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Abstract

We study the discrete-time approximation of doubly reflected backward stochastic
differential equations (BSDEs) in a multidimensional setting. As in Ma and Zhang (2005)
or Bouchard and Chassagneux (2008), we introduce the discretely reflected counterpart
of these equations. We then provide representation formulae which allow us to obtain
new regularity results. We also propose an Euler scheme type approximation and give
new convergence results for both discretely and continuously reflected BSDEs.
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1. Introduction

The main motivation of this paper is the discrete-time approximation of backward stochastic
differential equations (BSDEs) with two reflecting barriers, also known as doubly reflected
BSDEs:

Yt = g(XT )+
∫ T

t

f (Xu, Yu, Zu) du−
∫ T

t

(Zu)
� dWu +

∫ T

t

dK+
u −

∫ T

t

dK−
u , (1.1a)

l(Xt ) ≤ Yt ≤ h(Xt ) for all t ∈ [0, T ], almost surely (a.s.), (1.1b)∫ T

0
(Ys − l(Xs)) dK+

s =
∫ T

0
(Ys − h(Xs)) dK−

s = 0, (1.1c)

where f and g are Lipschitz continuous functions, h and l are smooth functions (say C2
b ), and

the process X is the solution of a forward SDE

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,

with b and σ Lipschitz continuous.
These equations can be considered as extensions of simply reflected BSDEs, which are

related to the optimal stopping problem (American option in finance) (see, e.g. [9]), and whose
numerical approximation has been widely studied (see, e.g. [2], [3], [5], and [15]).

Existence and uniqueness of solutions to (1.1a)–(1.1c) were first studied by Cvitanić and
Karatzas [7]. There have been a lot of contributions on this subject since then, consisting
essentially in weakening the assumptions for the existence of a solution of (1.1a)–(1.1c); see,
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e.g. [1] and the references therein. In economics, Cvitanić and Karatzas [7], among others,
showed that these equations are related to stochastic stopping games (Dynkin games) and Ma
and Cvitanić [14] connected them to the pricing of game options (or Israeli options), introduced
in [12].

In this Markovian setting, Cvitanić and Ma [14] showed that the solution of (1.1a)–(1.1c) is
associated to variational inequalities (or the obstacles problem) of the type

(u− l) ∧ {(u− h) ∨ −[∂tu+ b∂xu+ 1
2 tr(σσ�∂xxu)+ f (t, x, u, σ∂xu)]} = 0,

u(T , x) = g(x),
(1.2)

in the sense that (Yt , Zt ) = (u(t, Xt ), ∂xuσ(t, Xt )) for t ∈ [0, T ]. Thus, studying the dis-
crete-time approximation of (1.1a)–(1.1c) offers alternative numerical methods to estimate the
solution of (1.2).

While studying the discrete-time approximation of (1.1a)–(1.1c), it became evident that the
techniques we used can be applied to a multidimensional setting. Namely, Y takes values in
R
d and each component Y � verifies

Y �t = g�(XT )+
∫ T

t

f �(Xu, Yu, Zu) du−
∫ T

t

(Z�u)
� dWu +

∫ T

t

dK�+
u −

∫ T

t

dK�−
u ,

∫ T

0
(Y �s − l�(Xs)) dK�−

s =
∫ T

0
(Y �s − h�(Xs)) dK�−

s = 0, � ∈ {1, . . . , d},
(1.3)

and, a.s., for all t ≤ T , Yt is constrained to take values in the domain OXt where

Ox := {y ∈ R
d | for all � ∈ {1, . . . , d}, l�(x) ≤ y� ≤ h�(x)}.

When h and l are constant, the domain O is fixed. The results presented here appear then to
be a subcase of the results given in [6, Chapter 3], in which the case of a general fixed convex
domain was considered; see also Remark 2.4, below.

Following [3] and [15], we first introduce ‘discretely reflected’ versions of (1.1a)–(1.1c),
meaning that condition (1.1b) is imposed only on a deterministic set of times R = {0 =: r0 <
· · · < rκ := T }:

YR
T = ỸR

T := g(XT ) ∈ OXT ,

and, for j ≤ κ − 1 and t ∈ [rj , rj+1),

ỸR
t = YR

rj+1
+

∫ rj+1

t

f (Xs, Ỹ
R
s , Z

R
s ) ds −

∫ rj+1

t

(ZR
s )

� dWs,

YR
t = ỸR

t 1{t /∈R} +P (Xt , Ỹ
R
t ) 1{t∈R},

where P (x, y) is the projection of y ∈ R
d onto Ox .

In the framework of doubly reflected BSDEs, i.e. d = 1, this corresponds to stochastic
stopping games, where the stopping is allowed only on R \ {T }.

We now focus on the discrete-time approximation of such equations. As in [3], [5], and
[15], we introduce a partition π = {0 =: t0 < · · · < tn := T } such that R ⊂ π , and define
(Y π , Z̄π ) by the backward induction

Z̄πti = (ti+1 − ti )
−1 E[(Wti+1 −Wti )(Y

π
ti+1
)� | Fti ], (1.4a)

Ỹ πti = E[Yπti+1
| Fti ] + (ti+1 − ti )f (X

π
ti
, Ỹ πti , Z̄

π
ti
), (1.4b)

Yπti = Ỹ πti 1{ti /∈R} +P (Xπti , Ỹ
π
ti
) 1{ti∈R}, i ≤ n− 1, (1.4c)
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with terminal condition (recall that tn = T )

Ỹ πT = YπT := g(XπT ).

Here, Xπ is the Euler scheme associated to X.
As in [3], [5], and [15], we show that the error induced by this scheme,

max
i<n

sup
t∈[ti ,ti+1)

E
[|ỸR

t − Ỹ πti |2
] + E

[n−1∑
i=0

∫ ti+1

ti

|ZR
t − Z̄πti |2 dt

]
, (1.5)

is intimately related to the regularity of the process (YR, ZR), or, equivalently, (ỸR, ZR),
through the quantities

max
i<n

sup
t∈[ti ,ti+1)

E
[|ỸR

t − ỸR
ti

|2] and E

[n−1∑
i=0

∫ ti+1

ti

|ZR
t − ZR

ti
|2 dt

]
,

for which we provide new controls in terms of |π |, the modulus of π . This is based on a
generalization of the representation of ZR derived in [3].

In this paper we essentially rely on the basic concepts developed in [3], but we face two new
difficulties.

(i) Contrary to [3], where Ox is of the form {y ∈ R : y ≥ ψ(x)}, we do not have an exact
expression of the projected process P (Xt , Ỹ

R
t ) and the reflection terms are much more

intricate to handle.

(ii) In the one-dimensional case, a simple Girsanov transformation allows us to get rid of the
Malliavin derivatives of YR and ZR which enter the representation formula of ZR (see
Section 3). This is no longer possible, in general, in our multidimensional setting.

Yet, in the discretely reflected case, we are able to extend the regularity result of [3]. This
allows us to show that scheme (1.4a)–(1.4c) has a convergence rate of at least |π |1/4. Under
stronger regularity conditions on the boundaries and the coefficients of the SDE solved by X,
we obtain a convergence rate of at least |π |1/2 (see Subsection 5.3).

Using an approximation argument, we then extend these results to continuously reflected
BSDEs. The convergence is obtained under minimal Lipschitz continuity assumptions with a
control of order |π |1/12. Under stronger regularity conditions, we extend the one-dimensional
result of [15], but without their uniform ellipticity assumption. Namely, we provide an upper
bound of order |π |1/4 for the approximation error. When the system of BSDEs is decoupled,
which is the most important case for financial applications, we improve it to |π |1/3.

We would like to conclude this introduction by observing that scheme (1.4a)–(1.4c) is obvi-
ously not directly implementable since it requires the computation of conditional expectations.
The global numerical error is then the sum of the discrete-time approximation error (1.5) and the
numerical error induced by the approximation of the conditional expectations. However, this
approximation problem is well understood and the authors of [2], [5], and [11], among others,
proposed efficient numerical methods, which can be easily adapted to our framework. This
paper being already long, we will not detail this part here and focus only on the discretization
error.
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The rest of the paper is organized as follows. In Section 2 we define BSDEs which are
discretely reflected in a convex domain Ox of the above form. In Section 3 we provide different
representations of ZR and use them to study the regularity of (YR, ỸR, ZR) in Section 4.
In Section 5 we propose an Euler scheme type approximation of discretely reflected BSDEs
and give our main convergence results. Finally, in Section 6 we provide extensions to the
continuously reflected case. Appendix A contains the proofs of a priori estimates which are
used several times in the paper.

1.1. Notation

Let M
n,m be the set of matrices with dimension n×m, we simply write M

d if m = n = d.
For z ∈ M

n,m, zij denotes the (i, j)th component of z, zi. denotes the ith row of z, z.j denotes
the j th column of z, and z� denotes its transposed matrix. The space Lp for p ≥ 1 is the set
of random variables X satisfying ‖X‖Lp := E[|X|p]1/p < ∞. The norm | · | represents the
canonic norm on R

d or on M
d and 〈·, ·〉 denotes the usual scalar product on R

d . For a function
f ∈ C1, ∇xf denotes the Jacobian matrix of f with respect to x. Finally, for ease of notation,
we will sometimes write Es[·] for E[· | Fs], s ∈ [0, T ].

2. Discretely reflected BSDE

2.1. Definition

Let T > 0 be a finite-time horizon, and let (�,F ,P) be a stochastic basis supporting a
d-dimensional Brownian motion W . We assume that the filtration F = (Ft )t≤T generated by
W satisfies the usual assumptions and that FT = F .

Let X be the solution on [0, T ] of

Xt = X0 +
∫ t

0
b(Xu) du+

∫ t

0
σ(Xu) dWu,

whereX0 ∈ R
d , and b : R

d �→ R
d and σ : R

d �→ M
d satisfy one of the following assumptions,

for some positive constant L:

(Hx1) b and σ are L-Lipschitz continuous,

(Hx2) b and σ are C1
b with L-Lipschitz continuous first derivatives bounded by L.

Remark 2.1. Observe that, as in [3] and contrary to [15], we make no uniform ellipticity
condition on σ . In particular, the standard results of the partial differential equation literature
cannot be used to derive strong regularity properties on the solution of the partial differential
equation of the form (1.2) associated to (1.3).

Under (Hx1), we clearly have X ∈ S2(Rd), where, for p ≥ 1 and E = R
d or E =

M
d , Sp(E) is the set of E-valued progressively measurable processes U such that ‖U‖Sp :=

‖ supt∈[0,T ] Ut‖Lp < ∞. In particular,

‖X‖S2 ≤ CL, (2.1)

where, from now on, CL denotes a generic constant whose value may change from line to line,
but which depends only on L, T , X0, and d (we write CpL if it also depends on some extra
parameter p ≥ 1).

We then introduce a family of closed convex domains (Ox)x∈Rd :

Ox := {y ∈ R
d | for all � ∈ {1, . . . , d}, l�(x) ≤ y� ≤ h�(x)},
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where the maps h, l : R
d → R

d satisfy one of the following regularity assumptions.

(Hb1) h and l are L-Lipschitz continuous.

(Hb2) For each � ∈ {1, . . . , d}, h� and l� verify, for some (ρ�1, ρ
�
2) : R

d → R
d × R

d , ρ�3 :
R
d → R

+,
|ρ�1(x)| + |ρ�2(x)| + |ρ�3(x)| ≤ L(1 + |x|L),

l�(x)− l�(y) ≤ ρ�1(x)
�(y − x)+ ρ�3(x)|x − y|2 for all x, y ∈ R

d ,

h�(y)− h�(x) ≤ ρ�2(x)
�(y − x)+ ρ�3(x)|x − y|2 for all x, y ∈ R

d .

This assumption is slightly weaker than the semi-convexity assumption of [2, Defini-
tion 1].

(Hb3) h and l are C2
b with L-Lipschitz continuous first and second derivatives bounded by L

and there is a ε ∈ (L−1,∞) such that h� > l� + ε for each � ∈ {1, . . . , d}.
Observe that (Hb3) implies (Hb2), which in turn implies (Hb1).

Given a set of reflection times

R := {0 =: r0 < r1 < · · · < rκ−1 < rκ := T }, κ ≥ 1,

the solution of the discretely reflected BSDE is a triplet (YR, ỸR, ZR) satisfying

YR
T = ỸR

T := g(XT ) ∈ OXT ,

and, for j ≤ κ − 1 and t ∈ [rj , rj+1),

ỸR
t = YR

rj+1
+

∫ rj+1

t

f (
R
u ) du−

∫ rj+1

t

(ZR
u )

� dWu,

YR
t = R(t, Xt , Ỹ

R
t ),

(2.2)

with 
R = (X, ỸR, ZR).
Here, g : R

d �→ R
d and f : R

d × R
d × M

d �→ R
d are L-Lipschitz continuous and

R�(t, x, y) := y� + ([l�(x)− y�]+ − [y� − h�(x)]+) 1{t∈R}

for (t, x, y) ∈ [0, T ] × R
d × R and � ∈ {1, . . . , d}.

Observe that
YR
t = ỸR

t for t /∈ R \ {T }.
Remark 2.2. Under (Hx1) and (Hb1), such a solution can be defined by backward induction.
At each step the existence and uniqueness in S2(Rd)× H2(Md) follow from, e.g. [8]. Here,
for p ≥ 1 andE = M

d orE = M
d2,d , Hp(E) is the set of progressively measurableE-valued

processes V satisfying

‖V ‖Hp :=
∥∥∥∥
(∫ T

0
|Vr |2 dr

)1/2∥∥∥∥
Lp
< ∞.

Remark 2.3. (i) The case where (YR, X) takes values in R
n × R

d with n �= d can be treated
in our framework. Indeed, if d < n, we can set Xi := 0, i.e. bi = 0, σ i. = 0, and Xi0 = 0,
for i > d . Recall that we make no ellipticity assumption. If d > n, we can set gi = f i := 0,
which implies that Y i = 0 for i > n, and work with Ox × [−ε, ε]d−n, ε > 0, x ∈ R

d .
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(ii) In view of Remark 2.1, it is clear that the results hold for nonhomogeneous SDEs: it suffices
to consider (t, X) as the forward diffusion.

In Appendix A we provide useful a priori estimates for ‘reflected’ BSDEs in a somehow
abstract setting. In our framework, they read as follows (recall that (κ + 1) is the number of
time steps in the reflection grid R).

Proposition 2.1. Under (Hx1) and (Hb1), the following holds

sup
t∈[0,T ]

E[|ỸR
t |2 + |YR

t |2] + ‖ZR‖2
H2 ≤ CLκ.

Moreover, if

(Hf ) f � depends on z.i only for i = � (i.e. ∇z·i f � 1{i �=�} = 0 if f ∈ C1)

holds, then
sup
t∈[0,T ]

E[|ỸR
t |2 + |YR

t |2] ≤ CL.

Proof. It suffices to apply PropositionA.1 inAppendixA, with ηr = |Xr | and ξr = |h(Xr)|∨
|l(Xr)|, r ∈ R, and recalling (2.1).

2.2. Dependence on the parameters

We now present some estimates on the variation in the solution of (2.2) induced by a variation
in the data. Later on, this will allow us to work with smooth parameters (f , g, etc.) before
turning to the general case by an approximation argument (see, e.g. Proposition 4.2, below).

In the rest of this section we consider two discretely reflected BSDEs constructed as follows.
For i ∈ {1, 2}, let Xi be an element of S2(Rd), let fi and gi be L-Lipschitz continuous

functions, and let the hi and li boundaries satisfy (Hb1). We denote by (YR,i , ỸR,i , ZR,i ) the
solutions of the discretely reflected BSDE associated to these two sets of data and
R,i := (Xi,

ỸR,i , ZR,i ). We then define δYR := YR,1 − YR,2, δỸR := ỸR,1 − ỸR,2, δZR := ZR,1 −
ZR,2, and δX := X1 −X2, δf := f1(


R,1)− f2(

R,1), δg := g1(X

1)− g2(X
1), δh :=

h1(X
1)− h2(X

1), and δl := l1(X
1)− l2(X

1).

Proposition 2.2. Under (Hx1) and (Hb1), the following holds:

sup
t∈[0,T ]

E[|δYR
t |2]+‖δZ‖2

H2 ≤ CL

(
κ E

[
max
r∈R

(|δXr |2+|δhr |2+|δlr |2)
]
+‖δf ‖2

H2 +‖δgT ‖2
L2

)
.

The proof of this result requires the following lemma whose proof uses a key argument
which will be very important below when studying the convergence of the Euler scheme type
approximation of (2.2).

Lemma 2.1. Let (Hx1) and (Hb1) hold. Then, for each r ∈ R \ {T } and � ∈ {1, . . . , d}, there
exists S�r and Q�

r in Fr such that S�r ∩Q�
r = ∅ and

|(YR,1
r )� − (YR,2

r )�| ≤ |(ỸR,1
r )� − (ỸR,2

r )�| 1S�r
+ (|l�1(X1

r )− l�2(X
2
r )| + |h�1(X1

r )− h�2(X
2
r )|) 1Q�r .

Proof. For ease of notation, we work with d = 1 and omit the exponent �. Appropriate Sr
and Qr are constructed by considering different disjoint cases, depending on the position of
Ỹ

R,1
r and ỸR,2

r .
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Case 1. On {l1(X1
r ) < Ỹ

R,1
r < h1(X

1
r )}, three different cases may occur depending on the

position of ỸR,2.

(i) On {l2(X2
r ) < Ỹ

R,2
r < h2(X

2
r )}, we have YR,1

r − Y
R,2
r = Ỹ

R,1
r − Ỹ

R,2
r .

(ii) On {ỸR,2
r ≤ l2(X

2
r )}, we have YR,2

r = P (X2
r , Ỹ

R,2
r ) = l2(X

2
r ). If l2(X2

r ) ≤ Ỹ
R,1
r then

0 ≤ Y
R,1
r − Y

R,2
r = Ỹ

R,1
r − l2(X

2
r ) ≤ Ỹ

R,1
r − Ỹ

R,2
r . If l2(X2

r ) > Ỹ
R,1
r then 0 ≤

l2(X
2
r )− Ỹ

R,1
r = Y

R,2
r − Y

R,1
r ≤ l2(X

2
r )− l1(X

1
r ).

(iii) On {h2(X
2
r ) ≤ Ỹ

R,2
r }, similar arguments based on the comparison between h2(X

2
r ) and

Ỹ
R,1
r lead to |YR,1

r −YR,2
r | ≤ |ỸR,1

r − ỸR,2
r | on {ỸR,1

r ≤ h2(X
2
r )} and |YR,1

r −YR,2
r | ≤

|h2(X
2
r )− h1(X

1
r )| on {h2(X

2
r ) < Ỹ

R,1
r }.

Case 2. We now study the case {ỸR,1
r ≤ l1(X

1
r )}, which implies that YR,1

r = l1(X
1
r ).

(i) On {ỸR,2
r ≤ l2(X

2
r )}, we have YR,1

r − Y
R,2
r = l1(X

1
r )− l2(X

2
r ).

(ii) On {l2(X2
r ) < Ỹ

R,2
r < h2(X

2
r )}, there are two disjoint cases. On {YR,2

r < Y
R,1
r }, 0 ≤

Y
R,1
r −YR,2

r ≤ l1(X
1
r )−l2(X2

r ). On {YR,2
r ≥ Y

R,1
r }, 0 ≤ Y

R,2
r −YR,1

r ≤ Ỹ
R,2
r −ỸR,1

r .

(iii) Finally, on {ỸR,2
r ≥ h2(X

2
r )} we also have two disjoint cases. On {h2(X

2
r ) > Y

R,1
r },

0 ≤ Y
R,2
r − Y

R,1
r ≤ Ỹ

R,2
r − Ỹ

R,1
r . On {h2(X

2
r ) ≤ Y

R,1
r }, 0 ≤ Y

R,1
r − h2(X

2
r ) ≤

h1(X
1
r )− h2(X

2
r ).

Case 3. By symmetry, the case ỸR,1
r ≥ h1(X

1
r ) is handled similarly.

Proof of Proposition 2.2. The proof of this proposition relies on the abstract results of
Proposition A.1 in Appendix A. For t ∈ [rj , rj+1), we have

δỸR
t = δYR

rj+1
+

∫ rj+1

t

f̂ (u) du−
∫ rj+1

t

(δZR
u )

� dWu,

where f̂ := δf + f2(

R,1)− f2(


R,2).
Since f2 is L-Lipschitz continuous, we have

|f̂ (u)|2 ≤ CL(|ηu|2 + |δỸR
u |2 + |δZR

u |2) with ηu := |δfu| + |δX|.

Moreover, using Lemma 2.1, we can set ξ := 2L|δX| + |δl| + |δh|, since h2 and l2 are
L-Lipschitz continuous.

The proof is then concluded by appealing to Proposition A.1 and observing that |δYR
T | ≤

L|δXT | + |δgT |, since g2 is L-Lipschitz continuous.

Remark 2.4. As mentioned in the introduction, when h and l are constant, the results of this
paper are a subcase of the results given in [6, Chapter 3], in which the case of a general fixed
convex domain O is considered. The case of a general convex domain evolving randomly in
time cannot be treated in our framework. This is due to the fact that we cannot retrieve the
results of Lemma 2.1, in general. The question of the approximation of the solution of reflected
BSDEs in this general case is left for further research.
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3. Representation results for ZR

In this section we provide different representations for ZR. The first two representations
are stated in terms of the Malliavin derivatives of (X, YR, ZR), the last representation is based
on their associated ‘first variation’ processes.

In order to ensure that (X, YR, ZR) are ‘smooth’enough, we will work under the additional
assumption that

(Hr) h, l, f , b, and σ are C1
b .

These representations will allow us to provide regularity results for (YR, ZR) under (Hr).
This assumption will then be relaxed by using an approximation argument based on Proposi-
tion 2.2.

3.1. Malliavin differentiability of (X, YR, ZR)

In the sequel we denote by D
1,2 the space of random variables F which are differentiable in

the Malliavin sense and such that

‖F‖2
L2 +

∫ T

0
‖DtF‖2

L2 dt < ∞.

Here, DtF denotes the Malliavin derivative of F at time t ≤ T ; see, e.g. [16].
We also consider the space L

1,2 of adapted processes V such that, after possibly passing to
a suitable version, Vs ∈ D

1,2 for all s ≤ T and

‖V ‖H2 +
∫ T

0
‖DtV ‖H2 dt < ∞.

In the following we will always work with a suitable version if necessary.
Under (Hr), X belongs to L

1,2; see [16]. It follows that R�(r,X, F ) ∈ D
1,2 whenever

F ∈ D
1,2 and

DtR
�(r,X, F ) = DtF

�+(Dt l�(Xr)−DtF �) 1{l�(Xr )>F�} −(DtF �−Dth�(Xr)) 1{h�(Xr )<F�} .
(3.1)

Indeed, by a direct adaptation of the proof of Proposition 1.2.3 of [16] we deduce that, for
G ∈ D

1,2, [G]+ belongs to D
1,2 and Dt [G]+ = α(DtG), where α is a random variable

bounded by 1 satisfying 1{G>0} α = 1{G>0}. Thus, Proposition 1.3.7 of [16] implies that
Dt [G]+ = DtG 1{G>0} if G ∈ D

1,2.
Combining (2.2), (3.1), and Proposition 5.3 of [8] with an induction argument, we find that

(ỸR, ZR) belongs to L
1,2 and that a version ofDt((ỸR)�, (ZR)·�) is given by the solution in

S2(Rd)× H2(Md) of

Dt(Ỹ
R
s )

� = Dt(Y
R
rj+1

)� +
∫ rj+1

s

(∇xf �(
R
u )DtXu + ∇yf �(
R

u )Dt Ỹ
R
u ) du

+
∫ rj+1

s

d∑
i=1

∇z·i f �(
R
u )Dt (Z

R
u )

·i du−
∫ rj+1

s

d∑
k=1

Dt(Z
R
u )

k� dWk
u (3.2)

for s ∈ [rj , rj+1), j < κ , with the terminal condition

Dt(Ỹ
R
T )

� = ∇g�(XT )DtXT .
We conclude this section with some a priori estimates that will be used later on. The first

one concerning DX is standard and, therefore, we omit the proof (see, e.g. [16]).
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Proposition 3.1. Let (Hr) hold. Then, for all p ≥ 2,

sup
s≤u∧t

‖DsXt −DsXu‖Lp +‖(DtX−DuX) 1[t∨u,T ] ‖Sp ≤ C
p
L|t−u|1/2, t, u ≤ T , (3.3)

and ∥∥∥ sup
s≤T

|DsX|
∥∥∥

Sp
≤ C

p
L.

We now turn to the study of (DYR,DZR). For ease of notation, we will from now on
denote by β an FT -measurable positive random variable whose value may change from line to
line, but satisfies E[βp] ≤ C

p
L for all p ≥ 1.

Proposition 3.2. Let (Hr) hold. Then, for s ≤ t ≤ T ,

|DsỸR
t |2 + |DsYR

t |2 + Et

[∫ T

t

d∑
�=1

|Ds(ZR
u )

·�|2 du

]
≤ κ Et [β].

If (Hf ) holds then, for p ≥ 2,

|DsỸR
t |p + |DsYR

t |p + Et

[ d∑
�=1

∫ τ�j

t

|Ds(ZR
u )

·�|2 du

]
≤ Et [β]

and
|DsỸR

t |p + |DsYR
t |p ≤ Et [β]

for j ≤ κ − 1, t ∈ [rj , rj+1), and s ≤ t , where

τ �j = inf{t ∈ R | t ≥ rj+1, (Ỹ
R
t )

� /∈ [l�(Xt ), h�(Xt )]} ∧ T , j ≤ κ − 1, � ≤ d.

Proof. Recall that, for F ∈ D
1,2,DF = (D1F, . . . ,DdF ), whereDi denotes the Malliavin

derivatives with respect toWi . Fix q ∈ {1, . . . , d}. By (3.2), we have, for all t ≤ s ∈ [rj , rj+1)

and j < κ ,

D
q
t Ỹ

R
s = D

q
t Y

R
rj+1

−
∫ rj+1

s

(D
q
t Z

R
u )

� dWu

+
∫ rj+1

s

(∇xf (
R
u )D

q
t Xu + ∇yf (
R

u )D
q
t Ỹ

R
u + ∇zf (
R

u )D
q
t Z

R
u ) du.

Since f is C1
b under (Hr), (A.2) in Appendix A holds with η = |Dqt X|. Clearly, (Af ) in

Appendix A holds under (Hf ).
Moreover, it follows from (3.1) that (Dqt Y

R,D
q
t Ỹ

R) satisfies (A0) in Appendix A (take
S�r = {(YR

r )
� ∈ [l�(Xr), h�(Xr)]}, ξ�r = C|Dqt Xr |, for r ∈ R and � ∈ {1, . . . , d}).

The result is then a direct application of Proposition A.1 and Corollary A.1.

Similar arguments based on Proposition A.1 also lead to the following result.

Proposition 3.3. Under (Hr), we have, for all t ≤ T and r, s ≤ t ,

|DsỸR
t −DrỸ

R
t |2 + |DsYR

t −DrY
R
t |2 + Et

[∫ T

t

d∑
�=1

|Ds(ZR
u )

·� −Dr(Z
R
u )

·�|2 du

]

≤ κ Et [β]|s − r|.
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Under (Hf ),

|DsỸR
t −DrỸ

R
t |2 + |DsYt −DrYt |2 + Et

[ d∑
�=1

∫ τ�j

t

|Ds(ZR
u )

·� −Dr(Z
R
u )

·�|2 du

]

≤ Et [β]|s − r|
for j ≤ κ − 1, t ∈ [rj , rj+1), and r, s ≤ t .

3.2. Representation in terms of Malliavin derivatives of (X, YR, ZR)

It follows from [8, Proposition 5.3] and (2.2) that (DtYR
t )t≤T is a version of ZR. Hence,

(3.2) implies that ZR admits a version satisfying

(ZR
t )

� = Et

[
DtY

R
rj+1

+
∫ rj+1

t

(
∇xf (
R

u )DtXu + ∇yf (
R
u )Dt Ỹ

R
u

+
d∑
i=1

∇z·i f (
R
u )Dt (Z

R
u )

·i
)

du

]
(3.4)

for each j ≤ κ − 1 and t ∈ [rj , rj+1).
Following the arguments of [3], we can get rid of the termDtY

R
rj+1

in the above expression.

Corollary 3.1. Let (Hr) hold. Then, for each � ∈ {1, . . . , d}, there is a version of (ZR)·� such
that, for each j ≤ κ − 1 and s ≤ t ∈ [rj , rj+1),

((ZR
t )

·�)� = Et

[
∇φ�

τ�j
(DtX)τ�j

+
∫ τ�j

t

∇xf �(
R
u )DtXu du

+
∫ τ�j

t

(
∇yf �(
R

u )Dt Ỹ
R
u +

d∑
i=1

∇z·i f �(
R
u )Dt (Z

R
u )

·i
)

du

]
, (3.5)

where, for r ∈ R,

∇φ�r := ∇g�(Xr) 1{r=T } +(∇l�(Xr) 1{l�(Xr )>(ỸR
r )

�} +∇h�(Xr) 1{h�(Xr )<(ỸR
r )

�}
)

1{r<T } .

Proof. For � ∈ {1, . . . , d} and q ≤ κ − 1, we denote by ξ�q the random index such that

rξ�q
= τ �q (recall the definition of τ �q in Proposition 3.2). On {τ �q = rq+1}, the result is obvious.

On {τ �q > rq+1}, summing up from q to ξ�q in (3.2) applied to s = rq+1 and using (3.1) leads to

Dt(Ỹ
R
s )

� = ∇φ�
τ�j
(DtX)τ�q

+
∫ τ�q

s

(∇xf �(
R
u )Dtχu + ∇yf �(
R

u )Dt Ỹ
R
u ) du

+
∫ τ�q

s

d∑
i=1

∇z·i f �(
R
u )Dt (Z

R
u )

·i du

−
∫ τ�q

s

d∑
k=1

Dt(Z
R
u )

k� dWk
u for t ≤ s ∈ [rq, rq+1). (3.6)

Since (Dt (ỸR
t )

�)t≤T is a version of ((ZR
t )

·�)t≤T , the required result is obtained by taking
the conditional expectation in the above expression.
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Under (Hf ), we can also get rid of the termDtZ
R in expressions (3.4) and (3.5) by arguing

as in [3] and [17]. Indeed, applying Itô’s lemma to YR�� with

��t := exp

{∫ t

0
∇z·�f �(
R

u )
� dWu −

∫ t

0

1

2
|∇z·�f �(
R

u )|2 du

}
, t ≤ T ,

we directly deduce, from (3.6), the following alternative representation.

Corollary 3.2. Let (Hf ) and (Hr) hold. Then, there is a version of (ZR)·� such that

((ZR
t )

·�)� = (��t )
−1 Et

[
∇φ�

τ�j
(��DtX)τ�j

+
∫ τ�j

t

(∇xf �(
R
u )(�

�DtX)u

+ ∇yf �(
R
u )(�

�Dt Ỹ
R)u) du

]

for s ≤ t ∈ [rj , rj+1), j ≤ κ − 1, and � ∈ {1, . . . , d}.
Observe that this simplification is no longer possible if f � depends of more than one column

of ZR.

Remark 3.1. For later use, observe that∥∥∥ sup
s≤t≤T

��t

∥∥∥
Lp

≤ C
p
L, (3.7)

∥∥∥ sup
u≤t∧s

|��t (��u)−1 −��s(�
�
u)

−1|
∥∥∥
Lp

≤ C
p
L|t − s|1/2, t, s ≤ T .

3.3. First variation processes associated to (X, YR, ZR)

In Subsection 3.4 below we provide a representation of ZR in terms of the first variation
process of (X, ỸR).

Under (Hr), the first variation process ∇X of X is well defined and solves, on [0, T ],

∇Xt = Id +
∫ t

0
∇xb(Xr)∇Xr dr +

∫ t

0

d∑
j=1

∇xσ .j (Xr)∇Xr dWj
r ,

where Id is the identity matrix of M
d . Its inverse, (∇X)−1, is the solution on [0, T ] of

(∇X)−1
t = Id −

∫ t

0
(∇X)−1

r

(
∇xb(Xr)−

d∑
j=1

∇xσ .j (Xr)∇σ .j (Xr)
)

dr

−
∫ t

0

d∑
j=1

(∇X)−1
r ∇xσ .j (Xr) dWj

r .

Recall the well-known relation between ∇X and DX:

DtXs = ∇Xs(∇Xt)−1σ(Xt ) 1t≤s for all t, s ≤ T . (3.8)

Remark 3.2. The following standard estimates hold:

‖∇X‖Sp + ‖(∇X)−1‖Sp ≤ C
p
L. (3.9)
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Let us now consider the processes (∇YR,∇ỸR) ∈ S2(Md) × S2(Md) and ∇ZR,i ∈
H2(Md), i ∈ {1, . . . , d}, defined as the solutions of the coupled linear discretely ‘reflected’
BSDEs:

∇YR
T = ∇ỸR

T := ∇g(XT )∇XT
and, for j ≤ κ − 1, t ∈ [rj , rj+1), and � ∈ {1, . . . , d},

(∇ỸR)�·t = (∇YR)�·rj+1
+

∫ rj+1

t

(
∇xf (
R

u )∇Xu + ∇yf (
R
u )∇ỸR

u

+
d∑
i=1

∇z·i f �(
R
u )∇ZR,i

u

)
du

−
∫ rj+1

t

d∑
k=1

(∇ZR,�
u )k. dWk

u , (3.10)

where (∇YR)�· is defined through the ‘pseudo-reflection’

(∇YR)�·t : = (∇ỸR)�·t + (
(∇l�(Xt )∇Xt − (∇ỸR)�·t ) 1{l�(Xt )≥(ỸR

t )
�}

− ((∇ỸR)�·t − ∇h�(Xt )∇Xt) 1{h�(Xt )≤(ỸR
t )

�}
)

1{t∈R} .

Observe that the system of coupled BSDEs (3.10) can be rewritten as

ŨR
t = UR

rj+1
+

∫ rj+1

t

F (∇Xu, ŨR
u , V

R
u ) du−

∫ rj+1

t

VR
u dWu, t ∈ [rj , rj+1), (3.11)

where F is a linear operator with random coefficient and values in R
d2

, (UR, ŨR, VR) takes
values in R

d2 × R
d2 × M

d2,d , and

(UR)� = [(∇YR)1., . . . , (∇YR)d.],
(ŨR)� = [(∇ỸR)1., . . . , (∇ỸR)d.],
(VR)� = [∇ZR,1, . . . ,∇ZR,d ].

Thus, existence and uniqueness in S2(Rd
2
)× S2(Rd

2
)× H2(Md2,d ) follows easily from a

simple induction argument.

Remark 3.3. Using (3.2) and (3.8), we observe that (DtYR,Dt Ỹ
R, (Dt (Z

R)·�)�∈{1,...,d}) and
(∇YR∇X−1

t σ (Xt ),∇ỸR∇X−1
t σ (Xt ), (∇ZR,�∇X−1

t σ (Xt ))�∈{1,...,d}) verify the same equa-
tion of type (3.11). By uniqueness of the solution, this implies that

Dt(Ỹ
R
s )

� = (∇ỸR)�·s ∇X−1
t σ (Xt ),

Dt (Y
R
s )

� = (∇YR)�·s ∇X−1
t σ (Xt ),

Dt (Z
R
s )

·� = ∇ZR,�
s ∇X−1

t σ (Xt ),

for � ∈ {1, . . . , d} and t ≤ s ≤ T .

Remark 3.4. By using the same arguments as in proof of Proposition 3.2 we easily deduce
that, under (Hf ) and (Hr),

|∇ỸR
t |p + |∇YR

t |p ≤ Et [βp] for t ≤ T and p ≥ 2. (3.12)

Recall that β denotes an FT -measurable positive random variable whose value may change
from line to line, but satisfies E[βp] ≤ C

p
L for all p ≥ 1.
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3.4. Representation in terms of (∇X, ∇ỸR)

Combining Corollary 3.2, (3.8), and Remark 3.3, we deduce this last representation for
(ZR)·�.

Corollary 3.3. Let (Hf ) and (Hr) hold. Then, for each � ∈ {1, . . . , d}, there is a version of
(ZR)·� such that

((ZR
t )

·�)� = (��t )
−1 Et

[
∇φ�τj (��∇X)τj +

∫ τj

t

(∇xf �(
R
u )(�

�∇X)u

+ ∇yf �(
R
u )(�

�∇ỸR)u) du

]
∇X−1

t σ (Xt )

for s ≤ t ∈ [rj , rj+1) and j ≤ κ − 1.

4. Regularity results

Based on the representations of the previous section and the stability result of Proposition 2.2,
we can now provide one of the main results of this paper which concerns the regularity of
(YR, ỸR, ZR). Namely, we study the quantities

‖ỸR − Dπ ỸR‖H2 and ‖ZR − PπZR‖H2 , (4.1)

where π = {0 =: t0 < t1 < · · · < tn := T } is a partition of the time interval [0, T ] with
modulus |π | and such that R ⊂ π , Dπ is the usual piecewise approximation operator defined
on H2(Rd) by

DπV :=
n−1∑
i=0

Vti 1[ti ,ti+1)+VT 1{T },

and Pπ is defined on H2(Md) by

PπV :=
n−1∑
i=0

V̄ πti 1[ti ,ti+1) with V̄ πti := 1

ti+1 − ti
E

[∫ ti+1

ti

Vs ds

∣∣∣∣ Fti

]
.

Remark 4.1. Here PπV is the best L2(�× [0, T ])-approximation of V by adapted processes
which are constant on each interval [ti , ti+1).

As shown in [3], [4], [5], and [15], the control of such quantities plays a central role in
the study of Euler scheme type approximations of BSDEs and it will be used in the following
sections.

4.1. Regularity of YR

Proposition 4.1. Set α(κ) = κ under (Hx1) and (Hb1), and α(κ) = 1 under (Hx1), (Hb1),
and (Hf ). Then the following holds:

sup
t∈[0,T ]

E[|ỸR
t − (Dπ ỸR)t |2] ≤ CLα(κ)|π |.

Proof. Noting that, for j < κ and t ∈ [ti , ti+1) ⊂ [rj , rj+1],

|ỸR
t − ỸR

ti
|2 ≤ 2

(∫ ti+1

ti

|f (Xu, ỸR
u , Z

R
u )|2 du+ sup

t∈[ti ,ti+1]

∣∣∣∣
∫ ti+1

t

(ZR
u )

� dWu

∣∣∣∣
2)
,
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it follows directly from Proposition 2.1, Proposition 4.2, below, and the Burkholder–Davis–
Gundy inequality that

E[|ỸR
t − ỸR

ti
|2] ≤ CLα(κ)|π |,

which concludes the proof.

The following immediate corollary provides an estimate of the first term of (4.1).

Corollary 4.1. Set α(κ) = κ under (Hx1) and (Hb1), and α(κ) = 1 under (Hx1), (Hb1), and
(Hf ). Then the following holds:

‖ỸR − Dπ ỸR‖2
H2 ≤ CLα(κ)|π |.

We now state the proposition which was used in the proof of Proposition 4.1. Observe that
it provides a ‘weak’ bound on ZR.

Proposition 4.2. Set α(κ) = κ under (Hx1) and (Hb1), and α(κ) = 1 under (Hx1), (Hb1),
and (Hf ). There is a version of ZR such that the following statements hold.

1. For s ≤ t ≤ T , we have

E

[∫ t

s

|ZR
u |2 du

]
≤ CLα(κ)|t − s|.

2. If (Hr) holds then there is a version of ZR such that

E
[

sup
t∈[0,T ]

|ZR
t |2

]
≤ CLα(κ).

Proof. (i) Assume that (Hr) holds. Since (Dt ỸR
t )t≤T is a version of (ZR

t )t≤T , the second
claim is a straightforward consequence of Proposition 3.2 and the Burkholder–Davis–Gundy
inequality. This implies the first claim under (Hr).

(ii) We now assume that only (Hx1) holds for X, i.e. b and σ are L-Lipschitz continuous,
and that (Hb1) holds for h and l. Recall that g and f are also L-Lipschitz continuous.

Let (fn)n≥0 be the sequence of smooth functions defined by

fn(x, y, z) =
∫

Rd(d+2)
φn(x − ξ, y − υ, z− ζ )f (ξ, υ, ζ ) dξ dυ dζ ,

where φn(x, y, z) = nd(d+2)φ(n(x, y, z)) and φ is a compactly supported smooth probability
density function on R

d(d+2). Since f is L-Lipschitz continuous, we have

‖f − fn‖∞ ≤ CL

n
.

Let gn, σn, and bn be defined similarly with f replaced by g, σ , and b, respectively, so that

‖g − gn‖∞ + ‖b − bn‖∞ + ‖σ − σn‖∞ ≤ CL

n
.

Let Xn be the diffusion associated to bn and σn, and let (YR,n, ZR,n) be the solution of (2.2)
associated to fn, gn, and Xn. Since, by step (i) and (Hx1),

E

[∫ t

s

|ZR,n
u |2 du

]
≤ CLα(κ)|t − s|

for all s, t ≤ T and n ≥ 0, the required result follows from step (i) and Proposition 2.2.
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4.2. Regularity of ZR

The estimate for the second term of (4.1) is a bit more involved. We will adapt the proof of
Proposition 5.2 of [3] to our framework.

We first prove a result for the general case. The difficulty, which does not appear in [3],
comes from the fact that DZR is in the expression of ZR and can be eliminated only when
(Hf ) holds. It is overcome using the a priori estimates of the previous section.

Proposition 4.3. Set α(κ) = κ under (Hx1) and (Hb1), and α(κ) = 1 under (Hx1), (Hb1),
and (Hf ). Then the following holds:

‖ZR − PπZR‖2
H2 ≤ CLα(κ)(κ|π | + |π |1/2).

Proof. (i) First observe that a similar approximation argument as the one used in step (ii)
of the proof of Proposition 4.2 allows us to reduce our study to the case where (Hr) holds. We
will therefore assume from now on that (Hr) holds.

Since, by Remark 4.1, ‖ZR − PπZR‖H2 ≤ ‖ZR − DπZR‖H2 , it suffices to show that
the last term is bounded by CLα(κ)(κ|π | + |π |1/2).

For each � ∈ {1, . . . , d} and s ≤ t ∈ [ti , ti+1) ⊂ [rj , rj+1], we define V �,js,t by

Et

[
∇φ�

τ�j
(DsX)τ�j

+
∫ τ�j

s

(
∇xf �(
R

u )DsXu + ∇yf �(
R
u )DsỸ

R
u

+
d∑
k=1

∇z·i f �(
R
u )Ds(Z

R
u )

·k
)

du

]
.

After possibly passing to a suitable version of ZR, we observe that

|(ZR
t )

·� − (ZR
ti
)·�| ≤ |V �,jt,t − V

�,j
ti ,t

| + |V �,jti ,t − V
�,j
ti ,ti

| (4.2)

(recall Corollary 3.1). Defining ij through tij = rj , j ≤ κ , we will prove the following
controls:

κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jt,t − V
�,j
tk,t

|2] dt ≤ CLα(κ)|π | (4.3)

and
κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jtk,t − V
�,j
tk,tk

|2] dt ≤ CLα(κ)(κ|π | + |π |1/2). (4.4)

(iia) We first study (4.3). We have, for t ∈ [ti , ti+1) ⊂ [rj , rj+1],

|V �,jt,t V �,jti ,t | ≤ CL Et

[ ∫ τ�j

t

|DtXu −DtiXu| + |Dt ỸR
u −Dti Ỹ

R
u |

+
d∑
k=1

|Dt(ZR
u )

·k −Dti (Z
R
u )

·k| du

+
∫ t

ti

(
|DtiXu| + |Dti ỸR

u | +
d∑
k=1

|Dti (ZR
u )

·k|
)

du

+ |∇φ�
τ�j
(DtX)τ�j

− ∇φ�
τ�j
(DtiX)τ�j

|
]
.
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Observing that, by the Cauchy–Schwarz inequality,

E

[∣∣∣∣
∫ t

ti

(
|DtiXu| + |Dti ỸR

u | +
d∑
i=1

|Dti (ZR
u )

·i |
)

du

∣∣∣∣
2]

≤ CL|π | E

[∫ t

ti

(
|DtiXu|2 + |Dti ỸR

u |2 +
d∑
k=1

|Dti (ZR
u )

·k|2
)

du

]
,

it follows from Proposition 3.2, Proposition 3.3, (3.3), and (Hr) that

E[|V �,jt,t − V
�,j
ti ,t

|2] ≤ CLα(κ)|π |. (4.5)

(iib) We now prove (4.4). Using the martingale property of (V �,jti ,t )t≤T on [ti , ti+1], we obtain

E[|V �,jti ,t − V
�,j
ti ,ti

|2] ≤ E[|V �,jti ,ti+1
|2 − |V �,jti ,ti |2]

≤ E[|V �,jti+1,ti+1
|2 − |V �,jti ,ti |2 + |V �,jti+1,ti+1

− V
�,j
ti ,ti+1

||V �,jti+1,ti+1
+ V

�,j
ti ,ti+1

|],
which, by Proposition 3.3, (Hr), the Cauchy–Schwarz inequality, and (4.5), leads to

E[|V �,jti ,t − V
�,j
ti ,ti

|2] ≤ E[|V �,jti+1,ti+1
|2 − |V �,jti ,ti |2] + CLα(κ)|π |1/2. (4.6)

To conclude the proof of (4.4), it remains to study the first term on the right-hand side of (4.6):

�� :=
κ−1∑
j=0

ij+1−1∑
k=ij

E[|V �,jtk+1,tk+1
|2 − |V �,jtk,tk |2]

=
(

E[|V �,κ−1
T ,T |2 − |V �,00,0 |2] +

κ−1∑
j=1

E[|V �,j−1
rj ,rj |2 − |V �,jrj ,rj |2]

)
,

so that, by Proposition 3.2,
E[��] ≤ CLκα(κ).

This implies (4.4), completing the proof.

As in the simply reflected case studied in [3], the estimate of Proposition 4.3 can be improved
if we impose more regularity on the forward process and the boundaries. The main new difficulty
due to our multidimensional setting is that the projection of (YR)� is not well known: it could
be equal to the upper or the lower boundary. This is overcome by appealing to the following
lemma which is proved at the end of this section.

Lemma 4.1. Recall the definitions of ∇φ� and τ �j in Proposition 3.2. Under (Hx2), (Hb3),
and (Hf ), the following holds:

| Erj [∇φ�τ�j−1
��
τ�j−1

∇Xτ�j−1
− ∇φ�

τ�j
��
τ�j

∇Xτ�j ]|
≤ Erj [β 1τ�j−1<τ

�
j=T ] + Erj [β(τ�j − τ �j−1)]1/2 for j < κ.

This allows us to prove the following proposition.
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Proposition 4.4. If (Hx2), (Hb3), and (Hf ) hold, then

‖ZR − PπZR‖2
H2 ≤ CLκ

1/2|π |.
Proof. (i) A similar approximation argument as the one used in step (ii) of the proof of

Proposition 4.2 allows us to reduce our study to the case where (Hr) and

• σ and b are C2
b (smooth version of (Hx2)),

• h and l are C3
b (smooth version of (Hb3)),

hold.
(ii) Under (Hf ), Remark 3.3 implies that

V
�,j
s,t = ηs Et [A�,js ], � ∈ {1, . . . , d}, s ≤ t ∈ [ti , ti+1) ⊂ [rj , rj+1],

where

ηs := (��s∇Xs)−1σ(Xs),

A
�,j
s := ∇φ�

τ�j
��τj∇Xτj +

∫ τ�j

s

(∇xf �(
R
u )�

�
u∇Xu + ∇yf �(
R

u )�
�
u∇ỸR

u ) du.

Recall (4.2) in the proof of Proposition 4.3. We then have to study the quantities

κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jt,t − V
�,j
tk,t

|2] dt and
κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jtk,t − V
�,j
tk,tk

|2] dt.

By (4.5) in the proof of Proposition 4.3 applied under (Hf ) (i.e. α(κ) = 1), we first obtain

κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jt,t − V
�,j
tk,t

|2] dt ≤ CL|π |.

To control the second term, we can reproduce line by line the arguments used in the proof of
Proposition 5.2 of [3] to obtain

κ−1∑
j=0

ij+1−1∑
k=ij

∫ tk+1

tk

E[|V �,jtk,t − V
�,j
tk,tk

|2] dt ≤ CL|π |(1 +�� + (�̃�)1/2), (4.7)

where

�� :=
κ−1∑
j=1

E[|V �,j−1
rj ,rj |2 − |V �,jrj ,rj |2] and �̃� :=

κ−1∑
j=1

E[|A�,j−1
rj |4 − |A�,jrj |4].

(iii) We now study �� and �̃�. Using (3.7), (3.9) and (3.12), we first obtain

|V �,j−1
rj ,rj |2 − |V �,jrj ,rj |2

≤ β(| Erj [τ �j − τ �j−1]| + | Erj [∇φ�τ�j−1
��
τ�j−1

∇Xτ�j−1
− ∇φ�

τ�j
��
τ�j

∇Xτ�j ]|),
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which, by Lemma 4.1, implies that

�� ≤ CLκ
1/2.

Similar arguments lead to
�̃� ≤ CLκ

1/2.

We conclude the proof by substituting these estimates into (4.7).

Proof of Lemma 4.1. (i) For all � ∈ {1 . . . d}, j < κ , we introduce

�φ�j : = ∇φ�
τ�j−1

��
τ�j−1

∇Xτ�j−1
− ∇φ�

τ�j
��
τ�j

∇Xτ�j ,
�h�j : = ∇h�(Xτ�j−1

)τ�j−1
��
τ�j−1

∇Xτ�j−1
− ∇h�(Xτ�j )�

�

τ�j
∇Xτ�j ,

�l�j : = ∇l�(Xτ�j−1
)τ�j−1

��
τ�j−1

∇Xτ�j−1
− ∇l�(Xτ�j )�

�

τ�j
∇Xτ�j .

Since

∇φ�
τ�j−1

��
τ�j−1

∇Xτ�j−1
− ∇φ�

τ�j
��
τ�j

∇Xτ�j = �φ�j (1{τ�j−1<τ
�
j <T } + 1{τ�j−1<τ

�
j=T }),

it follows from (3.7) and (3.9) that

| Erj [�φ�j ]| ≤ Erj [β 1{τ�j−1<τ
�
j=T }] + Erj [|�φ�j | 1{τ�j−1<τ

�
j <T }].

(ii) We now fix a coordinate � ∈ {1, . . . , d}, and set

U�j := {τ �j−1 < τ�j < T }, �Y �j = |(ỸR
τ�j−1

)� − (YR
τ�j
)�|, and �Xj = |Xτ�j−1

−Xτ�j
|.

Using the same arguments as in the proof of Proposition 4.1, we obtain

Erj [|�Y�j |2 + |�Xj |2] ≤ Erj [β(τj − τj−1)]. (4.8)

Since h� and l� are L-Lipschitz continuous and h� ≥ l� + ε, we can find η� > 0 and ε� > 0
such that, for all x1, x2 ∈ R

d ,

|x1 − x2| ≤ η� �⇒ h(x1)− l(x2) > ε�. (4.9)

Observe that by choosingL large enough we can assume that 1/ε ≤ L so that 1/η�+1/ε� ≤ CL.
We then introduce the three following disjoint sets of FT :

A�j = {|�Y�j | ≤ ε�, |�Xj | ≤ η�} ∩ U�j ,
B�j = {|�Y�j | ≤ ε�, |�Xj | > η�} ∩ U�j ,
C�j = {|�Y�j | > ε�} ∩ U�j .

Clearly, A�j ∪ B�j ∪ C�j = U�j .

(iiia) On A�j ∩ {(YR
τ�j
)� = h�(Xτ�j

)} we have (YR
τ�j
)� − l�(Xτ�j−1

) > ε�, by (4.9). But, on A�j

we also have |(YR
τ�j
)� − (ỸR

τ�j−1
)�| ≤ ε�; thus, (YR

τ�j−1
)� = h�(Xτ�j−1

). Using the same arguments

on A�j ∩ {(YR
τ�j
)� = l�(Xτ�j

)}, we obtain (YR
τ�j−1

)� = l�(Xτ�j
). Also, since

(A�j ∩ {(YR
τ�j
)� = h�(Xτ�j

)}) ∪ ((A�j ∩ {(YR
τ�j
)� = l�(Xτ�j

)}) = A�j ,
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we have

Erj [|�φ�j | 1U�j
] ≤ Erj [(|�h�j | + |�l�j |) 1A�j

] + Erj [|�φ�j |](1B�j + 1C�j
). (4.10)

Using (Hb3), we have

Erj [(|�h�j | + |�l�j |) 1A�j
] ≤ Erj [β(τj − τj−1)]1/2,

and, by Tchebytchev’s inequality and (4.8),

Erj [|�φ�j |](1B�j + 1C�j
) ≤ Erj [β(τj − τj−1)]1/2.

Using (4.10), this leads to

Erj [|�φ�j | 1U�j
] ≤ Erj [β(τj − τj−1)]1/2,

which concludes the proof.

5. A discrete-time approximation for discretely reflected BSDEs

As an application of the regularity results stated in the last section, we now study the
convergence of an Euler scheme approximation method for discretely reflected BSDEs. Using
an approximation argument, we will then propose an extension of this method to continuously
reflected BSDEs in the next section.

5.1. Discrete-time approximation of the forward process

As in the previous section, we consider a grid π = {0 =: t0 < t1 < · · · < tn := T } of the
time interval [0, T ] with modulus |π |, such that R ⊂ π .

As usual, X is approximated by its Euler scheme Xπ defined by

Xπ0 = X0,

Xπti+1
= Xπti + b(Xπti )(ti+1 − ti )+ σ(Xπti )(Wti+1 −Wti ), i ≤ n− 1,

and, for t ∈ [ti , ti+1), i ≤ n− 1,

Xπt = Xπti + b(Xπti )(t − ti )+ σ(Xπti )(Wt −Wti ).

Under (Hx1), b and σ are L-Lipschitz continuous; thus, we have (see, e.g. [13, Chapter 10])
∥∥∥ sup
t≤T

|Xt −Xπt |
∥∥∥
Lp

+ max
i<n

∥∥∥ sup
t∈[ti ,ti+1]

|Xt −Xπti |
∥∥∥
Lp

≤ C
p
L|π |1/2, p ≥ 1. (5.1)

5.2. An Euler scheme for discretely reflected BSDEs

We now introduce a discrete-time approximation scheme for the discretely reflected BSDE
of the form

Z̄πti = (ti+1 − ti )
−1 Eti [(Wti+1 −Wti )(Y

π
ti+1
)�], (5.2a)

Ỹ πti = Eti [Yπti+1
] + (ti+1 − ti )f (X

π
ti
, Ỹ πti , Z̄

π
ti
), (5.2b)

Yπti = R(ti , X
π
ti
, Ỹ πti ), i ≤ n− 1, (5.2c)
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with terminal condition
Ỹ πT = YπT := g(XπT ).

This kind of backward scheme has already been considered when no reflection occurs (see, e.g.
[5]) and in the simply reflected case (see, e.g. [3], [15], and the references therein).

Combining an induction argument with the Lipschitz continuity of g, f , and the projection
operator, we can easily check that the above processes are square integrable and that the
conditional expectations are well defined at each step of the algorithm.

For later use, we introduce the continuous-time scheme associated to (Y π , Z̄π ). By the
martingale representation theorem, there exists Zπ ∈ H2(Md) such that

Yπti+1
= Eti [Yπti+1

] +
∫ ti+1

ti

(Zπu )
� dWu, i ≤ n− 1.

We then define Ỹ π on [ti , ti+1) by

Ỹ πt = Yπti+1
+ (ti+1 − t)f (Xπti , Ỹ

π
ti
, Z̄πti )−

∫ ti+1

t

(Zπu )
� dWu,

and set
Yπt := R(t, Xπt , Ỹ

π
t ) for t ≤ T .

We remark that, by the Itô isometry,

Z̄π = PπZπ, (5.3)

where Pπ is defined in (4).

5.3. Convergence results

We first provide estimates on the difference between (YR, ZR) and (Y π , Z̄π ).

Proposition 5.1. Assume that (Hx1) and (Hb1) hold. Then

sup
t∈[0,T ]

E[|YR
t − Yπt |2] + ‖ZR − Z̄π‖2

H2

≤ CL

(
‖ỸR − Dπ ỸR‖2

H2 + ‖ZR − PπZR‖2
H2 .

+ κ E
[
max
r∈R

|Xr −Xπr |2
]

+ ‖X − DπXπ‖2
S2

)
.

Moreover, if f � depends on (y, z) only through (y�, z.�), we have

sup
t∈[0,T ]

E[|YR
t − Yπt |2] ≤ CL(‖ỸR − Dπ ỸR‖2

H2 + ‖ZR − PπZR‖2
H2 + ‖X − DπXπ‖2

S2).

Before providing the proof of this result, let us observe that combining it with Proposition 4.1,
Proposition 4.3, Proposition 4.4, and (5.1), we obtain an upper bound on the approximation
error between the Euler scheme (5.2a)–(5.2c) and the discretely reflected BSDE (2.2).

Theorem 5.1. Set (α(κ), γ (κ)) = (κ2, κ) under (Hx1) and (Hb1), (α(κ), γ (κ)) = (κ, 1)
under (Hx1), (Hb1), and (Hf ), and (α(κ), γ (κ)) = (κ, 0) under (Hx2), (Hb3), and (Hf ).
Then the following holds:

sup
t∈[0,T ]

E[|ỸR
t − (Dπ Ỹ π )t |2] + ‖ZR − Z̄π‖2

H2 ≤ CL(α(κ)|π | + γ (κ)|π |1/2).
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Moreover, if (Hx2) and (Hb3) hold, and f � depends on (y, z) only through (y�, z.�), then
we have

sup
t∈[0,T ]

E[|ỸR
t − (Dπ Ỹ π )t |2] ≤ CLκ

1/2|π |.

Remark 5.1. The estimates above are stated in a fairly general setting. They can be improved
in some particular cases.

1. IfX=Xπ onπ , i.e.X is ‘perfectly simulated’, then the term E[maxr∈R |Xr −Xπr |2] = 0
disappears in the estimate of Proposition 5.1. In particular, if (Hx2) and (Hb3) hold and
f � depends on (y, z) only through (y�, z.�), then we have

‖ZR − Z̄π‖2
H2 ≤ CLκ

1/2|π |.
2. If f does not depend on z then

sup
t∈[0,T ]

E[|ỸR
t − (Dπ Ỹ π )t |2] ≤ CL|π |.

This follows from the fact that, in this case, the term
∫ ti
ti−1
(|ZR

u − Z̄R
ti−1

|2) du in (5.5),
below, disappears.

The proof of Proposition 5.1 relies on the following remark.

Remark 5.2. Under (Hb1), for t ∈ π and each � ∈ {1, . . . , d}, there exists S�t and Q�
t in Ft

such that S�t ∩Q�
t = ∅ and

|(YR
t )

� − (Y πt )
�|2 ≤ |(ỸR

t )
� − (Ỹ πt )

�|2 1S�t +CL|Xt −Xπt |2 1Q�t .

This is shown by arguing as in the proof of Lemma 2.1.
Moreover, for t ∈ [0, T ] \ R, we have |(YR

t )
� − (Y πt )

�| = |(ỸR
t )

� − (Ỹ πt )
�| and, for t ∈

π \ R, we can set S�t = � and Q�
t = ∅.

Proof of Proposition 5.1. We adapt the proof of Theorem 3.1 of [5] to our context.
(ia) We set δY = YR − Yπ , δỸ = ỸR − Ỹ π , δZ = ZR − Z̄π , and δX = X−Xπ . Observe

that, by (5.3) and Jensen’s inequality,

E[|Z̄R
t − Z̄πt |2] ≤ (ti+1 − ti )

−1
∫ ti+1

ti

E[|ZR
u − Zπu |2] du,

where Z̄R = PπZR.
Applying Itô’s formula to |δỸ |2 on [ti , ti+1) ⊂ [rj , rj+1), using the last inequality and

standard arguments (see, e.g. step (i) of Proposition A.1 in Appendix A), we obtain, for all
s ≤ ti ,

Es

[
|δỸt |2 +

∫ ti+1

t

|δZu|2 du

]
≤ Es

[
|δYti+1 |2 + α

∫ ti+1

t

|δỸu|2 du+ CLBi+1

+ CL

α

(
|ti+1 − ti ||δỸti |2 +

∫ ti+1

ti

|δZu|2 du

)]
, (5.4)

where α > 1 is to be chosen later on and, for i ∈ {1, . . . , n},

Bi :=
∫ ti

ti−1

(|Xu −Xπti−1
|2 + |ỸR

u − ỸR
ti−1

|2 + |ZR
u − Z̄R

ti−1
|2) du. (5.5)
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By Gronwall’s lemma, we deduce that, for all t ∈ [ti , ti+1),

Es[|δỸt |2] ≤ exp{αCL|ti+1 − ti |} Es

[
|δYti+1 |2 + CLBi+1

+ CL

α

(
|ti+1 − ti ||δỸti |2 +

∫ ti+1

ti

|δZu|2 du

)]
. (5.6)

Combining the last equation with (5.4), choosing α such that CL/α ≤ 1
4 , and then working

with |π | small enough such that α|π | exp{CLα|π |} ≤ 2α|π | ≤ 1, we compute

Es

[
|δỸti |2 + 1

2

∫ ti+1

ti

|δZu|2 du

]
≤ exp{CL|ti+1 − ti |} Es[|δYti+1 |2 + CLBi+1]. (5.7)

(ib) For j ≤ κ , we define ij through tij = rj . Since |δYt | = |δỸt | for all t ∈ π \ R, we
deduce from (5.7) and an induction argument that, for i ∈ [ij , ij+1),

E[|δỸti |2] ≤ exp{CL|rj+1 − ti |} E

[
|δYrj+1 |2 + CL

ij+1∑
k=ij+1

Bk

]
. (5.8)

Summing up over i in (5.7), we also obtain

E

[∫ rj+1

rj

|δZu|2 du

]
≤ CL E

[
|δXrj+1 |2 +|δỸrj+1 |2 −|δỸrj |2 +|π |

ij+1∑
k=ij+1

|δỸtk |2 +
ij+1∑

k=ij+1

Bk

]
.

Summing up over j , this leads to

E

[∫ T

0
|δZu|2 du

]
≤ CL sup

t∈π
E

[
|δỸt |2 +

n∑
i=1

Bi

]
+ κ max

r∈R
E[|δXr |2]. (5.9)

Using Remark 5.2, (5.8), and an induction argument, we then obtain

E[|δỸrj |2 + |δYrj |2] ≤ CL E

[
|δXT |2 + κ max

r∈R
|δXr |2 +

κ−1∑
q=0

iq+1∑
k=iq+1

Bk

]
, j < κ,

which combined with (5.8) leads to

sup
i≤n

E[|δỸti |2 + |δYti |2] ≤ CL E

[
κ max
r∈R

|δXr |2 +
n∑
i=1

Bi

]
. (5.10)

The proof is then concluded by substituting (5.10) into (5.9), and then combining (5.6) with
(5.9) and (5.10).

(ii) We now turn to the case where f � depends on (y, z) only through (y�, z.�).
In this case, (5.6) and (5.7) read as follows:

Es[|(δỸt )�|2] ≤ exp{αCL|ti+1 − ti |}
× Es

[
|(δYti+1)

�|2 + CLBi

+ CL

α

(
|ti+1 − ti ||(δỸti )�|2 +

∫ ti+1

ti

|(δZu)�|2 du

)]
(5.11)
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and

Es

[
|(δỸti )�|2 + 1

2

∫ ti+1

ti

|(δZu)�|2 du

]
≤ exp{CL|ti+1 − ti |} Es[|(δYti+1)

�|2 + CLBi] (5.12)

for t ∈ [ti , ti+1), s ≤ ti , and i < n.
For each � ∈ {1, . . . , d} and i < n− 1, we then introduce the sequences of sets U� and Ũ �

defined by
U�i := � and U�i+k := U�i+k−1 ∩ S�ti+k ,
Ũ �i := ∅ and Ũ �i+k := U�i+k−1 ∩Q�

ti+k ,

for k ∈ [1, n− i − 1].
Recall the definition of S� andQ� in Remark 5.2. Since S�t ∩Q�

t = ∅ for each t ofπ , we have
U�i+k ∩ Ũ �i+k = ∅ and Ũ �i+k ∩ Ũ �i+j = ∅ for all k ∈ [1, n− i − 1] and j ∈ [k + 1, n− i − 1].
Moreover, U�i+k, Ũ �i+k ∈ Fti+k .

Using (5.12), Remark 5.2, and an induction argument, we deduce that, for k ∈ [1, n− i−1],

Eti [|(δỸti )�|2] ≤ CL Eti

[
|(δỸti+k+1)

�|2 +
k∑
j=1

(|δXti+j |2 1
Ũ �i+j

+Bi+j )
]
.

In particular, for k = n− i − 1, this leads to

Eti [|(δỸti )�|2] ≤ CL Eti

[
max
r∈R

|δXr |2 +
n∑

j=i+1

Bj

]
,

since
∑n−j−1
i=1 1

Ũ �i+j
≤ 1 and |δYT | ≤ CL|δXT |.

Combining the last inequality with (5.11) and (5.12), and using Remark 5.2 again, we obtain

sup
t∈[0,T ]

E[|(δỸt )�|2 + |(δYt )�|2] ≤ CL E

[
max
r∈R

|δXr |2 +
n∑
i=1

Bi

]
.

The proof is then concluded by summing up over �.

6. Extensions to continuously reflected BSDEs

We now apply the results of the last section to continuously reflected BSDEs.
We first obtain a regularity result for the solution of such an equation in the spirit of [15].

We then show that the Euler scheme (5.2a)–(5.2c) can be used to approximate continuously
reflected BSDEs, provided that R and π are conveniently chosen.

In this section we assume the existence and uniqueness of a strong solution to the continu-
ously reflected BSDE defined by

Y �t = g�(XT )+
∫ T

t

f �(Xu, Yu, Zu) du−
∫ T

t

Z�u dWu +
∫ T

t

dK�+
u −

∫ T

t

dK�−
u , (6.1a)

l�(Xt ) ≤ Y �t ≤ h�(Xt ) for all t ∈ [0, T ], a.s., (6.1b)∫ T

0
(Y �s − l�(Xs)) dK�+

s =
∫ T

0
(Y �s − h�(Xs)) dK�−

s = 0, (6.1c)

for each � ∈ {1, . . . , d}, whereK�+,K�− ∈ S2(R) are continuous and increasing, andK�+
0 =

K�−
0 = 0.
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Remark 6.1. 1. When d = 1, l and h are C1
b with L-Lipschitz continuous derivatives, and

h ≥ l+ε for some ε > 0, existence and uniqueness to the above equations are well known; see,
e.g. [7]. Obviously this immediately extends to the case where d > 1 whenever f � depends on
(y, z) only through (y�, z�).

2. When d ≥ 2, and h and l are constant, existence and uniqueness follow from [10].

The proposition below will allow us to extend the results of the last section to continuously
reflected BSDEs. Roughly speaking, it means that (YR, ZR) is a good approximation for
(Y, Z).

Proposition 6.1. Set q = 1
2 under (Hx1) and (Hb1), and q = 1 under (Hx1), (Hb2), and

(Hf ). Then we have

sup
t∈[0,T ]

E[|Yt − YR
t |2] + sup

t∈[0,T ]
E[|Yt − ỸR

t |2] + ‖Z − ZR‖2
H2 ≤ CL|R|q,

where |R| is the modulus of R.

Proof. First, observe that we can consider each coordinate separately. We can then essen-
tially follow the same arguments as in the proof of Proposition 1.4.1 of [6]. In particular, we
have to control both∫ rj+1

t

(l�(Xs)− (ỸR
s )

�) dK�+
s and

∫ rj+1

t

((ỸR
s )

� − h�(Xs)) dK�−
s , � ∈ {1, . . . , d}.

For all s ≤ T , we have

l�(Xs)− (ỸR
s )

� ≤ Es

[
l�(Xs)− l�(Xrj+1)+

∫ rj+1

s

|f �(Xu, ỸR
u , Z

R
u )| du

]
,

(ỸR
s )

� − h�(Xs) ≤ Es

[
h�(Xrj+1)− h�(Xs)+

∫ rj+1

s

|f �(Xu, ỸR
u , Z

R
u )| du

]
. (6.2)

Under (Hx1), (Hb2), and (Hf ), the control on h and l given by the assumption and the Lipschitz
continuity of σ , b, and f , imply that

l�(Xs)− (ỸR
s )

� ≤ CL Es

[∫ rj+1

s

(1 + |ρ�1(Xs)�b(Xu)| + |ρ�3(Xs)|(1 + |Xu|2)) du

]

+ CL Es

[∫ rj+1

s

(|Xu| + |ỸR
u | + |ZR

u |) du

]
.

It then follows, from the Cauchy–Schwarz inequality and Propositions 2.1 and 4.2, that

l�(Xs)− (ỸR
s )

� ≤ |R|β.
Similar arguments applied to (6.2) lead to

(ỸR
s )

� − h�(Xs) ≤ |R|β.
Under (Hx1) and (Hb1), we use the Lipschitz continuity of l to obtain

l�(Xs)− (ỸR
s )

� ≤ CL Es

[
L|Xs −Xrj+1 | +

∫ rj+1

s

(|Xu| + |ỸR
u | + |ZR

u |) du

]
.
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It then follows, from Proposition 2.1, Proposition 4.2, and the Cauchy–Schwarz inequality, that

l�(Xs)− (ỸR
s )

� ≤ (|R|1/2 + κ1/2|R|)β ≤ |R|1/2β.
Similarly, we have

(ỸR
s )

� − h�(Xs) ≤ |R|1/2β.
In both cases, the proof is then concluded by arguing exactly as in [3].

Combining this proposition with Proposition 4.1 and Proposition 4.3, we deduce the follow-
ing regularity property for (Y, Z).

Corollary 6.1. Set q = 1
3 under (Hx1) and (Hb1), q = 1

2 under (Hx1), (Hb1), and (Hf ), and
q = 1 under (Hx1), (Hb2), and (Hf ). Then the following holds:

sup
t∈[0,T ]

E[|Yt − (DπY )t |2] ≤ CL|π |q and ‖Z − PπZ‖2
H2 ≤ CL|π |q/2.

Moreover, if q = 1
3 under (Hx1), (Hb1), and (Hf ), and q = 2

3 under (Hx2), (Hb3), and (Hf ),
then we have

‖Z − PπZ‖2
H2 ≤ CL|π |q .

Proof. (i) We first study the regularity of Y . Since,

sup
t∈[0,T ]

E[|Yt − (DπY )t |2] ≤ CL

(
sup
t∈[0,T ]

E[|ỸR
t − (Dπ ỸR)t |2] + sup

t∈[0,T ]
E[|Yt − ỸR

t |2]
)
,

the bound on supt∈[0,T ] E[|Yt − (DπY )t |2] is obtained by applying Proposition 4.1 and Propo-
sition 6.1, with R and π chosen such that

|R| ≤ CL

κ
and |R| = O(|π |α) (6.3)

for α = 2
3 under (Hx1) and (Hb1), α = 1 under (Hx1), (Hb1), and (Hf ), and α = 1

2 under
(Hx1), (Hb2), and (Hf ).

(ii) We now turn to Z. By Jensens’s inequality we have

‖Z − PπZ‖2
H2 ≤ CL(‖ZR − PπZR‖2

H2 + ‖Z − ZR‖2
H2).

Thus, choosing R and π as in (6.3) with α = 1
3 under (Hx1) and (Hb1), α = 2

3 under (Hx1),
(Hb1), and (Hf ), α = 1

2 under (Hx1), (Hb2), and (Hf ), α = 2
3 under (Hx2), (Hb3), and (Hf ),

we obtain the required bound by combining Proposition 4.3 with Proposition 6.1.

We now state the main result of this section, which provides an upper bound for the
convergence rate of the Euler scheme (5.2a)–(5.2c) to the continuously reflected BSDE (6.1a)–
(6.1c).

Theorem 6.1. Set q = 1
6 under (Hx1) and (Hb1), q = 1

3 under (Hx1), (Hb1), and (Hf ),
q = 1

2 under (Hx2), (Hb3), and (Hf ). Then we have

sup
t∈[0,T ]

E[|Yt − (DπYπ)t |2] + ‖Z − Z̄π‖2
H2 ≤ CL|π |q .

Moreover, if (Hx2), (Hb3), and (Hf ) hold and Xπ = X on π , then

sup
t∈[0,T ]

E[|Yt − (DπYπ)t |2] + ‖Z − Z̄π‖2
H2 ≤ CL|π |2/3.
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Proof. This is a direct consequence of Proposition 6.1 and Theorem 5.1 applied with R and
π defined as in (6.3), with α = 1

3 under (Hx1) and (Hb1), α = 2
3 under (Hx1), (Hb1), and

(Hf ), α = 1
2 under (Hx2), (Hb3), and (Hf ), and α = 2

3 under (Hx2), (Hb3), and (Hf ), and
when Xπ = X on π .

The results of the last theorem can be compared to those of Theorem 4.1 of [3], which
gives an upper bound for the rate of convergence in the case of unidimensional simply reflected
BSDEs.

First, observe that (Hb1) is weaker than the assumptions of Theorem 4.1 of [3] and the price
to pay for these fairly mild regularity assumptions is the poor rate of convergence.

Second, under (Hx2), (Hb3), and (Hf ), we are not able to retrieve the result of [3]. This can
be explained by the structure of f in our multidimensional setting. In particular, its dependence
with respect to all components of y prevents us from getting rid of the term κ E[maxr∈R |Xr −
Xπr |2] in the first claim of Proposition 5.1.

Let us conclude this paper with the following result which deals with the special case when
the system of BSDEs is decoupled.

Theorem 6.2. Assume that f � depends on (y, z) only through (y�, z�), and set q = 1
2 under

(Hx1) and (Hb2), and q = 2
3 under (Hx2) and (Hb3). Then we have

sup
t∈[0,T ]

E[|Yt − (DπYπ)t |2] ≤ CL|π |q .

Proof. This is an immediate consequence of Proposition 6.1 and the second claim of
Theorem 5.1 applied with R and π defined as in (6.3), with α = 1

2 under (Hx1) and (Hb2), and
α = 2

3 under (Hx2) and (Hb3).

Note that, when d = 1, the last restriction on f holds trivially. In this case, Y can be
interpreted as the price of a game option (see, e.g. [14]). This provides an interesting financial
application of our result.

Also, observe that, in Theorem 6.2, we obtain better bounds on the convergence rate. But,
we are not able to retrieve the bounds of [3], due to the presence of two reflecting boundaries;
see Lemma 4.1.

Appendix A. A priori estimates

In this section we provide a priori estimates for reflected BSDEs in an abstract framework.
We consider processes (YR, ỸR, ZR) ∈ S2(Rd)× S2(Rd)× H2(Md) such that

ỸR
t = YR

rj+1
+

∫ rj+1

t

f̂ (u) du−
∫ rj+1

t

(ZR
u )

� dWu, t ∈ [rj , rj+1), j < κ, (A.1)

where f̂ is some adapted process satisfying

|f̂ | ≤ CL(|η| + |ỸR| + |ZR|) for some η ∈ H2(R). (A.2)

We also assume that
|ỸR
t | = |YR

t | for all t /∈ R \ T , (A.3)

and we work under the following assumption.
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(A0) For all � ∈ {1, . . . , d} and r ∈ R,

|(YR
r )

�| ≤ |(ỸR
r )

�| 1S�r + |ξ�r | 1Q�r

with ξ ∈ S2(R), S�r ,Q
�
r ∈ Fr , S�r ∩Q�

r = ∅, and S�T = ∅.

Obviously, this implies that

|YR
r |2 ≤ |ỸR

r |2 + |ξr |2, r ∈ R, and |YR
T |2 ≤ |ξT |2. (A.4)

We will also make use of the following assumption, which is a particular case of (A.2).

(Af ) For each � ∈ {1, . . . , d} and all u ∈ [0, T ], we have

|f̂ �(u)| ≤ CL(|ηu| + |ỸR
u | + |(ZR

u )
·�|).

In this framework, we can state the following proposition.

Proposition A.1. Under (A0), for all s ≤ T , the following holds:

sup
t∈[s,T ]

Es

[
|ỸR
t |2 +

∫ T

t

|ZR
u |2 du

]
≤ CL Es

[
κ max
r∈R

|ξr |2 +
∫ T

0
|ηu|2 du

]
.

When, moreover, (Af ) holds, we have

sup
t∈[s,T ]

Es[|ỸR
t |2] ≤ CL Es

[
max
r∈R

|ξr |2 +
∫ T

0
|ηu|2 du

]
, s ≤ T ,

and, for all s ≤ t , t ∈ [rj , rj+1), and j < κ ,

Es

[∫ τ�j

t

|(ZR
u )

·�|2 du

]
≤ CL Es

[
max
r∈R

|ξr |2 +
∫ T

0
|ηu|2 du

]
,

where
τ �j = inf{r ∈ R | r ≥ rj+1, 1Q�r �= 0} ∧ T , j ≤ κ − 1, � ≤ d.

Proof. (i) Since ỸR ∈ S2(Rd), applying Itô’s formula to |ỸR|2 on [rj , rj+1) implies that

Es

[
|ỸR
t |2 +

∫ rj+1

t

|ZR
u |2 du

]
= Es

[
|YR
rj+1

|2 + 2
∫ rj+1

t

〈ỸR
u , f̂ (u)〉 du

]

for all s ≤ t ∈ [rj , rj+1), j < κ .
Fix α > 1 to be chosen later on. Combining the Cauchy–Schwarz inequality and (A.2) with

the inequality ab ≤ αa2 + b2/α, α > 0, we compute, for all s ≤ t ,

Es

[
|ỸR
t |2 +

∫ rj+1

t

|ZR
u |2 du

]
≤ Es

[
|YR
rj+1

|2 + (α + 1)CL

∫ rj+1

t

|ỸR
u |2 du

+ CL

α

∫ rj+1

t

(|ZR
u |2 + |ηu|2) du

]
.
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Taking α large enough such that CL/α ≤ 1
2 , we obtain

Es

[
|ỸR
t |2 + 1

2

∫ rj+1

t

|ZR
u |2 du

]
≤ Es

[
|YR
rj+1

|2 + CL

∫ rj+1

t

(|ỸR
u |2 + |ηu|2) du

]
.

Using Gronwall’s lemma in the last inequality, we then obtain

Es

[
|ỸR
t |2 + 1

2

∫ rj+1

t

|ZR
u |2 du

]

≤ exp{CL|rj+1 − t |} Es

[
|YR
rj+1

|2 + CL

∫ rj+1

t

|ηu|2 du

]
for all s ≤ t ∈ [rj , rj+1).

(A.5)

(ii) It follows easily, from (A.5), (A.3), (A0), and an induction argument, that

sup
t∈[s,T ]

Es[|ỸR
t |2 + |YR

t |2] ≤ CL Es

[
|ỸR
T |2 + κ max

r∈R
|ξr |2 +

∫ T

s

|ηu|2 du

]
for all s ≤ T .

(A.6)
Moreover, (A.5) applied to t = rj and s ≤ rj reads, recall (A.4),

Es

[
|ỸR
rj

|2 + 1

2

∫ rj+1

rj

|ZR
u |2 du

]

≤ (1 + CL|R|)Es

[
|ỸR
rj+1

|2 + |ξrj+1 |2 + CL

∫ rj+1

rj

|ηu|2 du

]
for j < κ.

Summing up in this inequality and using (A.6), we obtain

Es

[∫ T

t

|ZR
u |2 du

]
≤ CL Es

[
|ỸR
T |2 + κ max

r∈R
|ξr |2 +

∫ T

t

|ηu|2 du

]
, s ≤ t ≤ T ,

which concludes the proof of the first claim.
(iii) We now turn to the case where (Af ) holds. Recalling (A.1) and applying Itô’s formula

to |(ỸR)�|2 on [rj , rj+1), we obtain

|(ỸR
t )

�|2 +
∫ rj+1

t

|(ZR
u )

·�|2 du = |(YR
rj+1

)�|2 − 2
∫ rj+1

t

(ỸR
u )

�((ZR
u )

·�)� dWu

+ 2
∫ rj+1

t

(ỸR
u )

�f̂ �(u) du (A.7)

for all s ≤ t ∈ [rj , rj+1), j < κ .
Recall the definition of τ �q . On {τ �q = rq+1} we obviously have

|(ỸR
t )

�|2 +
∫ τ�j

t

|(ZR
u )

·�|2 du ≤ |ξτ�j |
2 − 2

∫ τ�j

t

(ỸR
u )

�((ZR
u )

·�)� dWu

+ 2
∫ τ�j

t

(ỸR
u )

�f̂ �(u) du.

On {τ �q > rq+1} we denote by θ�q the random index such that rθ�q = τ �q . Summing up from q to
θ�q in (A.7) applied to t = rq+1, we retrieve the last inequality.
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Arguing as in step (i), recall (Af ), we then obtain

Es

[
|(ỸR

t )
�|2 + 1

2

∫ τ�q

t

|(ZR
u )

·�|2 du

]

≤ CL Es

[
|ξτ�q |2 +

∫ τ�q

t

(|ỸR
u |2 + |ηu|2) du

]
for all s ≤ t ∈ [rq, rq+1), q < κ. (A.8)

Summing up over � in the last inequality, we obtain

Es[|ỸR
t |2] ≤ CL Es

[
max
r∈R

|ξr |2 +
∫ T

t

(|ỸR
u |2 + |ηu|2) du

]
, s ≤ t ∈ [rj , T ].

Using Gronwall’s lemma, we then have

sup
t∈[s,T ]

Es[|ỸR
t |2] ≤ CL Es

[
max
r∈R

|ξr |2 +
∫ T

0
|ηu|2 du

]
, s ≤ T . (A.9)

Combining this inequality with (A.8), we also obtain

Es

[∫ τ�j

t

|(ZR
u )

·�|2 du

]
≤ CL Es

[
max
r∈R

|ξr |2 +
∫ T

t

|ηu|2 du

]
,

which concludes the proof.

Corollary A.1. Fix p ≥ 2, and assume that ξ ∈ Sp(R) and η ∈ Lp(�× [0, T ]). Then when
(Af ) holds, we have, for all t ≤ T ,

|ỸR
t |p ≤ C

p
L Et

[
max
r∈R

|ξr |p +
∫ T

0
|ηu|p du

]
.

Proof. This follows directly from Jensen’s inequality applied to (A.9) with t = s.
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