K with

density not exceeding

n log n + n log log n + 5n.

Erdős and Rogers [1] showed that such a covering exists with the additional property

that no point is covered by more than e(n log n + n log log n + 5n) bodies. Recently,

Füredi and Kang [2] used the Local Lemma of Lovász to prove a result only slightly

weaker than that of Erdős and Rogers. They showed that for sufficiently large values

of n there is a covering of En by translates of any convex body such that each point is

covered at most 10n log n times.

Neither of these results yields information about the structure of such a covering.

Rogers [5] proved the existence of a lattice covering by translates of any convex body

in En with density not exceeding nlog2 log n+O(1) as n → ∞. Here we show that with a

slight modification of Rogers’ proof of this latter result we can get yet another proof

of the bound O(n log n) for the non-lattice case. Moreover, we show that this bound

can be reached by a covering which is the union of O(log n) translates of a lattice

arrangement.

Theorem For any convex body K in n-dimensional Euclidean space there exists a lat-

tice arrangement of K such that O(log n) translates of this arrangement form a covering

of the space with density not exceeding n log n + n log log n + n + o(n).

The proof is based on three lemmas. The first two are modifications of Lemmas 3

and 4 from Rogers paper [5], and the third one is a direct consequence of a result of

W. Schmidt.
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Lemma 1 Let K be a convex body and let Λ be a lattice in n-dimensional space En.

Further let b1, . . . , bm ∈ En be such that the set

S =

m
⋃

i=1

⋃

g∈Λ

K + g + bi

has density 1 − σ. Then there is a point a ∈ En such that the set S ∪ (S + a) has density

at least 1 − σ2.

Proof Let D be a fundamental domain of Λ and let χ(x) be the characteristic func-

tion of S, that is,

χ(x) =

{

1 if x ∈ S,

0 if x /∈ S.

Then χ(x) = χ(x − g) if g ∈ Λ and

1

V (D)

∫

D+v

(1 − χ(x)) dx = σ for every v ∈ En.

Further,

1

V (D)

∫

D

{

1

V (D)

∫

D

(1 − χ(x))(1 − χ(x + y)) dx

}

dy

=
1

V 2(D)

∫

D

(1 − χ(x))

{
∫

D

(1 − χ(x + y)) dy

}

dx

=
1

V 2(D)

∫

D

(1 − χ(x))

{
∫

D−x

(1 − χ(z)) dz

}

dx = σ2.

Thus, the mean value of

1

V (D)

∫

D

(1 − χ(x))(1 − χ(x + y)) dx

over D equals σ2. Therefore we can choose a point y = −a such that

1

V (D)

∫

D

(1 − χ(x))(1 − χ(x − a)) dx ≤ σ2.

The proof of the lemma is now complete by observing that the integrand is nothing

else but the characteristic function of the complement of the set S ∪ (S + a).

Lemma 2 Let K be an n-dimensional convex body and let Λ be a lattice such that the

set R =
⋃

g∈Λ
K + g has density 1 − σ. If for some natural number h and for some

vectors b1, . . . , bm the density of

S =

m
⋃

i=1

⋃

g∈Λ

K + g + bi

is at least 1−h−n(1−σ), then the sets {(1 + h−1)K + g + bi}g∈Λ,1≤i≤m form a covering

of the whole space.
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Proof Let a1, . . . , an be a basis of Λ. Write T =
⋃

g∈Λ
h−1K + g and observe that

h
⋃

i=1

n
⋃

k=1

T +
i

h
ak =

1

h
R.

The density of the set on the right-hand side is the same as that of R, that is, 1−σ. On

the left-hand side we have the union of hn translates of T. It follows that the density

of T is at least h−n(1 − σ). The same lower bound holds for the density of −T + x

for each x. On the other hand, the density of S is at least 1 − h−n(1 − σ). Since the

union of −T + x and S is closed and the total density of the two sets is at least 1, they

have a point in common. Hence there are points k1 and k2 in K , points g1 and g2 in

Λ and an index i such that −h−1k1 − g1 + x = k2 + g2 + bi . Consequently

x = h−1k1 + k2 + g1 + g2 + bi.

As K is convex and Λ is a lattice, we have h−1k1 + k2 ∈ (1 + h−1)K and g1 + g2 ∈ Λ.

Since x is arbitrary, this proves the lemma.

The next lemma asserts that there is a reasonably thin lattice arrangement of copies

of an arbitrary Borel set leaving only a very small portion of the space uncovered.

Lemma 3 Let c0 = 0.278 · · · be the root of the equation 1 + x + log x = 0. If c < c0,

then to any positive number ε there is a natural number N(ε) such that for n ≥ N(ε)

to any Borel set S ⊂ En there is a lattice-arrangement of S with density cn covering the

whole space with the exception of a set whose density is at most (1 + ε)e−cn.

Proof Let S be a Borel set and let Λ be a lattice with determinant 1. Let κ(S, Λ)

be the density of the part of the space left uncovered by the sets {S + g}g∈Λ. Let

µ(Λ) denote Siegel’s measure in the space of lattices of determinant 1, normalised so

that the whole space has measure 1 [7]. The mean value M(S) =
∫

κ(S, Λ) dµ(Λ)

of κ(S, Λ) over all lattices of determinant 1 was first investigated by Rogers [4] who

observed that an upper bound on M(S) can be used to derive existence theorems for

thin coverings of the space by translates of a convex body K . Rogers’ bound on M(S)

was sharpened by Schmidt [6, Theorem 10∗, p. 212] who stated the following: to any

positive number δ there is a natural number n0 such that if n > n0 and S is a Borel

set in En, with volume V (S) = V ≤ n − 1, then M(S) = e−V (1 − R∗), where

|R∗| < V n−1n−n+1eV +n(1 + δ) + δ.

Observe that if c < c0 and V = cn, then V n−1n−n+1eV +n approaches zero as

n → ∞. Thus to any positive number ε there is a natural number N(ε) such that if

n ≥ N(ε), we have M(S) ≤ e−V (S)(1 + ε) for any Borel set S ⊂ En with V (S) = cn <
c0n.

Now let S be an arbitrary Borel set in En, n ≥ N(ε), and consider the set S ′
= λS,

where λ = ( cn
V (S)

)1/n. Then V (S ′) = cn and there is a lattice Λ ′ with determinant 1

such that κ(S, Λ) ≤ e−V (S)(1 + ε). Letting Λ = λ−1Λ ′, the arrangement {S + g}g∈Λ

has the property stated in Lemma 3.
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Proof of Theorem We set ε = e − 1 and choose n so large that it satisfies the in-

equalities

(∗) n ≥ N(e − 1), e−c0n/2+1 <
1

2
, and

(

n log ne
−c0n+1

log n
) 1/c0

<
1

2
,

where the function N(ε) and the constant c0 are those appearing in Lemma 3. Fur-

thermore, we choose c so that c0/2 ≤ c < c0 and

k = log2((log n + log log n + 1/ log n)/c)

is an integer. By Lemma 3, for any convex body K in En we can find a lattice Λ such

that the sets

{(1 + ⌊n log n⌋−1)−1K + g}g∈Λ

have density δ0 = cn, and they cover the whole space with the exception of a set

whose density is at most σ0 = e−cn+1.

Next we apply Lemma 1 successively k times to this arrangement. At each step

the density of the arrangement doubles, while the density of the part of the space

left uncovered by the new arrangement is at most the square of the corresponding

quantity for the previous arrangement. In the k-th step we obtain an arrangement

{

(1 + ⌊n log n⌋−1)−1K + g + bi

}

g∈Λ,1≤i≤m

consisting of m = 2k = c−1(log n + log log n + 1/ log n) translates of the lattice

arrangement
{

(1 + ⌊n log n⌋−1)−1K + g
}

g∈Λ

whose density is δk = mδ0 = n(log n+log log n+1/ log n) and which leaves uncovered

a set of density at most

σk = σm
0 = (e−cn+1)(log n+log log n+1/ log n)/c

=
(

n log ne
−cn+1

log n
) 1/c

(n log n)−n

In view of the assumptions imposed on n in (∗) we have

σ0 = e−cn+1 ≤ e−c0n/2+1 <
1

2

and

σk =
(

n log ne
−cn+1

log n
) 1/c

(n log n)−n <
(

n log ne
−c0 n+1

log n
) 1/c0

(n log n)−n

<
1

2
(n log n)−n

hence σk < (n log n)−n(1 − σ0) < ⌊n log n⌋−n(1 − σ0). Therefore we can apply

Lemma 2 with h = ⌊n log n⌋ showing that the sets

{K + g + bi}g∈Λ,1≤i≤m
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form a covering of the whole space. Their density is

δ = (1 + ⌊n log n⌋−1)nδk

= (1 + 1/log n + O(1/ log2 n))n(log n + log log n + 1/ log n)

= n(log n + log log n + 1 + o(1)).

This completes the proof of our Theorem. In the proof a crucial role was played

by Lemma 3 which was deduced from the deep result of W. Schmidt. We note that

Theorem 1 from [4] by Rogers gives only a slightly weaker bound on M(S) than

Schmidt’s bound; however its proof is considerably simpler. From Rogers’ bound

immediately follows [5, Lemma 2] which, used in place of our Lemma 3, still yields

the existence of a covering of density Θ(n log n).
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