
JFP 19 (3 & 4): 335–376, 2009. c© 2009 Cambridge University Press

doi:10.1017/S095679680900728X Printed in the United Kingdom

335

Parameterised notions of computation

ROBERT ATKEY

Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh,

Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK

(e-mail: bob.atkey@ed.ac.uk)

Abstract

Moggi’s Computational Monads and Power et al.’s equivalent notion of Freyd category

have captured a large range of computational effects present in programming languages.

Examples include non-termination, non-determinism, exceptions, continuations, side effects

and input/output. We present generalisations of both computational monads and Freyd

categories, which we call parameterised monads and parameterised Freyd categories, that

also capture computational effects with parameters. Examples of such are composable

continuations, side effects where the type of the state varies and input/output where the

range of inputs and outputs varies. By considering structured parameterisation also, we

extend the range of effects to cover separated side effects and multiple independent streams of

I/O. We also present two typed λ-calculi that soundly and completely model our categorical

definitions – with and without symmetric monoidal parameterisation – and act as prototypical

languages with parameterised effects.

1 Introduction

Moggi’s framework of Computational Monads (Moggi 1989, 1991) and Power

et al.’s equivalent notion of Freyd Categories (Power & Robinson 1997; Power &

Thielecke 1999; Levy et al. 2003) have been extremely successful in capturing a wide

range of computational effects used in programming language designs. Examples

include non-termination, non-determinism, exceptions, continuations, side effects

and input/output.

In this paper, we generalise both notions to parameterised monads and parame-

terised Freyd categories. The parameterisation will take the form of a parameterising

category that will annotate computations with information on their start and end

states.

Our motivating example is that of side effects. The standard side-effects monad

selects an object S of some cartesian closed category to represent the type of the

computer’s store and sets the functor part of the monad to be TA = (S ×A)S . Thus,

computations, modelled as the object TA, go from old stores to new stores and

values. This monad successfully models global side effects.

The problem with this solution is that it uses a single object to represent the store

at all points during the program. Thus, there is a single ‘type’ that must cover all

the possible stores that a program can generate and manipulate. For the purposes

of modelling features such as strong update (Morrisett et al. 2005), where the type

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

336 R. Atkey

of storage cells may change over time, or for modelling type systems inspired by

Hoare Logic such as Alias Types (Smith et al. 2000), this is inadequate. Such type

systems type the current store explicitly and restrict the range of possible operations

according to the current store type. In this paper, we propose categorical structure

generalising monads to model such situations.

We will present type systems with explicitly typed stores in Sections 3 and 5. An

example judgment has the form

Γ; S1 � c : A; S2

The context Γ and type A are the traditional value context and result type,

respectively. The context S1 and type S2 type the initial and final states required and

produced by the computation c.

We propose to model this by considering an additional parameterising category

S to interpret the types S1 and S2. The arrows of S are intended to be used to

represent effect-free manipulations of store descriptions, analogous to implications

between assertions in Hoare Logic. We extend the definition of monad to have

underlying functors of type T : Sop × S × C → C, with additional conditions on

the unit and multiplication that we set out in Section 2.2. In the case of global

state we can assume a functor ·̂ : S → C and set T (S1, S2, A) = (Ŝ2 × A)Ŝ1 , or even

take S to be C itself. Later, we present three other examples, category writers – a

generalisation of monoid writers, typed input/output, where the range of inputs and

outputs depends on the current type of the state, and composable continuations of

Danvy and Filinski (1989).

This generalisation of monads suffices for modelling explicitly typed global state.

In many cases, however, the assumption that we always know the whole global

state is too strong. For example, we can regard the store of a computer as being

built from multiple independent regions, right down to the individually addressable

storage cells, and a program that only looks at some cells need not concern itself

with the rest of the store. Similarly, the computer may have multiple I/O devices

attached and be able to send output and receive input from them independently.

More abstractly, the state types can denote the possible future effects performed by

a program and one small part of the program should not need to know about the

whole possible future of the rest of the program.

In order to model this situation, we assume that the parameterising category

S has additional structure. For dealing with separate individual memory cells, the

appropriate structure is symmetric monoidal; principally a bifunctor ⊗ : S×S → S
that we can use to build composite state descriptions from smaller ones. Hence, if the

state types [Int] and [Bool] represent stores containing an integer and a boolean,

respectively, the composite state type [Int] ⊗ [Bool] represents a store containing

both an integer and a boolean, in separate memory cells.

The problem now is how to sequence two programs operating on separate parts

of the heap. If we have arrows c1 : A → T (S1, S2, B) and c2 : B → T (S ′
1, S

′
2, C)

representing computations, how do we get a single arrow A → T (S1 ⊗S ′
1, S2 ⊗S ′

2, C)?

The solution we present here is to require natural transformations (− ⊗ S)† :

T (S1, S2, A) → T (S1 ⊗ S, S2 ⊗ S, A), and symmetrically, to lift computations up to

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 337

larger state contexts. This lifting is similar to the service provided by monad strength

for lifting to larger value contexts, as seen by the definition of double parameterised

Freyd categories in Section 4, where the two types of computation in context are

represented by two premonoidal structures.

Other notions of parameterised monads. The definition of parameterised monad we

present in this paper is unrelated to Uustalu’s (2003) parametrized monads. We

have chosen the name ‘Parameterised Monad’ for our definition due to the close

relationship between our definition and adjunctions with parameters.

Overview. In Section 2, we present our definitions of parameterised monad and

parameterised Freyd category, prove them equivalent and give our main examples:

typed store, typed input/output and composable continuations. We follow this in

Section 3 with a typed λ-calculus, the Typed Command Calculus, which is sound and

complete for our categorical constructions. In Section 4, we extend our categorical

definitions to allow structured parameterisation, extending the range of examples to

allow separated store and multiple streams of input/output. We extend the Typed

Command Calculus to the situation when the structure is symmetric monoidal in

Section 5. Finally, in Sections 6 and 7, we describe related work and present some

concluding remarks and future work.

2 Parameterised notions of computation

2.1 Computational monads

We first recall the definition of strong monad and how it is used to model effectful

programming languages. We will refer back to this discussion to justify our definitions

later.

Moggi (1991) originally proposed the use of strong monads to structure the

denotational semantics of programming languages with effects. Instead of explicitly

dealing with the semantics of the effect required (exceptions, side effects, etc.) directly,

a semanticist defines a suitable strong monad for their effect in their chosen base

category C (which we assume to have finite products) and builds the rest of the

semantics using the monad. A strong monad consists of four parts

• A functor T : C → C;

• A unit ηA : A → TA, natural in A;

• A multiplication μA : TTA → TA, natural in A;

• A strength τAB : A × TB → T (A × B), natural in A and B.

The basic idea is that an object TA represents computations that yield values of the

type represented by the object A. Arrows A → TB represent programs that yield

values of type B with an input of type A. The unit is a computation that sends values

to the computation that does nothing but return the value. The multiplication is

used to sequence computations. Given computations f : A → TB and g : B → TC ,

their sequencing is

A TB TTC TC.��f ��Tg ��μC

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

338 R. Atkey

Intuitively, the multiplication takes a computation that yields a computation that

yields a value and sequences the two computations to produce a single computation

that yields a value. This definition of sequencing requires the input and output types

of programs to match. The strength part of a strong monad is used to rectify this.

Given a computation f : A → TB and an object C representing additional context,

we use the strength to get the computation

C × A C × TB T (C × B).��C×f ��τCB

This computation can now be sequenced with another computation with input of

type C × B.

A monad must also obey certain axioms. For unit and multiplication, these state

that η is the left and right unit for multiplication (η; μ = Tη; μ = id) and that

multiplication is associative (Tμ; μ = μ; μ). These axioms are natural given the

computational reading of unit and multiplication. The strength must also obey

axioms stating that it commutes with the associativity and unit of ×, and the unit

and multiplication of the monad.

2.2 Parameterised strong monads

In addition to a category C with finite products, we now also assume an additional

category S. The objects of S represent state descriptions and the arrows of S
represent state manipulations. A useful intuition here is to think of the objects as

assertions about the state, and the arrows as logical entailments.

We introduce the definition of parameterised monad in pieces, describing how

it generalises the definition of monad. We extend the underlying functor to be a

functor T : Sop × S × C → C. We now consider the object T (S1, S2, A) to be a

computation that starts in states described by S1 and ends in states described by S2,

yielding values of type A. On arrows, the functor allows strengthening of prestate

description by contravariance in the first argument and the weakening of poststate

description by covariance in the second argument.

The unit of a parameterised monad is a family of arrows ηSA : A → T (S, S , A),

natural in A and dinatural in S . As with a monad’s unit, this unit represents the

do-nothing computation, at any state. The dinaturality (Mac Lane, 1998, §IX.4)

requirement amounts to the commutativity of the diagram

T (S, S , A)

A T (S, S ′, A)

T (S ′, S ′, A)

����������
T (S,f,A)

������������

ηSA

������������

ηS ′A

��������� T (f,S ′ ,A)

for every arrow f : S → S ′ in S. Strengthening of the precondition and weakening

of the postcondition are equivalent for the identity computation.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 339

Multiplication of parameterised monads consists of a family of arrows μS1S2S3A :

T (S1, S2, T (S2, S3, A)) → T (S1, S3, A). Given computations f : A → T (S1, S2, B) and

g : B → T (S2, S3, C), the sequenced computation is

A
f �� T (S1, S2, B)

T (S1 ,S2 ,g)�� T (S1, S2, T (S2, S3, C))
μS1S2S3C �� T (S1, S3, C)

Hence, only those pairs of computations where the poststate of the former matches

the prestate of the latter may be sequenced. Multiplication is required to be natural

in S1, S3 and A and dinatural in S2. Dinaturality in this case amounts to the following

diagram commuting for all f : S2 → S ′
2:

T (S1, S
′
2, T (S ′

2, S3, A))

T (S1, S2, T (S ′
2, S3, A)) T (S1, S3, A)

T (S1, S2, T (S2, S3, A))

������������� μS1S
′
2
S3A

������������
T (S1 ,f,T (S ′

2 ,S3 ,A))

������������

T (S1 ,S2 ,T (f,S3 ,A))

������������� μS1S2S3A

This states that if we have two computations with a mismatch in the intermediate

state that is bridged by f : S2 → S ′
2, then it does not matter if we weaken the

poststate of the former, or strengthen the prestate of the latter in order to make

them match.

The definition of strength generalises easily to parameterised monads. Putting this

together, we get

Definition 1

Given a category C with finite products and a category S, an S-parameterised

monad (T , η, μ) on C consists of

• A functor T : Sop × S × C → C;

• A unit ηS,A : A → T (S, S , A), natural in A and dinatural in S;

• A multiplication μS1 ,S2 ,S3 ,A : T (S1, S2, T (S2, S3, A)) → T (S1, S3, A), natural in

S1, S3 and A and dinatural in S2;

• A strength τA,S1 ,S2 ,B : A × T (S1, S2, B) → T (S1, S2, A × B), natural in A,B, S1

and S2.

The unit and multiplication must obey the monad laws: η; μ = T (S1, S2, η); μ = id

and T (S1, S2, μ); μ = μ; μ. The strength must obey the obvious adaptations of the

axioms for non-parameterised strength (Moggi 1991).

An alternative partial definition is given by observing that a non-parameterised

monad is equivalent to a one object CC-enriched category. A multiple object CC

enriched category is equivalent to part of our definition,1 where the objects are the

objects of the parameterising category S. Since a one object normal category is

equivalent to a monoid, we can consider the relationship between parameterised

1 This observation is given by Chung-Chieh Shan: http://haskell.org/pipermail/haskell-cafe/
2004-July/006448.html

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

340 R. Atkey

monads and monads as similar to the relationship between monoids and categories.

We follow this up later in Section 2.3.3, generalising the monoid writer monad to

the category writer parameterised monad. As a special case, if we restrict S to be

the one object, one arrow category then our definition is equivalent to the standard

definition of a non-parameterised monad.

2.3 Examples

We now give some examples of parameterised monads modelling computational

effects that require an additional parameterising category.

2.3.1 Strong monads

Every (strong) monad gives a parameterised (strong) monad for any parameterising

category S. Given a monad (M, η, μ) with optional strength τ, we define an S-

parameterised monad (T , η′, μ′) with optional strength τ′ as

T (S1, S2, A) = MA

η′
SA = ηA

μ′
S1S2S3A

= μA

τ′
S1S2AB

= τAB

Thus, the resulting parameterised monad just uses the monad, forgetting the

parameterisation. The computations available at any pair (S1, S2) are always the

same.

2.3.2 Typed state

As stated in Section 1, we can use parameterised monads to model typed global

state. We assume that our base category C is cartesian closed, and take S = C. The

parameterised monad’s functor is defined as TGS2
(S1, S2, A) = (S2 × A)S1 , with the

usual unit, multiplication and strength for the global state monad. For each object

A of C we have operations to read and update the current store

readA : T (A,A, A) storeXA : A → T (X,A, 1)

readA = λs.(s, s) storeXA = a �→ λs.(a, �)

By reading the types, we can see that the read operation starts in a state where the

store is of type A, and ends in a state where the store is of type A, yielding a value

of type A – the current value in the store. The store operation starts in a state with

an arbitrary store type X and replaces it with the supplied value of type A, yielding

the trivial element of 1, the terminal object.

Obviously, updating the entire store at once is not very practical; we may wish to

consider stores constructed from smaller stores and only read and update individual

parts of it at a time. To describe such composite stores we can use C’s cartesian

structure, so that a state description A × B × C describes a store with three cells,

containing an A, a B and a C . We modify the read and store operations to select

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 341

parts of the store to operate on

readS (A) : T (S(A), S(A), A)

readS (A) = λs.let S(a) = s in (s, a)

storeX,S (A) : A → T (S(X), S(A), 1)

storeX,S (A) = a �→ λs.(S(�→ a)s, �)

where the notation S(−) denotes a finite product expression A1 × · · · × − × · · · × An

with a hole. The syntactic sugar ‘let S(a) = . . . in . . .’ selects the value stored in s at

the distinguished location specified by S(−), and S(�→ a)s updates the value stored

in s at the distinguished location specified by S(−).

Note that on both of the operations we must also record the types of all of the

memory cells that do not change, as well as the one that does. We rectify this in

Section 4 by considering the lifting of the symmetric monoidal structure on states

up to the level of computations.

2.3.3 Categories

The following example highlights the idea that parameterised monads are to monads

as categories are to monoids. For this example, we assume the base category C = Set.

Recall that, given a monoid (M, ·, e), there is a monad TM on Set, with TM(A) =

M × A, η(a) = (e, a) and μ(m1, (m2, a)) = (m1 · m2, a). By considering a monoid of

traces, with the multiplication as concatenation, this monad can be used to interpret

traced computation, or computation with printing.

For the parameterised generalisation, we can consider a small category S1 instead

of a monoid. For the parameterising category we choose some subcategory S with

the same objects as S1 (a lluf subcategory). We set TS1
(S1, S2, A) = S1(S1, S2) × A,

ηSA(a) = (idS , a) and μS1S2S3A((s1, (s2, a))) = (s1; s2, a).

As an application of this construction, consider the category StkPrg of simple

stack machine programs, which is the free category on the graph whose objects

are natural numbers denoting stack depths and edges are lists of commands freely

generated by the rules

n
[]

−→ n

i ∈ �

n
[push.i]
−→ n + 1 n + 2

[add]
−→ n + 1 n + 1

[dup]
−→ n + 2

n1

[
−→c1]

−→ n2 n2

[
−→c2]

−→ n3

n1

[
−→c1 ,

−→c2]
−→ n3

Composition of [−→c1] : n1 → n2 and [−→c2] : n2 → n3 is defined as [−→c1 ,
−→c2], which is

an arrow by these rules. Identities are given by the empty list, which is an arrow

at every numeral by the first rule. Note that this category is just a special case of

programs with specified start and end specifications.

Taking TStkPrg as defined earlier, with |StkPrg|, the discrete category with the same

objects as StkPrg as the parameterising category, we can define the following basic

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

342 R. Atkey

operations for the monad:

pushn : � → TStkPrg(n, n + 1, 1) = i �→ ([push.i], �)

addn : 1 → TStkPrg(n + 2, n + 1, 1) = � �→ ([add], �)

dupn : 1 → TStkPrg(n + 1, n + 2, 1) = � �→ ([dup], �)

where � is the usual set of integers.

Thus, computations in TStkPrg model programs that construct stack machine

programs that do not have the possibility of stack under-flow at run-time. One

could also envisage more complex examples involving typed stacks and jumps to

labels, and even the construction of programs satisfying Hoare Logic specifications.

Using typed stacks with subtyping relationships between the types of elements on the

stack would extend this example to non-discrete parameterising categories: arrows

of S would model the subtyping relations between stacks.

Note that we have had to index the operations by the height of the stack at the

current point in the abstract machine. We will rectify this by lifting the addition

operation on the objects of StkPrg up to computations themselves in Section 4.

2.3.4 Typed I/O

The monad of the previous example essentially models constrained output; the range

of possible outputs at each stage of the program is determined by the outputs that

have gone before. In this example, we generalise to also allow inputs, where the

types of the possible values input, as well as the possible outputs, are dependent on

the current state.

Again, for simplicity, we restrict to C = Set. Take S to be a small category.

The objects of S will represent the states of an input/output device, while arrows

S1 → S2 will be witnesses for proofs that S1 allows all the operations that S2 allows.

Let Ω be a set of I/O operations. For each op ∈ Ω, we assume there are two sets

in(op) : The set of values that can be input by performing the operation op;

out(op) : The set of values that can be output by performing the operation op.

We further assume that every operation op has two associated objects of S

pre(op) : The state in which the operation op may be performed;

post(op) : The state that results after the operation op has been performed.

Given such a collection of operations Ω, we construct a monad TΩ. On objects –

i.e., sets – the functor part is built by the following inductive rules:

a ∈ A f : S → S ′

e(f, a) ∈ TΩ(S, S ′, A)

op ∈ Ω o ∈ out(op) k ∈ in(op) → TΩ(post(op), S ′, A) f : S → pre(op)

o(f, op, o, k) ∈ TΩ(S, S ′, A)

Computations in TΩ are therefore trees with values at the leaves and operations

at the nodes, branching on the possible input values for each operation. Between

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 343

Table 1. Stateful I/O device operations

op pre(op) post(op) out(op) in(op)

activate inactive initialising 1 1

initData initialising initialising �∗ 1

finishInit initialising active 1 1

read active active 1 �
write active active � 1

shutdown active inactive 1 �

∗� is the set {true, false} of boolean values.

each node there is an arrow of S, acting as a witness that the operations are

compatible.

On arrows of S, TΩ(f, g, A) precomposes f to the S-arrow at the root of

the tree and postcomposes g to all the S-arrows at the leaves of the tree. On

functions f : A → B, TΩ(S1, S2, f) performs the usual ‘map’ operation on trees. The

monad unit maps a to e(id , a) and multiplication concatenates trees, precomposing

the final S-arrow in each leaf of the first tree with the root of the second

tree.

For each operation op ∈ Ω, there is a primitive operation of the monad

performop : out(op) → TΩ(pre(op), post(op), in(op))

performop = o �→ o(id , op, o, λi.e(i))

Note the apparent swapping of the meanings of in and out as input and output

from the point of view of operations on the monad.

We give two examples of this construction.

A Stateful I/O Device. We assume some device with three states inactive, initialising

and active. There are six operations, shown in Table 1. The idea of this example

is that the I/O device initially starts in the state inactive. The operation ‘activate’

moves the device into the state initialising, where the client can issue initialisation

data – here represented as booleans – to the device via the operation ‘initData’. On

the operation ‘finishInit’, the device moves to the state active, where the client can

use the ‘read’ and ‘write’ operations to read and write data – here represented by

integers – from the device. Finally, the client issues ‘shutdown’ to reset the device

back to inactive, returning a status code as it does so. In this case the category S
consists of an object for each of the states, and no arrows.

Session Types. Our second example of Typed I/O involves a simple form of session

types (Vasconcelos et al. 2006) (see also the similar concepts of history effects Skalka

& Smith, 2004 and behaviour effects Nielson & Riis Nielson, 1996). Let X, X1, X2,

etc. be a collection of sets of values suitable for input/output. The states descriptions

in this case are abstract traces of possible I/O behaviour that a program may take

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

344 R. Atkey

Table 2. Session types I/O operations

op pre(op) post(op) out(op) in(op)

inputX,S ?X.S S 1 X

outputX,S !X.S S X 1

– i.e., sessions – given by the grammar

S ::= ?X | !X | S1 + S2 | S1.S2 | ◦.

A session ?X indicates the that program must input a value in X and !X indicates

that the program must output a value in X. The combination S1 + S2 means that

the program has the choice of doing either the actions in S1 or the actions in

S2, whereas the combination S1.S2 prescribes that the program must perform the

operations in S1 and then the operations in S2. The session ◦ indicates that no

action is possible. The arrows of S are those given by the smallest pre-order

that treats S1.S2 as an associative binary operation with unit ◦ and S1 + S2 as a

meet.

The operations are shown in Table 2. Note that there are infinitely many operations

indexed by the input/output value sets X as well as all the possible future sessions

S . The primitive operations on the monad have the types

inputX,S : 1 → T (?X.S, S , X)

outputX,S : X → T (!X.S, S , 1).

As with the monads TGS2
and TStkPrg earlier, we have the problem that the primitive

operations at the monad level have to explicitly declare all of the following sessions.

This problem becomes especially apparent when we attempt to use the operations

in the Typed Command Calculus defined in Section 3. We will rectify this in

Section 4 by lifting the structure of the sessions up to computations.

2.3.5 Composable continuations

Parameterised monads provide a way to interpret Danvy and Filinski’s composable

continuations (Danvy & Filinski 1989). Composable continuations provide access

to evaluation contexts smaller than the whole program, delimited at runtime by

the reset operator. The current context is made available to the program by

the shift operator. In contrast, the call with current continuation operator only

allows the entire program to be treated as the current context. The following is

inspired by Wadler’s (1994) expression of composable continuations in terms of

monads.

We require C to be cartesian closed, and set S to be Cop. Define T (R1, R2, A) =

(A → R2) → R1, where → is the exponential functor. Unit, multiplication and

strength are defined as for the standard continuations monad (Moggi 1991). We

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 345

write the definitions out using C’s internal language

η(x) = λk.kx

μ(f) = λk.f(λk′.k′k)

τ(a, f) = λk.f(λb.k(a, b))

In terms of the type system of Danvy and Filinski (1989), a judgment ρ, α � E : τ, β

is interpreted as an arrow �ρ� → T (�β�, �α�, �τ�). The reset operator is interpreted

as an arrow in C, using C’s internal language

reset : T (B,A, A) → T (C,C, B)

reset = c �→ λk.k(c(λx.x))

Thus reset calls its argument c with the empty continuation, represented by the

identity function, and feeds the output to the current continuation. The shift operator

is defined as

shift : ((A → T (C,C, B)) → T (E,D,D)) → T (E,B, A)

shift = f �→ λk.f(λv.η(kv))(λx.x)

Applied to f, shift calls f with a function that, given an A, invokes the current

surrounding context (up to the closest dynamically enclosing reset) and returns the

answer. The resulting computation is then invoked with the empty continuation.

The shift operator therefore takes the current continuation and makes it available

to the program. The extra type information is essential here due to the fact that

continuation contexts need not extend to the whole program, so the result types in

the continuation depend on the rest of the program.

Due to the fact that our ‘state’ category in this example is the opposite of our base

category, we can use the functorial action of the monad on its first two parameters

to get an operation, which we call side

side : C(A,B) → C(1, T (B,A, 1))

side(f) = λk.f(k�)

where 1 is the terminal object in C and � is its unique value in the internal language.

Another way of expressing this is as ηB1;T (f, B, 1) which is equal to ηA1;T (A, f, 1) by

dinaturality. The effect of this operation is to postcompose the current continuation

with the argument f, meaning that f will be run on the result after rest of the

computation in the current context.

Although we have derived this operation from the functorial action of T on

its state parameters, which was not available to Danvy and Filinski, we have not

increased the expressive power of the type system. The new operation is expressible

in terms of shift . If we define side′ as

side′(f) = shift(λc.bind (c(�), λx.η(fx)))

where bind : T (S1, S2, A) × (A → T (S2, S3, B)) → T (S1, S3, B) is the monadic bind

operator derived from μ. Hence side′ uses shift to obtain the current context, runs

it and applies f to the result before returning. The two operations side and side′ are

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

346 R. Atkey

easily seen to be equivalent by unwinding all the definitions and rewriting using the

βη rules.

In Section 3.2.1 we give some examples of the use of composable continuations

in our typed calculus (see also Danvy & Filinski 1989; Wadler 1994 for examples

of the use of shift and reset). This example needs much more work to establish

the precise categorical properties of shift and reset , and to potentially axiomatise

it without reference to an underlying continuation passing interpretation, following

the lead set by Thielecke (1997).

2.3.6 Change of state category

Finally in this sequence of examples, we note that if we are given any functor

F : S′ → S and an S-parameterised monad (T , η, μ) then we can define an

S′-parameterised monad by

T ′(S ′
1, S

′
2, A) = T (FS ′

1, FS
′
2, A)

η′
S ′A = ηF(S ′)A

μ′
S ′

1S
′
2S

′
3A

= μF(S ′
1)F(S ′

2)F(S ′
3)A

If T also has a strength τ, then we can define τ′
AS ′

1S
′
2B

= τAF(S ′
1)F(S ′

2)B
.

2.4 Parameterised Freyd categories

Freyd categories are comprised of identity on objects functor J : C → K, where

K has premonoidal structure and J strictly preserves it by seeing the finite product

structure of C as premonoidal structure. Premonoidal structure consists of a family

of pairs of functors A � − : K → K and − � A : K → K that agree on objects:

A � B = A � B = A ⊗ B, and associativity, left and right unit and symmetry

natural transformations as for symmetric monoidal structure. The components of

these natural transformations must be central : an arrow f of K is central if, for all

arrows g of K, we have A� f; g �B′ = g �B;A′ � f, i.e., f commutes with g when

they operate on different values. Arrows of K are used to represent computations,

with the identity arrow representing the identity computation, and composition

representing the sequencing of computations. The premonoidal structure is used to

represent computation in context.

Our definition of parameterised Freyd category builds the required structure in a

single step, unlike the two steps of premonoidal structure on the codomain category,

and then a strict premonoidal functor as for Freyd categories. We do it in this

way for two reasons. Firstly, we want the objects of the codomain category to

be comprised of pairs of objects of the value and state categories but with the

premonoidal structure only referring to the value category, so we start by requiring

an identity on objects functor J : C × S → K. The premonoidal structure is then

built on top of this, building in the requirement of strict preservation of premonoidal

structure. Secondly, there is no directly analogous definition of centrality for arrows

in a parameterised Freyd category, due to the composition ordering imposed by the

objects of the state category. Therefore we just state that the symmetric monoidal

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 347

structure natural transformations of C via J are the ones we need, rather than

requiring them on K with J preserving them.

Definition 2

A parameterised Freyd category consists of three categories C, S and K, where C
has finite products, and three functors J : C × S → K, �C : C × K → K and

�C : K × C → K, such that

1. J is identity on objects;

2. The monoidal structure of C is respected: A �C J(B,X) = J(A,X) �C B =

J(A × B,X) and f �C J(g, s) = J(f, s) �C g = J(f × g, s);

3. For each S ∈ ObS, the transformations given by the associativity J(αABC, S),

the left unit J(λA, S), the right unit J(ρA, S) and the symmetry J(σA,B, S) of

the symmetric monoidal structure arising from C’s finite products must be

natural in the variables in all combinations of ×,�C and �C that make up

their domain and codomain. For example, for associativity, the diagrams

A �C (B �C (C, S)) (A × B) �C (C, S)

A′ �C (B′ �C (C ′, S ′)) (A′ × B′) �C (C ′, S ′)

��J(α,S)

��

f�C(g�Cc)

��

(f×g)�Cc

��J(α,S)

A �C ((B, S) �C C) (A �C (B, S)) �C C

A′ �C ((B′, S ′) �C C ′) (A′ �C (B, S ′)) �C C ′

��J(α,S)

��

f�C(c�Cg)

��

(f�Cc)�Cg

��J(α,S)

(A, S) �C (B × C) ((A, S) �C B) �C C

(A′, S ′) �C (B′ × C ′) ((A′, S ′) �C B′) �C C ′

��J(α,S)

��

c�C(f×g)

��

(c�Cf)�Cg

��J(α,S)

must commute and these must commute similarly for left and right units and

symmetry.

This definition can be split into two parts: the functor J : C × S → K, which

identifies how pure value computations and state manipulations are incorporated

into commands; and the premonoidal structure with respect to C, given by the

functors �C and �C. Closure for parameterised Freyd categories is similar to that

for Freyd categories. It will be used to interpret function types.

Definition 3

A parameterised Freyd category J : C × S → K is closed if, for all A ∈ ObC and

S ∈ ObS, the functor J(− × A, S) : C → K has a specified right adjoint, written as

(A, S) → − : K → C.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

348 R. Atkey

2.4.1 Parameterised monads and parameterised Freyd categories

We now show the relationship between parameterised Freyd categories and strong

parameterised monads. To do this we shall go through parameterised adjunctions. We

will show that parameterised monads have the same relationship with parameterised

adjunctions as monads have with adjunctions. Since a closed Freyd category is a

parameterised adjunction, this will give a way of constructing parameterised monads

from parameterised Freyd categories. In the opposite direction, there is a natural

definition of Kleisli category for a parameterised monad. When the parameterised

monad is strong, this will give a parameterised Freyd category.

Definition 4

An S-parameterised adjunction from C to D is a 4-tuple 〈F,G, η, ε〉 : C → D where

F and G are functors

F : S × C → D G : Sop × D → C

and η and ε are the unit and counit, natural in A and dinatural in S

ηSA : A → G(S, F(S, A)) εSA : F(S, G(S, A)) → A

subject to the triangular identities

G(S, A) G(S, F(S, G(S, A)))

G(S, A)

��ηSG(S,A)

���������������

id
��
G(S,εSA)

F(S, A) F(S, G(S, F(S, A)))

F(S, A)

��F(S,ηSA)

���������������

id
��
εSF(S,A)

By Theorem §IV.7.3 of Mac Lane (1998), if we have a functor F : S × C → D
such that for every object S , F(S,−) has a right adjoint GS : D → C, then there is

a unique way to make G into a bifunctor Sop × D → C such that the pair form a

parameterised adjunction in the sense of this definition. Using this, we can turn the

closed structure of a closed parameterised Freyd category into an S-parameterised

adjunction between C and K with the functors J(−, S) and (1, S) → −.

Parameterised monads are to parameterised adjunctions as monads are to adjunc-

tions, as the following lemma partially demonstrates. It is also possible to define a

suitable notion of Eilenberg–Moore category of algebras for a parameterised monad,

and this and the Kleisli category used in this lemma are the final and initial objects

in the category of adjunctions defining the parameterised monad, as for monads (see

the appendix of Atkey 2006 for more details).

Proposition 1

S-parameterised adjunctions 〈F,G, η, ε〉 : C → D give S-parameterised monads on

C, defined as

T (S1, S2, A) = G(S1, F(S2, A)) ηTS,A = ηS,A μTS1 ,S2 ,S3 ,A
= G(S1, εS2 ,F(S3 ,A))

Conversely, given an S-parameterised monad on C, if we define a category CT with

objects pairs of C and S objects; and homsets

CT ((A1, S1), (A2, S2)) = C(A1, T (S1, S2, A2))

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 349

then the functors

F : S × C → CT

F(S, A) = (A, S)

F(s, f) = η;T (S1, s, f)

and

G : Sop × CT → C
G(S1, (A, S2)) = T (S1, S2, A)

G(s, c) = T (s, S2, c); μ

form a parameterised adjoint pair.

Proof

Almost identical to the proof of the definition of a monad from an adjunction

(Mac Lane 1998). The additional (di)naturality conditions are easy to check. The

second part is just the parameterised generalisation of the construction of the Kleisli

category. �

Thus, every closed Freyd category gives a parameterised monad, and we can

generate a category K and an identity on objects functor J : C × S → K via the

parameterised version of the Kleisli construction. We extend Power and Robinson’s

(1997) Theorem 4.2, which links the premonoidal structure of Freyd categories with

monad strength, to the parameterised case.

Proposition 2

Given an strength for a parameterised monad (T , η, μ), there is premonoidal structure

on CT with respect to C, and vice versa. These constructions are inverse.

Proof

Given a strength τ, define f �C c = f × c; τA,S1 ,S2 ,B , �C is similar. Given premonoidal

structure �C, define τA,S1 ,S2 ,B = idA �C idT (S1 ,S2 ,B) as an arrow of C, where idT (S1 ,S2 ,B)

is seen as an arrow T (S1, S2, B) → B in CT . The axioms in each case are easily

checked. That these operations are inverse is seen by writing out the two definitions

and calculating, keeping careful track of the different compositions in C and

CT . �

Proposition 3

If a strong parameterised monad has Kleisli exponentials, i.e., there is a functor

(B, S1) → − : CT → C for all objects B, S1, and a natural isomorphism CT ((A ×
B, S1), (C, S2)) ∼= C(A, (B, S1) → (C, S2)), then the induced parameterised Freyd

category is closed. Conversely, every closed parameterised Freyd category gives

a strong monad with Kleisli exponentials. These operations are inverse.

Proof

The closed structure is identical in both cases. �

These propositions combine to give Theorem 1.

Theorem 1

Strong parameterised monads with Kleisli exponentials and closed parameterised

Freyd categories are equivalent.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

350 R. Atkey

3 Typed Command Calculus

We now define a typed λ-calculus, which we call the Typed Command Calculus,

which is sound and complete for parameterised Freyd categories. The design of the

calculus is based on the fine-grain call-by-value calculus for Freyd categories given

by Levy et al. (2003).

Levy et al.’s fine-grain call-by-value calculus differs from Moggi’s (1989) λc calculus

and Moggi’s (1991) monadic metalanguage by making a syntactic distinction between

producers, which may perform effects in the monad, and values, which perform no

effects. In this terminology, the λc calculus treats all terms as producers, and the

monadic metalanguage treats all terms as values. The syntactic distinction clarifies

the presentation of the calculus, and is based on the structure of Freyd categories.

The fine-grain call-by-value calculus has two typing judgments Γ �v V : A and

Γ �p M : A. The first is used to type values, and the second is used to type producers.

The two main constructs of the calculus are typed as follows:

Γ �v V : A

Γ �p produce V : A

Γ �p M : A Γ, x : A �p N : B

Γ �p M to x.N : B

The construct produce V incorporates values into producers by treating them as a

computation with no effect that returns the given value. The construct M to x.N

denotes the execution of the effectful computation M in the context Γ, feeding its

result to N which is then executed.

The fine-grain call-by-value calculus is interpreted in a Freyd category J : C → K.

Judgments of the value component are interpreted in C and judgments of the

computation component are interpreted in the category K. The produce V construct

is interpreted using the functor J , and the sequencing construct M to x.N is

interpreted using the premonoidal structure and composition.

3.1 Typing rules

We follow the basic structure of the fine-grain call-by-value calculus, though we

superficially alter the syntax to fit better with the syntax of Moggi’s (1989)

computational λ-calculus. The Typed Command Calculus has a typing judgment

for each category present in the definition of parameterised Freyd category. For the

three categories, there are three judgments

S1 �s s : S2 Γ �v e : A Γ; S1 �c c : A; S2

The first is used to type state manipulations, and is interpreted in the state category

S. State manipulation terms are lists of primitive state manipulations. The second

is used to type values, and will be interpreted in the value category C. Value

terms are comprised of variables, units, pairs, projections, primitive functions and

function abstractions, but not applications. The third judgment form is used to

type computations, and is interpreted in the category K. Computation terms are

comprised of combinations of pure value and state terms, sequencing, primitive

computations and function application. Formally, the terms for each of the three

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 351

State Calculus:

S �s · : S
S-Id

S1 �s s : S2 (m : S2 −→ S3) ∈ ΦS

S1 �s s.m : S3
S-Prim

Value Calculus:

x : A ∈ Γ

Γ �v x : A
V-Var

Γ �v e : A1 (f : A1 −→ A2) ∈ ΦV

Γ �v f e : A2
V-Prim

Γ �v �1 : 1
V-1I

Γ �v e1 : A1 Γ �v e2 : A2

Γ �v (e1, e2) : A1 × A2
V-×I

Γ �v e : A1 × A2

Γ �v πie : Ai
V-×E-i

Γ, x : A1; S1 �c c : A2; S2

Γ �v λ(xA1 ; S1).c : (A1; S1) → (A2; S2)
V-→I

Command Calculus:

Γ �v e : A S1 �s s : S2

Γ; S1 �c (e; s) : A; S2
C-V-S

Γ �v e : A (p : (A; S1) −→ (B; S2)) ∈ ΦC

Γ; S1 �c p e : B; S2
C-Prim

Γ; S1 �c c1 : A; S2 Γ, x : A; S2 �c c2 : B; S3

Γ; S1 �c let x ⇐ c1 in c2 : B; S3
C-Let

Γ �v e1 : (A; S1) → (B; S2) Γ �v e2 : A

Γ; S1 �c e1 e2 : B; S2
C-→E

Fig. 1. Typing rules for the Typed Command Calculus.

calculi are given by the grammar

s ::= · | s.m

e ::= x | f e | �1 | (e1, e2) | πie | λ(xA; S).c

c ::= (e; s) | let x ⇐ c1 in c2 | p e | e1 e2

where m, f and p range over given sets of typed primitive state manipulations ΦS ,

value functions ΦV and computations ΦC , respectively. The state types S, S1, S2, . . .

are assumed as given. Value types are generated by the grammar

A ::= X ∈ TV | 1 | A1 × A2 | (A1; S1) → (A2; S2)

where X ranges over a set TV of primitive value types. Value type contexts Γ consist

of lists of variable name–type pairs with no duplicate names. The typing rules are

shown in Figure 1.

The state calculus is very simple, reflecting the fact that we have not required any

structure on the state category S in our models. The rule S-Id types the identity

state manipulation that does nothing. The rule S-Prim types the use of primitive

state manipulations.

The value and command calculi are mutually defined via the rules for function

abstraction and application, V-→I and C-→E. The value calculus includes the

standard rules for variables, products and the unit type. The rule V-Prim types

the use of primitive functions. The rule V-→I introduces functions. Since a function

represents a suspended computation, it is treated as a pure value; this rule takes

a judgment in the command calculus and produces one in the value calculus. The

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

352 R. Atkey

rule C-→E eliminates functions, producing an effectful computation in the command

calculus. Functions are to be interpreted using the closed structure of a closed

parameterised Freyd category.

The rule C-V-S incorporates the terms of the value and state calculi into the

command calculus. This rule will be interpreted by the action of the functor

J . The C-Prim rule types primitive commands. The rule C-Let sequences two

computations similar to the M to x.N construct of the fine-grain call-by-value

calculus.

Substitution of value expressions e into other value expressions and computations

is standard

y[e/x] =

{
y if x �= y

e if x = y

(f e′)[e/x] = f (e′[e/x])

�[e/x] = �

(e1, e2)[e/x] = (e1[e/x], e2[e/x])

(πie
′)[e/x] = πi(e

′[e/x])

(λ(yA; S).c)[e/x] = λ(yA; S).(c[e/x]) y fresh for e

and

(e′; s)[e/x] = (e′[e/x]; s)

(p e′)[e/x] = p (e′[e/x])

(let y ⇐ c1 in c2)[e/x] = let y ⇐ c1[e/x] in c2[e/x] y fresh for e

(e′
1 e′

2)[e/x] = (e′
1[e/x] e′

2[e/x])

The substitution of state manipulations into computations is really just a prepending

operation

(e; s′)[s/·] = (e; s.s′)

(p e)[s/·] = p e

(let x ⇐ c1 in c2)[s/·] = let x ⇐ c1[s/·] in c2

(e1 e1)[s/·] = e1 e2

Notice that we always prepend the state manipulation to the first computation in

the term in the case of let computations.

Lemma 1 (Substitution)

The following rules are admissible:

S1 �s s1 : S2 S2 �s s2 : S3

S1 �s s1.s2 : S3

Γ �v e1 : A Γ, x : A,Γ′ �v e2 : B

Γ,Γ′ �v e2[e1/x] : B

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 353

and

Γ �v e : A S1 �s s : S2 Γ, x : A,Γ′; S2 �c c : B; S3

Γ,Γ′; S1 �c c[e/x][s/·] : B; S3

Proof

The state calculus rule is an easy induction. For the value and command calculi, we

first prove that the rules

Γ �v e1 : A Γ, x : A,Γ′ �v e2 : B

Γ,Γ′ � e2[e1/x] : B

Γ �v e : A Γ, x : A,Γ′; S1 �c c : B; S2

Γ,Γ′; S1 �c c[e/x] : B; S2

are admissible by mutual induction on the derivations of the second premises. This

gives the value substitution rule in the lemma statement. We then prove the full

computation substitution rule admissible by induction on the derivation of the third

premise. �

3.2 Examples

3.2.1 Composable continuations

We present a short example of composable continuations expressed in our calculus,

adapted from Wadler (1994). In this case the set of primitive state types is equal to

the set of all value types. The operators reset and shift can be represented as new

constructs in the calculus, with the typing rules

Γ;A �c c : B;B

Γ;C �c reset c : A;C

Γ, f : (T ;D) → (A;D);B �c c : O;O

Γ;B �c shift f.c : T ;A

It is also possible to represent these as primitive commands operating on values of

function type, but this method gives a clearer presentation of the example.

As explained earlier, the intuition behind the shift and reset operators is that

‘reset’ dynamically delimits a context within the execution of the program. The

‘shift’ operation makes this context available to the program as a function, and

afterwards returns control to the context outside the enclosing ‘reset’.

An example term is (assuming primitive value functions for numerals and addition)

let x ⇐ reset

(let y ⇐ shift f.(let a ⇐ f 100 in

let b ⇐ f 1000 in

(a + b; ·))
in (y + 10; ·))

in (1 + x; ·)

Given the interpretation of composable continuations above, this term evaluates to

1121. The context let y ⇐ − in (y + 10; ·) is invoked twice by the application of the

delimited continuation exposed as f by the shift operator. We have used · here to

represent the identity in each place where a term of the state calculus may be used.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

354 R. Atkey

3.2.2 Session types

For the session types example, we have two families of operations for each

input/output capable type: operations that output a value, given a following context;

and operations that input a value, given a following context. We can type these like

so

Γ �v e : X

Γ; !X.S �c outputX,S e : 1; S Γ; ?X.S �c inputX,S : X; S

Again, we have opted to extend the calculus rather than giving these as primitive

commands to give a clearer presentation of the example. Assuming we also extend

the calculus with a simple if-then-else construct, an example term with its typing is

the following:

−; ?Int .?Int .(!Int .◦ + ◦) �c

let x ⇐ inputInt ,?Int .(!Int .◦+◦) in

let y ⇐ inputInt ,!Int .◦+◦ in

let z ⇐ (x + y; ·) in

if z > 10

then let · ⇐ (�1; !Int .◦ + ◦ ⇒ !Int .◦) in outputInt ,◦ z

else (�1; !Int .◦ + ◦ ⇒ ◦)

: 1; ◦

where !Int .◦ + ◦ ⇒ !Int and !Int .◦ + ◦ ⇒ ◦ are primitive state manipulations

witnessing the ordering on sessions as defined earlier.

This term inputs two integers and outputs their sum if it is greater than 10,

otherwise it gives no output. Its behaviour with respect to input and output is

recorded in the state type assigned. Note that we have had to explicitly give the

following actions on every input/output operation. This is obviously impractical for

any kind of realistic programming. We rectify this problem in Section 4.

3.2.3 Typed state

The following example further demonstrates the difficulties with the need to explicitly

declare the context for every effectful operation:

−;X × X �c

let f1 ⇐ λv : Int;X × X.storeX×X v in

let f2 ⇐ λv : Int; Int × X.storeInt×X v in

let ⇐ f1 10 in

let ⇐ f2 20 in

�1 : 1; Int × Int

This program fragment defines two functions, named f1 and f2, that take integer

arguments and update the first and second store cells, respectively (we use the

underline notation to indicate which cell is being mutated). The rest of the program

invokes these functions to store the values 10 and 20.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 355

Value Calculus:

πi(e1, e2) = ei

e = (π1e, π2e)

e = �

f = λ(xA; S1).fx

Command Calculus Rules:

e1 = e2 s1 = s2

(e1; s1) = (e2; s2)

let x ⇐ (e; s) in c = c[e/x][s/·]
let x ⇐ c in (x; ·) = c

(λ(xA; S).c) a = let x ⇐ a in c

let x ⇐ (let y ⇐ c1 in c2) in c3 = let y ⇐ c1 in let x ⇐ c2 in c3

Fig. 2. Equational rules for the Typed Command Calculus.

Note that the implementation of these functions has to explicitly name the types

of the entire state while updating, this is despite the fact that both functions do the

same operation: mutate a cell containing an X to a cell containing an integer. Even

worse, the order in which these functions are called is fixed: f1 requires a state of

type X ×X while f2 requires a state of type Int ×X, so we must run f1 first. Finally,

if we wish to embed this program inside a larger one that operates on more memory

cells, we must rewrite the program to explicitly mention these extra cells.

We will fix all of these problems in Section 4 by allowing commands to be lifted

by arbitrary additional state contexts.

3.3 Equational theory

Equations are generated by three sets of typed axioms of the form Γ �v e1
ax
= e2 : A,

Δ �s s1
ax
= s2 : S and Γ; Δ �c c1

ax
= c2 : A; S , where both sides of each axiom are

typable with the given context and type, and the rules in Figure 2, plus reflexivity,

transitivity, symmetry and congruence. The state calculus has no additional rules.

The value calculus has the standard βη rules for product and unit types, plus an

η expansion rule for functions. The command calculus incorporates value and state

equations via the (e; s) term construct. It also has βη rules for sequencing, a β rule

for functions and commuting conversion for the sequencing construct.

The rules generate three types of equational judgments of the form Γ �v e1 = e2 :

A, S1 �s s1 = s2 : S2 and Γ; S1 �c c1 = c2 : A; S2. Note that the equations only apply

when both sides are well typed with the same context and result type.

3.4 Interpretation in parameterised Freyd categories

The interpretation of the Typed Command Calculus in a parameterised Freyd

category has already been alluded to, but we now spell it out in a more detail

here. Assume a closed parameterised Freyd category J : C × S → K, with

maps specifying the interpretation of primitive value and state types as C and

S objects, respectively, and the interpretation of primitive value, state manipulation

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

356 R. Atkey

and command operations as arrows in C, S and K, respectively. The interpretation

of types is straightforward.

The state calculus is interpreted in S, using the identity for the S-Id rule and

the interpretation of primitive functions, plus composition, for the interpretation

of S-Prim. The rules V-Var, V-Prim, V-1I, V-×I and V-×E-i are given; the standard

interpretation in a category with finite products. The function abstraction rule is

interpreted using the isomorphism of homsets derived from the adjunction forming

the closure: Λ : K((Γ × A, S1), (B, S2)) → C(Γ, (A, S1) → (B, S2)).

The C-V-S rule is interpreted using the functor J in the evident way, and C-Prim

is interpreted just using composition. For sequencing, C-Let is interpreted using

the premonoidal structure of the parameterised Freyd category. Assuming the first

premise is interpreted by an arrow c1 and the second by an arrow c2, the conclusion

is interpreted by J(〈id , id〉, id); Γ �C c1; c2. Thus, the context is duplicated using

the finite product structure of C, the computation c1 is executed in context Γ

and the result and the remaining copy of Γ are fed into c2. The conditions on

the state types in the rule ensure that the composition is valid. The C-→E rule

is interpreted by using the counit of the adjunction forming the closed structure:

ev : ((A, S1) → (B, S2) × A, S1) → (B, S2).

Theorem 2 (Soundness and completeness)

The Typed Command Calculus is sound and complete for closed parameterised

Freyd categories.

Proof

Soundness is by induction on the derivations of equational judgments. Completeness

is proved by the construction of a closed parameterised Freyd category from the

three calculi and the construction of a model within it. See Atkey (2006) for the

more general case of the monoidal Typed Command Calculus (Section 5). �

4 Structured parameterisation

In some of the examples presented earlier we have run into situations where we

have been forced to explicitly give a description for the whole state, even when

applying an operation that only acts upon a small part. In the typed side effects

example (Sections 2.3.2 and 3.2.3), each of the read and store operations only acts

upon individual memory cells, but the operation itself must mention all the memory

cells it does not touch. Likewise, in the session types example (Sections 2.3.4 and

3.2.2), each of the operations must explicitly state all the events that are expected

to follow. This makes writing programs intolerably difficult as we must always keep

in mind the whole context that a program operates in when working on a small

part. This problem is related to the frame problem of Artificial Intelligence; we have

to explicitly declare everything that is not affected by an operation, as well as the

things that are.

The solution we propose here is to make use of the structure present in the

state descriptions used in our examples and lift this structure up to the level of

computations. In the typed side effects example, states consisting of multiple memory

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 357

cells are constructed using symmetric monoidal structure. Thus we have operations

S ⊗ − and − ⊗ S for building composite state descriptions. We lift these structuring

operations to the level of computations by requiring natural transformations (− ⊗
S)† : T (S1, S2, A) → T (S1 ⊗S, S2 ⊗S, A), and symmetrically. The idea is that (− ⊗S)†

takes a computation that operates ‘locally’ and lifts it up to a larger context. The

meaning of ‘local’ here is similar to the local reasoning of Separation Logic (O’Hearn

et al. 2001). Indeed, the natural transformation (− ⊗ S)† is reminiscent of the frame

rule of Separation Logic:

{P }c{Q}
{P ∗ S}c{Q ∗ S}

In this rule, the specification {P }−{Q} has been proved ‘locally’ about some program

c. This is then lifted to a larger context by adjoining an additional state description

S . We follow up this example in Section 4.2.2 by considering a minimal version of

Separation Logic in terms of parameterised monads.

We also note that the strength τ of a (parameterised) monad also serves to

interpret the lifting of computations up to a larger context. The similarity between

the two actions will become more apparent when we consider the extension of

parameterised Freyd categories to structured parameterisation in Section 4.3.

4.1 Endofunctor liftings for parameterised monads

We assume that the relevant structure we require has been given as endofunctors and

natural transformations on the category S of state descriptions and manipulations.

For example, symmetric monoidal structure is given as a family of pairs of endofunc-

tors S ⊗ − and − ⊗ S that together are bifunctorial with the associated associativity,

left and right units and symmetry natural transformations. The following definition

describes the requirements on a suitable lifting of this structure to the level of

computations modelled by an S-parameterised monad.

Definition 5

Given an S-parameterised monad (T , η, μ), and a functor F : S → S, a lifting

of F to T is a natural transformation F
†
S1 ,S2 ,A

: T (S1, S2, A) → T (FS1, FS2, A) that

commutes with the unit, multiplication and strength of the monad

T (S1, S2, T (S2, S3, A)) T (FS1, FS2, T (S2, S3, A))

T (S1, S3, A) T (FS1, FS2, T (FS2, FS3, A))

T (FS1, FS3, A)

��F†

��
μ

��
T (FS1 ,FS2 ,F

†)

�������������������

F†
��
μ

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

358 R. Atkey

A T (S, S , A)

T (FS, FS, A)

��η

���
��

��
��

��
��

��

ηF

���
� �
� �
� �
� �

F†

A × T (S1, S2, B) T (S1, S2, A × B)

A × T (FS1, FS2, B) T (FS1, FS2, A × B)

��τ

��
A×F†

��
F†

��τ

A natural transformation ζ : F ⇒ G in S is natural for liftings F† and G† if the

diagram

T (S1, S2, A) T (FS1, FS2, A)

T (GS1, GS2, A) T (FS1, GS2, A)

��F†

��
G†

��

T (FS1 ,ζ,A)

��T (ζ,GS2 ,A)

commutes.

Extending the alternative partial definition of a parameterised monad as a CC-

enriched category noted earlier, the definition of a lifting of a functor is the same as

a CC-functor on this category.

Lemma 2

If we have two natural transformations ζ : F ⇒ G and ζ ′ : G ⇒ H that are

natural for liftings F†, G† and H† then their composition ζ; ζ ′ is natural for F† and

H†.

Proof

Consider the following diagram, where the outer diagram is the one we want to

commute:

T (S1, S2, A) T (FS1, FS2, A)

T (GS1, GS2, A) T (FS1, GS2, A)

T (GS1, HS2, A)

T (HS1, HS2, A) T (FS1, HS2, A)

��F†

��

H†

���������������
G†

��

T (FS1 ,ζ;ζ
′ ,A)

		�������������
T (FS1 ,ζ,A)

��T (ζ,GS2 ,A)

��
T (GS1 ,ζ

′ ,A)

���
��

��
��

��
��

��
��

��
��

��

T (FS1 ,ζ
′ ,A)

																								

T (ζ,HS2 ,A)

��
T (ζ;ζ ′ ,HS2 ,A)

���������������

T (ζ ′ ,HS2 ,A)

The internal diagrams all commute: the top-most and left-most commute since ζ

and ζ ′ are natural for the liftings of the functors; the bottom-most and right-most

commute since T is a functor so it preserves composition; and the centre diagram

commutes by the bifunctoriality of T . Hence the outer diagram commutes. �

Using Definition 5, we can state the structure we require on parameterised monads

to interpret structured parameterisation for our examples.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 359

Definition 6

An S-parameterised monad (T , η, μ) has monoidal lifting if, for every S ∈ ObS,

there are liftings for the functors − ⊗ S and S ⊗ −, written (− ⊗ S)† and (S ⊗ −)†,

such that all the monoidal structure transformations – associativity and left and

right units – are natural for them and so are the natural transformations given by

− ⊗ s and s⊗ − for every arrow s. The monad has symmetric monoidal lifting if the

symmetry natural transformations are also natural.

4.2 Examples

We now take some of the examples from Section 2.3 and show how the addition of

structured parameterisation helps.

4.2.1 Typed side effects

On the C-parameterised monad defined in Section 2.3.2, we can define symmetric

monoidal liftings as

(A × −)† = c �→ λ(s, s1).let (s2, a) = c(s1) in ((s, s2), a)

and these can be defined similarly for (−×A)†. These lift the finite product structure

of C up to computations. With these definitions we do not need to explicitly give the

whole state for the read and store operations, they can be lifted up to the required

contexts by these operations.

4.2.2 Minimal Separation Logic

The read and store operations of previous example operate on specific store cells,

where the cell selected for each operation is determined by the use of the symmetric

monoidal lifting operations. An alternative is to annotate each read and store with

the abstract location of the heap cell upon which it operates.

For this example we will use a cut-down variant of Separation Logic (O’Hearn

et al. 2001) for the state descriptions – only the type of the contents of memory

cells is recorded. Entailment of assertions will be used as the arrows of the state

category. Computations in the parameterised monad will be ‘local’ commands that

satisfy Separation Logic specifications.

Assume some set L of locations. Stores are then partial maps from locations to

values, which we take in this example to be either integers or booleans: St = L ⇀

� + �. Two stores are separate (s1#s2) if dom(s1) ∩ dom(s2) = ∅. We define a partial

operation of store combination by

s1 ∗ s2 =

⎧⎨
⎩l �→

{
s1(l) if l ∈ dom(s1)

s2(l) if l ∈ dom(s2)
if s1#s2

undefined otherwise

The language of assertions is given by the grammar

S ::= l �→ � | l �→ � | l �→ ? | S1 ∗ S2

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

360 R. Atkey

The first three assertion kinds state that a store consists of a single cell l containing

an integer, a boolean or an indeterminate value, respectively. The final kind asserts

that the store consists of two separate substores described by S1 and S2, respectively.

This semantics is formalised by the following definition of satisfaction:

s |= l �→ � iff ∃i ∈ �. s = {l �→ i}
s |= l �→ � iff ∃b ∈ �. s = {l �→ b}
s |= l �→ ? iff ∃v ∈ � + �. s = {l �→ v}
s |= S1 ∗ S2 iff ∃s1, s2. s1 ∗ s2 � s ∧ s1 |= S1 ∧ s2 |= S2

The relation � is true iff both sides are defined and equal, or both sides are undefined.

We define entailment between assertions as S1 |= S2 iff for all s, s |= S1 implies s |= S2.

We treat assertions and entailment as a symmetric monoidal category, the symmetric

monoidal functor given by S1 ∗ S2.

Following O’Hearn et al. (2004), we define local commands as a subset of side-

effecting commands that can fault. For a set A, define LCom(A) as elements c ∈
St → ((St × A) + {fault}) that satisfy a locality condition

Locality For all s, s1, s′ and a such that s#s1, if c(s) = (s′, a) then s′#s1 and

c(s ∗ s1) = (s′ ∗ s1, a).

This condition states that if a command completes successfully (i.e., does not

result in fault) for a store s, then if we attach any additional store s1, then this store

is preserved and the result is the same as before. The key idea is that a command

will fault if it is provided a store that does not contain the locations it requires. We

can get away with a simpler functional description of commands here instead of

the relational description in O’Hearn et al. (2004) because we do not consider non-

deterministic memory allocation – our aim is to show how parameterised monads

can handle locality.

We can now give the description of our parameterised monad. The functor part

is defined as

T (S1, S2, A) = {c ∈ LCom(A) | ∀s. s |= S1 ⇒ ∃s′, a. c(s) = (s′, a) ∧ s′ |= S2}

So computations are local commands that obey a specification for their start and end

states. The unit and multiplication are defined as for the traditional state monad.

We must check that these operations introduce and preserve locality, but this is

straightforward.

There are two primitive operations for this monad: reading values of type A from

a location and storing new values of type A at a given location, where A ∈ {�,�}

read l,A : T (l �→ A, l �→ A,A)

read l,A = λs.

{
(s, s(l)) if l ∈ dom(s)

fault otherwise

store l,A : A → T (l �→?, l �→ A, 1)

store l,A = a �→ λs.

{
(s[l �→ a], �) if l ∈ dom(s)

fault otherwise

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 361

Thus, reading from l looks up that location in the store and returns the value

stored there, faulting if it is not present. Storing updates the store at l, faulting if

the location is not in the current store. Both of these operations are clearly local

and match their given specifications.

Finally, we define the liftings of the assertion’s symmetric monoidal structure.

Due to the locality property we have required on computations, this is just

inclusion: T (S1, S2, A) ⊆ T (S1 ⊗ S, S2 ⊗ S, A), and symmetrically. Locality ensures

that computations act the same in larger stores.

Our definition of read and store hard-code the locations that a program accesses

into its program text. We discuss in Section 6 the possibility of using indexing to

relax this restriction and still retain the variety of types of reference cells over the

execution of the program.

4.2.3 Categories

Recall that the parameterised monad in this example is TS1
(S1, S2, A) = S(S1, S2)×A.

Given any functor F : S1 → S1 that is also a functor on the parameterising

subcategory S, there is an obvious lifting F† defined as F†(s, a) = (Fs, a). Natural

transformations ζ : F ⇒ G are automatically natural for these liftings.

In the case of the category StkPrg we have a natural monoidal structure given

by addition on the objects. With the liftings of this monoidal structure, we need no

longer provide the depth of the current stack for each of the basic operations of the

monad

push : � → TStkPrg(0, 1, 1) = i �→ ([push.i], �)

add : 1 → TStkPrg(2, 1, 1) = � �→ ([add], �)

dup : 1 → TStkPrg(1, 2, 1) = � �→ ([dup], �)

4.2.4 Typed I/O: Session types

In this example, the state description category has, for any session type S , an

endofunctor −.S given by substitution for ◦. We can define a lifting for the functor

−.S by induction over the tree structure of TΩ(S1, S2, A): for each Ω-operation

inputX,S ′ or outputX,S ′ in the tree, there exists an Ω-operation inputX,S ′ .S and

outputX,S ′ .S . Hence we get a lifting

(−.S)† : TΩ(S1, S2, A) → TΩ(S1.S , S2.S , A).

Hence, we can give the primitive monad operations as

inputX : 1 → T (?X, ◦, X)

outputX : X → T (!X, ◦, 1)

and rely on the lifting to append future traces as needed. Now, if we have

computations represented by arrows c1 : A → T (?X, ◦, B) and c2 : B → T (!X, ◦, C)

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

362 R. Atkey

then we can sequence them using the lifting

A
c1 �� T (?X, ◦, B)

(−.!X)†
�� T (?X.!X, !X,B)

T (?X.!X,!X,c2)

��
T (?X.!X, !X,T (!X, ◦, C))

μ �� T (?X.!X, ◦, C)

4.2.5 Monads with a single parameter

Given the operations in the previous example, a natural question is whether our

style of parameterisation is required in the case of session types. It would seem

that a monad with a single parameterisation giving the session carried out by

the computation would suffice. That is, instead of T (!X.?X.◦, ◦, A), one would just

have T (!X.?X,A). We now briefly discuss this alternative definition. Wadler and

Thiemann (2003) investigated the link between monads and effect types by focusing

on the indexing of monads by a single parameter.

We assume some base category C and a strict monoidal category of ‘effect types’

E with unit ∅ and monoidal bifunctor ε · ε′. The functor part of the monad has type

T : Eop × C → C, the idea being that T (ε, A) describes computations that do effects

described by ε, yielding values of type A. The functorial action on the first argument

provides for subeffecting. The unit and multiplication are natural transformations

with types

ηA : A → T (∅, A)

με,ε′ ,A : T (ε, T (ε′, A)) → T (ε · ε′, A)

The unit provides a computation that performs no effects, and the multiplication

sequences two computations, combining their effect annotations.

Given a singly parameterised monad T : Eop × C → C, it is easy to express it

by means of a (doubly) parameterised monad T ′ : Eop × E × C → C by setting

T (ε, A) = T ′(ε, ∅, A), with unit given by η′
∅ and multiplication as for the session types

example. We read this as interpreting computations with effects ε as computations

that start with the potential to do the effects in ε and end with no potential. Thus,

given a type system with a single effect parameter, to give a semantics, it suffices to

look for a parameterised monad as we have defined it.

Going in the opposite direction, it is not clear how to proceed. There does not

seem to be an obvious way to combine the two parameters of a parameterised

monad into the single parameter of the definition in this section in such a way that

interacts well with the multiplication and unit. We take this mismatch to mean that

parameterised monads provide a more refined view of effectful computations since

they can speak directly about the state before and after the computation.

As a further argument in favour of our definition is that the obvious definition of

Kleisli category for a singly parameterised monad requires a new kind of category,

where the homsets are fibred over E. That is, for each pair of objects of C, A

and B there is a function eff : CT (A,B) → ObE, together with reindexing functions

f∗ : ε∗
2 → ε∗

1 for every arrow f : ε1 → ε2 in E, where ε∗ = {g ∈ CT (A,B) | eff (g) = ε}.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 363

The identities must satisfy eff (id) = ∅ and composition must satisfy eff (f; g) =

eff (f) · eff (g). Such a definition already brings complications by stepping outside

usual category theory, and it is unclear what a suitable definition of adjunction

between such a category and a normal category is.

4.2.6 Typed I/O: Multiple independent I/O channels

The typed I/O construction can be extended to monoidal parameterisation. This

can be used to model the use of multiple independent I/O devices. Given a discrete

category S of state descriptions, and a collection of operations Ω, as defined earlier,

we define a new monad parameterised by the free strict monoidal category on S.

The idea is that an object represents an array of devices in their respective states.

The notation S(S ′) denotes an object of this category with a distinguished location

holding an S object S ′. We construct a monad TΩ∗ . On objects, it is built from the

following rules:

a ∈ A

e(a) ∈ TΩ∗(S, S , A)

op ∈ Ω o ∈ out(op) k ∈ in(op) → TΩ∗ (S(post(op)), S ′, A)

S(op)(o, k) ∈ TΩ∗ (S(pre(op)), S ′, A)

This construction is subject to the smallest equivalence relation that respects the

S(op)(o,−) operations and including the following equation, given that S(−) �= S ′(−):

S(op)(o, λi. S ′(op ′)(o′, λi′. k i i′)) = S ′(op ′)(o′, λi′. S(op)(o, k i i′))

Therefore, computations are trees of input/output operations-in-context that branch

for inputs, with values at the leaves. The parameterising category is discrete, so we

do not have to define the monad on any state manipulation arrows. Note that

T (S, S ′, A) is empty if S and S ′ are of different sizes – we cannot throw I/O devices

away, or generate new ones. The equation states that operations on independent

devices in different slots are independent and can be commuted past each other.

Monad unit and multiplication are defined as earlier. Monoidal lifting is defined by

appending additional context to the left or right of each node.

4.3 Structured parameterisation for Freyd categories

Definition 7
A parameterised Freyd category J : C × S → K has a lifting of an endofunctor

F : S → S if it has a functor F� : K → K such that F�(J(A, S)) = J(A, FS) and

F�(J(f, s)) = J(f, Fs). A natural transformation ζ : F ⇒ G is natural for liftings F�

and G� if the diagram

J(A, FS) J(A,GS)

J(B, FS ′) J(B,GS ′)

��J(A,ζ)

��

F∗f

��

G∗f

��J(B,ζ)

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

364 R. Atkey

commutes for all f : (A, S) → (B, S ′). This lifting must commute with the parame-

terised Freyd structure

F∗(A �C (B, S)) = A �C (B, FS)

F∗(f �C c) = f �C (F∗c)

and it must commute similarly for �C.

In the case of monoidal liftings, when the endofunctors are S ⊗ − and − ⊗ S and

the natural transformations are the associativity, left and right units and symmetry,

the conditions required here are exactly the same as for premonoidal structure with

respect to C, except that it is with respect to S. In this special case, the definition

is somewhat more symmetric than that for parameterised monads. This is to be

expected, given that the focus of the definition of (parameterised) Freyd category

is directly upon computation in context, so it is easier to extend the definition to

multiple premonoidal structures, and so multiple kinds of computation in context.

We call the special case of symmetric monoidal lifting a double parameterised Freyd

category.

Theorem 3

For an S-parameterised monad (T , η, μ) on C, given a lifting F† of an endofunctor

F : S → S, we get a lifting F� on the parameterised Freyd category CT and

vice versa. These operations are inverse. Moreover, given a natural transformation

ζ : F ⇒ G that is natural for liftings F† and G†, then it is also natural for liftings

F� and G�, and vice versa.

Proof

Given a lifting F† on the parameterised monad T , define the lifting F� on CT for

F�c as the composite

A T (S1, S2, B) T (FS1, FS2, B)��c ��F†

Given a lifting F� on a parameterised Freyd category, define the lifting F† on the

derived monad using the closed structure of the Freyd category, recalling that the

derived monad’s functor is T (S1, S2, A) = (1, S1) → (A, S2)

ev : ((1, S1) → (A, S2) × 1, S1) −→ (A, S2)

F�(ev) : ((1, S1) → (A, S2) × 1, FS1) −→ (A, FS2)

Λ(F�(ev)) : [(1, S1) → (A, S2)] −→ [(1, FS1) → (A, FS2)]

It is routine to check that both these definitions obey the required axioms. In partic-

ular, note that the requirement that F† commutes with the monad multiplication μ

directly corresponds to the requirement that F� preserves composition, likewise for

commutativity with η and preservation of identities. Also, the requirement that F†

commutes with the strength directly corresponds to preservation of �C and �C. That

they are mutually inverse definitions can be seen by writing out the definitions and

calculating, keeping in mind the differences in composition in C and CT . Checking

that these operations preserve the naturality of natural transformations on S is also

routine. �

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 365

State Calculus:

z : S �s z : S
S-Var

Δ �s s : S1 (m : S1 −→ S2) ∈ ΦS

Δ �s m s : S2
S-Prim

Δ1 �s s1 : S1 Δ2 �s s2 : S2

Δ1 �� Δ2 �s (s1, s2) : S1 ⊗ S2
S-⊗I

Δ1 �s s1 : S1 ⊗ S2 Δ2, z1 : S1, z2 : S2 �s s2 : S3

Δ1 �� Δ2 �s let (z1, z2) = s1 in s2 : S3
S-⊗E

I �s �I : I
S-II

Δ1 �s s1 : I Δ2 �s s2 : S

Δ1 �� Δ2 �s let �I = s1 in s2 : S
S-IE

Value Calculus:

x : A ∈ Γ

Γ �v x : A
V-Var

Γ �v e : A1 (f : A1 −→ A2) ∈ ΦV

Γ �v f e : A2
V-Prim

Γ �v �1 : 1
V-1I

Γ �v e1 : A1 Γ �v e2 : A2

Γ �v (e1, e2) : A1 × A2
V-×I

Γ �v e : A1 × A2

Γ �v πie : Ai
V-×E-i

Γ, x : A1; z : S1 �c c : A2; S2

Γ �v λ(xA1 ; zS1).c : (A1; S1) → (A2; S2)
V-→I

Command Calculus:

Γ �v e : A Δ �s s : S

Γ; Δ �c (e; s) : A; S
C-V-S

Γ �v e : A (p : (A; S1) −→ (B; S2)) ∈ ΦC

Γ; z : S1 �c p (e; z) : B; S2
C-Prim

Γ; Δ1 �c c1 : A1; S1 Γ, x : A1; Δ2, z : S1 �c c2 : A2; S2

Γ; Δ1 �� Δ2 �c let (x; z) ⇐ c1 in c2 : A2; S2
C-Let

Γ; Δ1 �c c1 : A1; S1 ⊗ S2 Γ, x : A1; Δ2, z1 : S1, z2 : S2 �c c2 : A2; S3

Γ; Δ1 �� Δ2 �c let (x; z1, z2) ⇐ c1 in c2 : A2; S3
C-Let-⊗

Γ; Δ1 �c c1 : A1; I Γ, x : A1; Δ2 �c c2 : A2; S3

Γ; Δ1 �� Δ2 �c let (x; �I) ⇐ c1 in c2 : A2; S3
C-Let-I

Γ �v e1 : (A; S1) → (B; S2) Γ �v e2 : A

Γ; z : S1 �c e1(e2; z) : B; S2
C-→E

Fig. 3. Typing rules for the Monoidal Typed Command Calculus.

5 Symmetric Monoidal Typed Command Calculus

Given the wide range of possible structures possible on the state category S, it is

infeasible to give a neat calculus that covers all of them. Therefore, we focus on

a single important example: that of symmetric monoidal structure. In this section

we extend the calculus of Section 3 so that it is sound and complete for closed

double parameterised Freyd categories. We call the extended calculus the Symmetric

Monoidal Typed Command Calculus. The changes to the typing rules are shown in

Figure 3. The terms, types and rules for the value calculus are unchanged, except by

the larger range of state type constructors

S ::= X ∈ TS | I | S1 ⊗ S2

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

366 R. Atkey

State contexts are now lists of state manipulation variables and state type pairs,

ranged over by Δ and with the condition that no variable appears more than

once. We define the merging relation − �� − ≈ − on triples of contexts by the

rules

I �� I ≈ I

Δ1 �� Δ2 ≈ Δ

(Δ1, z : S) �� Δ2 ≈ Δ, z : S

Δ1 �� Δ2 ≈ Δ

Δ1 �� (Δ2, z : S) ≈ Δ, z : S

Thus if Δ1 �� Δ2 ≈ Δ then Δ1 and Δ2 have no variables in common. Given contexts

Δ1, Δ2, we write Δ1 �� Δ2 to stand for any context Δ such that Δ1 �� Δ2 ≈ Δ.

The state calculus has additional rules for introducing and eliminating pair and

unit types, following the standard term constructs for substructural calculi. The

command calculus retains the rules C-V-S, C-Prim and C-→E.

There are now three sequencing constructs in the command calculus, typed by the

rules C-Let, C-Let-⊗ and C-Let-I . All the rules type the execution of a command

c1, lifted up to the context of (Γ; Δ2), followed by the execution of a second

command c2. The rule C-Let differs in this calculus from the one in the Typed

Command Calculus by allowing computation in a state context, as well as in a value

context.

The three sequencing rules differ in the de-structuring of the state output of the

first term. The C-Let rule does no de-structuring and passes the state output of

c1 directly into c2. Rule C-Let-⊗ takes a state pair from c1 and splits it into two

separate variables in c2’s context. Rule C-Let-I takes a unit state and discards it.

To see why these constructs are needed, consider the following example. Assume we

have a primitive command p : (1, I) → (1, S ⊗ S). We can use this command in a

sequencing construct

let (x; z) ⇐ p(∗1, ∗I) in . . .

However, without C-Let-⊗ there would be no way to decompose the variable z

bound in the body of this expression in a way that would allow us to use the

components in two different commands. Assuming two commands c1 and c2 with

free variables z1 and z2, respectively, the use of C-Let-⊗ allows us to use the output

of p in both

let (x; z1, z2) ⇐ p(∗1; ∗I) in let (x; z′
1) ⇐ c1 in let (x; z′

2) ⇐ c2 in . . .

The C-Let-I rule fulfils a similar role in eliminating variables of type I .

5.1 Example and a variation

We now present an example program in our calculus and discuss an alternative

calculus for the semantic structures we have defined.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 367

5.1.1 Example

We rewrite the example from Section 3.2.3 to take advantage of the lifting operations

−; z : X × X �c

let f ⇐ λ(vInt ; zX).store (v; z) in

let (; z1, z2) ⇐ (�1; z) in

let (; z1) ⇐ f (10; z1) in

let (; z2) ⇐ f (20; z2) in

(�1; (z1, z2)) : 1; Int × Int

Here, we need only write the function to store an integer once. We explicitly pass

around the pieces of the state that we are interested in. The pattern match on the

second ‘let’ splits the state into two, the two parts are operated on separately by the

two invocations of f and then they are put back together for the result.

This explicit manipulation of the state is sometimes useful and sometimes not;

in the next example we show how to alter the calculus to make the state part

implicit.

5.1.2 Variation: Implicit state calculus

In the calculus of Figure 3, the state calculus is fully explicit, and in the previous

example this is used in order to distribute the parts of the state around the program.

This is essential in order to disambiguate which piece of state each read and store

operation acts upon. As we explained in the example in Section 4.2.2, an alternative

is to annotate read and store operations with the memory locations they are acting

upon. We can then use a minimal version of Separation Logic to describe the state.

We now discuss the relevant changes to the calculus to support the situation when

the state category is a partially ordered set with a ordered monoid structure.

The first act is to remove the state calculus altogether and replace it with a single

judgment form S1 ⇒ S2 indicating the entailment relation of the assertions. State

contexts are replaced with a single assertion, similar to the Typed Command Calculus

in Section 3. We change the C-V-S rule to remove the state calculus component

Γ �v e : A

Γ; S �c valS e : A; S
C-V

This rule incorporates a given pure value into the command calculus, at a fixed state

type. We incorporate the partial order on state types by a rule of consequence

S1 ⇒ S ′
1 Γ; S ′

1 �c c : A; S ′
2 S ′

2 ⇒ S2

Γ; S1 �c c : A; S2

C-Conseq

Note that due to the fact there is no term-level syntax associated with the C-Conseq

rule, the semantics of this calculus is defined over typing derivations and not terms.

This means that for some uses of the semantics in parameterised Freyd categories

coherence issues must be addressed, similar to Birkedal et al. (2006).

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

368 R. Atkey

We also remove all the sequencing C-Let rules and replace them with a single rule

Γ; S1 �c c1 : A; S2 Γ, x : A; S2 ∗ S �c c2 : B; S3

Γ; S1 ∗ S �c let x ⇐ c1 in c2 : B; S3

C-Let

This is semantically identical to the old C-Let rule. The only difference is that there

is a single state type on the left side of the judgment, rather than a context. It is

similar to the C-Let rule of the Typed Command Calculus in Section 3, except that

we allow an additional state type S , that c1 is unaware of, to be passed to c2.

We also alter the C-Prim, C-→E and V-→I rules to remove the variable name from

the state context.

Using the location-annotated read and write operations from the example in

Section 4.2.1, we can write the following program in the new calculus:

−; l1 �→ � ∗ l2 �→ � �
let x ⇐ readl1 in

let y ⇐ readl2 in

let � ⇐ storel2 (x + y � 10) in

vall1 �→�∗l2 �→� �

: 1; l1 �→ � ∗ l2 �→ B

This program starts in states with two locations l1 and l2 containing integers, reads

an integer from both of them and stores the boolean result of the test in l2. Note

that in the final state type of the program, the type of l2 has changed to �. Also

note that we have not had to state all the context preserved by each of the basic

operations on the state; this is due to the use of the symmetric monoidal lifting.

If we do not assume that the operation ⊗ on state types is commutative then we

can use this calculus as an improved language for the session types of Sections 3.2.2

and 4.2.4. We restate the example program from Section 3.2.2, using the new let rule

to ensure that subprograms are oblivious to the whole program’s state type

−; ?Int .?Int .(!Int .◦ + ◦) �
let x ⇐ inputInt in

let y ⇐ inputInt in

let z ⇐ val (x + y) in

if z > 10 then outputInt z else val �1

: 1; ◦

Notice that we have also been able to remove the explicit uses of the partial order

on session types due to the C-Conseq rule.

5.2 Equational theory and interpretation

The equational rules for the Symmetric Monoidal Typed Command Calculus are

presented in Figure 4, supplemented by axioms, reflexivity, symmetry, transitivity

and congruence as usual. The rules for the value calculus are unchanged. The state

calculus now has additional βη rules for both of the type constructors. We use

Ghani’s generalised η rule (Ghani 1995), which eliminates the need for commuting

conversions.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 369

State Calculus:

let (z1, z2) = (s1, s2) in s3 = s2[s1/z1, s2/z2]

let (z1, z2) = s1 in s2[z1 ⊗ z2/z] = s2[s1/z]

let �I = �I in s2 = s2

let �I = s1 in s2[�I/z] = s2[s1/z]

Value Calculus:

πi(e1, e2) = ei

e = (π1e, π2e)

e = �

f = (λ(xA; zS1).f(x; z))

Command Calculus:

e1 = e2 s1 = s2

(e1; s1) = (e2; s2)

let (x; z) ⇐ (e; s) in c = c[e/x, s/z]

let (x; z) ⇐ c in (x; z) = c

let (x; z1, z2) ⇐ (e; (s1, s2)) in c = c[e/x, s1/z1, s2/z2]

let (x; z1, z2) ⇐ c in (x; (z1, z2)) = c

let (x; �I) ⇐ (e; �I) in c = c[e/x]

let (x; �I) ⇐ c in (x; �I) = c

(λ(x, z).c) (e, z′) = let (x; z) ⇐ (e; z′) in c

let (x; z1, z2) ⇐ (e1; s1) in (e2; s2) = (e2[e1/x]; let (z1, z2) = s1 in s2)

let (x; �I) ⇐ (e1; s1) in (e2; s2) = (e2[e1/x]; let �I = s1 in s2)

C[let (x; z) ⇐ c1 in c2] = let (x; z) ⇐ c1 in C[c2]

C[let (x; z1, z2) ⇐ c1 in c2] = let (x; z1, z2) ⇐ c1 in C[c2]

C[let (x; �I) ⇐ c1 in c2] = let (x; �I) ⇐ c1 in C[c2]

C[−] ::= − | let (x; z) ⇐ C[−] in c | let (x; z1, z2) ⇐ C[−] in c | let (x; �I) ⇐ C[−] in c

Fig. 4. Equational rules for the Monoidal Typed Command Calculus.

The command calculus retains the inclusion of value and state equalities, the βη

rules for the unary sequencing construct and the β rule for functions from before.

There are also βη rules for the pair and unit sequencing constructs. There are also

two β rules for the pair and unit sequencing constructs that cross the divide between

eliminations of product and unit types performed in the command calculus and

those performed in the state calculus. This is required to establish completeness.

Finally, there are three sets of commuting conversion rules, one for each of the

sequencing constructs.

As before the equational rules generate three equational judgments of the form

Γ �v e1 = e2 : A, Δ �s s1 = s2 : S and Γ; Δ �c c1 = c2 : A; S . By extending the above

interpretation, the equational theory generated is sound and complete for closed

double parameterised Freyd categories (see Atkey 2006 for the proof).

Theorem 4

The Symmetric Monoidal Typed Command Calculus is sound and complete for

closed double parameterised Freyd categories.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

370 R. Atkey

6 Related work

Computational monads (Moggi 1989, 1991) have been extremely successful in

providing a framework for modelling a large range of computational phenomena.

They have also been used to do effectful programming in pure functional languages

(Peyton Jones & Wadler 1993). Power and Robinson (1997) introduced Freyd

Categories as an alternative presentation of strong monads.

In this paper we have presented the basic category theoretic definitions for

interpreting type systems with additional information about the effects that programs

perform. We have given typed calculi that directly correspond to these definitions.

In this section we cite some of the previous works on such type systems and relate

them to the present work.

6.1 Linear types

The problem of incorporating state and side effects into functional languages has

been attacked by using type systems based on variants of Girard’s (1987) Linear

Logic. Examples include Wadler’s (1990, 1991) systems, Hofmann’s (2000) LFPL

and Morrisett et al.’s (2005) Linear Language with Locations. The last of these also

uses indexed types to separate pointers from assertions about their use (see also

Walker 2005).

In Atkey (2006) we demonstrated how to use our parameterised notions of

computation to interpret a language with linear types. We take Hofmann’s LFPL as

a prototypical linearly typed language; this language is similar to those of Wadler

(1990) and Walker (2005). The language LFPL is designed so that every data

structure stored in the heap has a single pointer to it, so that when it is used its heap

space may be safely made available back to the program. The key point in LFPL’s

type system (and most other linear systems) is that references to the heap must be

treated linearly (no duplication or discarding) in order to preserve the single-pointer

invariant. A subset of types in the language are labelled as heap free: that is, they do

not refer to the memory of the computer. Hence they may be treated non-linearly.

We use double parameterised Freyd categories to model this situation. The types

of the calculus are modelled as objects in K, i.e., as pairs of C and S objects.

A heap-free type has an S component which is just I , the unit of the monoidal

structure of S. It may then be freely duplicated and discarded. We also require the

combined premonoidal structures on K to be symmetric monoidal. This amounts

to the following diagram commuting:

(A × B, S1 ⊗ S2) (A′ × B, S ′
1 ⊗ S2)

(A × B′, S1 ⊗ S ′
2) (A′ × B′, S ′

1 ⊗ S ′
2)

��(c1�CB)�SS2

���
��
� �
� �

A�C(S1�Sc2)

���
��
� �
� �

A′�C(S ′
1�Sc2)

��(c1�CB
′)�SS ′

2

for all c1 : (A, S1) → (A′, S ′
1) and c2 : (B, S2) → (B′, S ′

2). In terms of parameterised

monads this is the requirement that the two obvious arrows of type

T (S1, S
′
1, A) × T (S2, S

′
2, B) → T (S1 ⊗ S2, S

′
1 ⊗ S ′

2, A × B)

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 371

using strength and lifting are equal. We also require that the functor J(−, I) is

full – meaning that no effects may occur with the empty state description.

From this structure we can derive a functor J ′ : C → K, defined as J ′(−) = J(−, I),

which is full and preserves finite products. The category K is symmetric monoidal

with (A, S1) ⊗ (B, S2) = (A × B, S1 ⊗ S2). If the original double parameterised Freyd

category had exponentials then this induces an adjunction

K(J ′Γ ⊗ X,Y) ∼= C(Γ, X ⇒ Y)

suitable for interpreting functions that do not have any free non-heap-free variables.

In order to interpret functions that close over non-heap-free variables we need a

second closed structure which will make K a symmetric monoidal closed category.

At the level of double parameterised Freyd categories this requires a second adjoint

pair

K((A × B, S1 ⊗ S2), (C, S3)) ∼= K((A, S1), (B, S2) � (C, S3)).

This kind of function allows closure over state which is hidden from clients of the

closure. Notice that the codomain on the right-hand side is a single object, rather

than a pair of a C and a S object. Due to the definition of parameterised Freyd

category this must actually be such a pair. In Atkey (2006) we considered an example

using functor categories to model a linear language with state. In this case the C
component is just the terminal object.

Clean’s uniqueness types (Barendsen & Smetsers 1993) use a linear discipline to

incorporate effects into a pure functional language, but the approach is too different

to other linearly typed languages to fit into the method described in this section.

Harrington (2006) gives a proof theory and categorical semantics for uniqueness

types.

6.2 Indexed types

The idea of annotating typing judgments with start and finish annotations about

the state of the machine has appeared in several type systems in the literature. Alias

Types (Smith et al. 2000; Walker & Morrisett 2000), the Calculus of Capabilities

(Walker et al. 2000), Hoare Type Theory (Nanevski et al. 2006) and Applied Type

Systems with Stateful Views (Zhu & Xi 2005) all define an additional syntactic

category of state descriptions to safely type pointer manipulating programs. The

primary difference with our work is that they all index type judgments by contexts

of pointer values, enabling them to divorce pointers and assertions that they may

be accessed. This is particularly vital in the example of typed state with read and

store operations annotated with explicit locations in Sections 4.2.2 and 5.1.2, since it

allows functions that are parametric in the locations they operate on to be written.

We briefly sketch the additions to the Typed Command Calculus with implicit

state described in Section 5.1.2. We extend the judgments with an additional context

Θ which is a list of abstract location variables. Value and state types may now

contain references to the location variables in the context, so we have a value

type Ref (l) of references to location l and the locations in state types are bound

by Θ.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

372 R. Atkey

In this language, the read and store operations are typed as follows:

Θ | Γ �v x : Ref (l)

Θ | Γ; l �→ X �c read x : X; l �→ X

Θ | Γ �v x : Ref (l) Θ | Γ �v y : X

Θ | Γ; l �→? �c store x y : 1; l �→ X

Hence the dynamic location x for reading and storing is determined at runtime.

For typing, the location is statically fixed by l, but l is now a location variable

rather than a fixed location as in Section 4.2.1. Note that the type X here could

also contain references of type Ref (l′) for some other location variable l′, allowing

linked data structures on the heap to be represented. More complex forms of state

descriptions would allow more complex linked data structures to be considered, but

consideration of such is beyond the scope of this paper.

The rules for function types become more complicated

Θ,Θ′ | Γ, x : A; S1 �c c : B; S2 Θ � Γ

Θ | Γ �v λΘ′; x : A; S1.c : ΠΘ′.(A; S1) → (B; S2)

Θ | Γ �v e1 : ΠΘ′.(A; S1) → (B; S2)
−−−→
Θ � l Θ | Γ �v e2 : A[

−→
l /Θ′]

Θ | Γ; S1[
−→
l /Θ′] �c e1[

−→
l]e2 : B[

−→
l /Θ′]; S2[

−→
l /Θ′]

Here, the judgment Θ � Γ means that Γ is well formed with respect to the abstract

location variables in Θ. The function introduction rule abstracts over a context

Θ′ of abstract location variables, a value variable x and a state type S1. Function

application takes a list of abstract locations
−→
l to be substituted into e1’s type for

the variables in Θ′.

To interpret such a system we can use an indexed parameterised Freyd category.

That is, we have a category I for interpreting contexts of abstract location variables

and a functor from Iop to the category of parameterised Freyd categories. The rules

of the calculus are then interpreted as standard in indexed and dependently typed

systems (Taylor 1999).

There is nothing special about side effects in the earlier example. Using the

framework of parameterised Freyd categories we may easily alter the above type

system to cope with indexed session types or multiple I/O devices. Moreover, using

the construction sketched in the previous section to derive a model of a linear

type system from special double parameterised Freyd categories to get a symmetric

monoidal closed category with a full subcategory with finite products can be replayed

in this setting. We conjecture that such an indexed structure can be used to interpret

a language similar to L3 (Morrisett et al. 2005).

Most of the works on indexed types earlier have been presented using operational

semantics. An exception is the work on Separation-Logic typing by Birkedal et al.

(2006). They describe a type system for Idealised Algol based on the assertions of

Separation Logic. They refine the type comm to types of the form {P }–{Q}, where

P and Q are assertions about the start and end states. Their model uses functors

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 373

tri′ : Pop × P → D, where P is the category of assertions and D is their category of

program interpretations to interpret these types, along with a sequencing operation

that appears to be similar to our definition of parameterised monad. Differences

arise due to the active nature of types in call-by-name Idealised Algol compared to

the passive values in the call-by-value languages we have considered.

6.3 Composable continuations

We have already mentioned Wadler’s (1994) work on expressing composable con-

tinuations in terms of monads. He came close to the definition we have presented

here for parameterised monad, but pointed out that it was not a monad. We have

presented a justification for parameterised monads by showing their relationship

with parameterised adjunctions and by presenting several examples.

6.4 Type and effect systems

Effect Systems (Lucassen & Gifford 1988) augment traditional type systems with

information about the side effects caused by a program’s execution. Wadler &

Thiemann (2003) have presented a connection between effect systems and monads

indexed by effect types. In concurrent work with this paper we have investigated

using parameterised monads to interpret a type and effect system for reading and

writing. The basic idea is to consider a state category with objects that are members

of the power set of {r(l),w(l) | l ∈ L} for some set of locations L. The types

of the read and store operations then become read l : 1 → T ({r(l)}, {r(l)}, V) and

store l : V → T ({w(l)}, {w(l)}, 1). The intuitive notion here is that the objects of the

state category represent sets of permissions: e.g., r(l) represents the permission to

read location l. The lifting of the operation of set union on sets of permissions, in

the same manner as symmetric monoidal lifting in this paper, is essential in order to

type realistic programs. The tricky part comes in defining the parameterised monad

for T (S1, S2, A), where S1 and S2 are sets of permissions. Benton et al. (2006) do this

by considering the relations that pure reading and pure writing state transformations

preserve. In the work concurrent with this paper, we have taken a more intensional

approach and considered a variation on Plotkin and Power’s algebraic presentation

of computational monads for parameterised monads.

7 Conclusions

We have presented generalisations of Moggi’s computational monads and Power

et al.’s Freyd categories to cover parameterised effects, our main examples being

typed side effects and various forms of typed I/O. By also considering monoidal

parameterisation, our definitions also cover separated side effects, multiple streams

of I/O, simple session types and effect types. We have also presented two typed λ-

calculi which are sound and complete for the simple parameterisation and symmetric

monoidal parameterisation cases.

We have also discussed the relationship between our semantic definitions and

existing type systems for effects present in the literature. In the case of linear types

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

374 R. Atkey

this involves the imposition of additional constraints on our definitions to get a

symmetric monoidal category. An unresolved aspect of this is a nice account of

closure over linearly typed variables, thus capturing some state in the function. We

have also briefly discussed the relationship between our non-indexed calculi and the

indexed calculi present in the literature. A point for future work here is to create a

semantics for typed state that allows polymorphism over state descriptions so that

state shared by several functions may be hidden from the rest of the program; we

expect that this problem is related to the problem of interpreting linear function

types.

Finally, Plotkin and Power’s approach of deriving computational monads from

algebras of operations and equations (Plotkin & Power 2002) should be adaptable

to parameterised monads. We have already done a small amount of work in this

direction by deriving the global typed state monad from a plausible algebra of

lookup and update operations (see the appendix of Atkey 2006). We have also

done some work in treating a type and effect system for reading and writing in the

framework of algebras for parameterised monads.

Acknowledgments

This work was funded by the ReQueST grant (EP/C537068) from the Engineering

and Physical Sciences Research Council. Thanks to the anonymous MSFP and JFP

reviewers for helpful comments and spotting of various technical errors.

References

Atkey, R. (2006) Substructural Simple Type Theories for Separation and In-place Update. PhD

thesis, University of Edinburgh.

Barendsen, E. & Smetsers, S. (1993) Conventional and uniqueness typing in graph rewrite

systems (extended abstract). In Proceedings of the 13th Conference on the Foundations of

Software Technology and Theoretical Computer Science, FSTTCS ’93 (Bombay, December

1993), Shyamasundar, R. K. (ed). Lecture Notes in Computer Science, vol. 761. Springer,

pp. 41–51.

Benton, N., Kennedy, A., Hofmann, M. & Beringer, L. (2006) Reading, writing and

relations. In Proceedings of the 4th Asian Symposium on Programming Languages and

Systems, APLAS 2006 (Sydney, November 2006), Kobayashi, N. (ed). Lecture Notes in

Computer Science, vol. 4279. Springer, pp. 114–139.

Birkedal, L., Torp-Smith, N. & Yang, H. (2006) Semantics of separation-logic typing and

higher-order frame rules for Algol-like languages, Logical Meth. Comput. Sci. 2 (5),

article 1.

Danvy, O. & Filinski, A. (1989) A functional abstraction of typed contexts. Technical Report

89/12, Computer Science Department, University of Copenhagen.

Ghani, N. (1995) Adjoint Rewriting. PhD thesis, University of Edinburgh.

Girard, J.-Y. (1987) Linear logic, Theor. Comput. Sci. 50 (1): 1–101.

Harrington, D. (2006) Uniqueness logic, Theor. Comput. Sci. 354 (1): 24–41.

Hofmann, M. (2000) A type system for bounded space and functional in-place update, Nordic

J. Comput. 7 (4): 258–289.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

Parameterised notions of computation 375

Levy, P. B., Power, J. & Thielecke, H. (2003) Modelling environments in call-by-value

programming languages, Info. Comput. 185 (2): 182–210.

Lucassen, J. M. & Gifford, D. K. (1988) Polymorphic effect systems. In Conference Record

of 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’88, San Diego, CA, January 1988. ACM Press, pp. 47–57.

Mac Lane, S. (1998) Categories for the Working Mathematician, 2nd ed., Graduate Texts in

Mathematics, vol. 5. Springer.

Moggi, E. (1989) Computational lambda-calculus and monads. In Proceedings of the 4th

Annual IEEE Symposium on Logic in Computer Science, LICS ’89 (Pacific Grove, CA, June

1989), IEEE CS Press, pp. 14–23.

Moggi, E. (1991) Notions of computation and monads, Info. Comput. 93 (1): 55–92.

Morrisett, G., Ahmed, A. & Fluet, M. (2005) L3: A linear language with locations. In

Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications,

TLCA 2005 (Nara, April 2005), Urzyczyn, P. (ed). Lecture Notes in Computer Science,

vol. 3461. Springer, pp. 293–307.

Nanevski, A., Morrisett, G. & Birkedal, L. (2006) Polymorphism and separation in Hoare type

theory. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’06 (Portland, OR, September 2006), ACM Press, pp. 62–73.

Nielson, F. & Riis Nielson, H. (1996) From CML to its process algebra, Theor. Comput. Sci.

155 (1): 179–219.

O’Hearn, P., Reynolds, J. & Yang, H. (2001) Local reasoning about programs that alter data

structures. In Proceedings of the 15th International Workshop on Computer Science Logic,

CSL 2001 (Paris, September 2001), Fribourg, L. (ed). Lecture Notes in Computer Science,

vol. 2142. Springer, pp. 1–19.

O’Hearn, P. W., Yang, H. & Reynolds, J. C. (2004) Separation and information hiding. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2004 (Venice, January 2004), ACM Press, pp. 268–280.

Peyton Jones, S. L. & Wadler, P. (1993) Imperative functional programming. In Conference

Record of 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 1993, Charleston, SC, January 1993. ACM Press, pp. 71–84.

Plotkin, G. & Power, J. (2002) Notions of computation determine monads. In Proceedings

of the 5th International Conference on Foundations of Software Science and Computation

Structures, FoSSaCS 2002 (Grenoble, April 2002), Nielsen, M. & Engberg, U. (eds). Lecture

Notes in Computer Science, vol. 2303. Springer, pp. 342–356.

Power, J. & Robinson, E. (1997) Premonoidal categories and notions of computation, Math.

Struct. Comput. Sci. 7 (5): 453–468.

Power, J. & Thielecke, H. (1999) Closed Freyd- and κ-categories. In Proceedings of the 26th

International Colloquium on Automata, Languages and Programming, ICALP 1999 (Prague,

July 1999), Wiedermann, J., van Emde Boas, P. & Nielsen, M. (eds). Lecture Notes in

Computer Science, vol. 1644. Springer, pp. 625–634.

Skalka, C. & Smith, S. (2004) History effects and verification. In Proceedings of the 2nd Asian

Symposium on Programming Languages and Systems, APLAS 2004 (Taipei, November 2004),

Chin, W.-N. (ed). Lecture Notes in Computer Science, vol. 3302. Springer, pp. 107–128.

Smith, F., Walker, D. & Morrisett, G. (2000) Alias types. In Proceedings of the 9th European

Symposium on Programming, ESOP 2000 (Berlin, March/April 2000), Smolka, G. (ed).

Lecture Notes in Computer Science, vol. 1782. Springer, pp. 366–381.

Taylor, P. (1999) Practical Foundations of Mathematics. Cambridge Studies in Advanced

Mathematics, vol. 59. Cambridge University Press.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

376 R. Atkey

Thielecke, H. (1997) Categorical Structure of Continuation Passing Style. PhD thesis, University

of Edinburgh.

Uustalu, T. (2003) Generalizing substitution, Theor. Info. Appl. 37 (4): 315–336.

Vasconcelos, V., Gay, S. & Ravara, A. (2006) Typechecking a multithreaded functional

language with session types, Theor. Comput. Sci. 368 (1–2): 64–87.

Wadler, P. (1990) Linear types can change the world! In Proceedings of the IFIP WG2.2/2.3

Working Conference on Programming Concepts and Methods (Tiberias, April 1990), Broy,

M. & Jones, C. (eds). North-Holland, pp. 561–581.

Wadler, P. (1991) Is there a use for linear logic? In Proceedings of the 1991 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 1991

(New Haven, CT, June 1991), ACM Press, pp. 255–273.

Wadler, P. (1994) Monads and composable continuations, Lisp Symb. Comput. 7 (1): 39–56.

Wadler, P. & Thiemann, P. (2003) The marriage of effects and monads, ACM Trans. Comput.

Logic, 4 (1): 1–32.

Walker, D. (2005) Substructural type systems. In Advanced Topics in Types and Programming

Languages, Pierce, B. C. (ed). MIT Press, pp. 3–43.

Walker, D., Crary, K. & Morrisett, G. (2000) Typed memory management via static

capabilities, ACM Trans. Prog. Lang. Syst., 22 (4): 701–771.

Walker, D. & Morrisett, G. (2000) Alias types for recursive data structures. In Revised Selected

Papers from 3rd International Workshop on Types in Compilation, TIC 2000, Montreal,

September 2000, Harper, R. (ed). Lecture Notes in Computer Science, vol. 2071. Springer,

pp. 177–206.

Zhu, D. & Xi, H. (2005) Safe programming with pointers through stateful views.

In Proceedings of the 7th International Symposium on Practical Aspects of Declarative

Languages, PADL 2005 (Long Beach, CA, January 2005), Hermenegildo, M. & Cabeza, D.

(eds). Lecture Notes in Computer Science, vol. 3350. Springer, pp. 83–97.

https://doi.org/10.1017/S095679680900728X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900728X

