SOME GLOBAL THEOREMS ON HYPERSURFACES
CHUAN-CHIH HSIUNG

1. Introduction. The purpose of this paper is to establish the following
theorems, which were obtained by Hopf and Voss in their joint paper (2) for
the case where n = 2.

THEOREM 1. Let V", V*" be two closed orientable hypersurfaces twice differen-
tiably imbedded in a Euclidean space E™ of dimension n + 1 > 3. Suppose
that there is a differentiable homeomorphism between the two hypersurfaces V",
V*" such that the orientations of the two hypersurfaces V", V*" are preserved
and the line joining every pair of corresponding points P, P* of the two hyper-
surfaces V", V** is parallel to a fixed direction R, and such that the two hyper-
surfaces V", V*" have equal first mean curvatures at every pair of the points P,
P* but no cylindrical elements whose generators are parallel to the fixed direction
R. Then the two hypersurfaces V", V*" can be transformed into each other by a
translation.

A closed hypersurface V" imbedded in a Euclidean space E"! of dimension
7+ 1 > 2 is said to be convex in a given direction, if no line in this direction
intersects the hypersurface 7* at more than two points. It is obvious that a
closed hypersurface V" is convex in the usual sense if it is convex in every
direction in the space E™tL,

THEOREM 2. Let a closed orientable hypersurface V" twice differentiably
imbedded in a Euclidean space E"™ of dimension n + 1 > 3 be convex in a
gwen dirvection R. If the two first mean curvatures of the hypersurface V* at every
pair of its points of intersection with the lines in the direction R are equal, then the
hypersurface V* has a hyperplane of symmetry perpendicular to the direction R.

Theorem 2 can easily be deduced from Theorem 1. In fact, let # be a mapping
of a hypersurface V" satisfying the conditions of Theorem 2 onto itself such
that the two points of intersection of the hypersurface V" with any line in the
direction R are mapped into each other. In particular, if a line in the direction
R is tangent to the hypersurface V" at a point P, then uP = P. Let r be the
reflection with respect to an arbitrary hyperplane perpendicular to the
direction R, and P any point of the hypersurface V". Then the mapping
ruP = P* maps the hypersurface V* onto the hypersurface V*" = (V")
generated by the point P*, and the two hypersurfaces V*, V** satisfy the
conditions of Theorem 1 so that ru = ¢ is a translation. Therefore u = 7t
is a reflection with respect to a hyperplane perpendicular to the direction R,
and hence Theorem 2 follows.
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By noting that a closed hypersurface V" imbedded in a Euclidean space
L1 of dimension # + 1 > 2 must be a hypersphere if it has a hyperplane of
symmetry perpendicular to every direction in the space E"*!, we arrive
readily at the following known result from Theorem 2.

CoroLLARY. A closed convex hypersurface V" of constant first mean curvature
twice differentiably imbedded in a Euclidean space E"+' of dimension n + 1 > 3
is a hypersphere.

THEOREM 3. Let V*(V*") be an orientable hypersurface with a closed boundary
V=t (V*=1) of dimension n — 1 > 1 twice differentiably imbedded in a Euclidean
space E"' of dimension n + 1. Suppose that there is a differentiable homeo-
morphism between the two hypersurfaces V", V*" with the same properties as
those of the homeomorphism in Theorem 1.

(1) If the two boundaries V"1, V¥=1 are coincident, then the two hypersurfaces
v, V* are coincident.

(il) If the two normals of the lwo hypersurfaces V", V*' ai every pair of
corresponding points, under the given homeomorphism, of the two boundaries
=1 V*n=t qre parallel, then the two hypersurfaces V*, V*" are transformed into
each other by a translation.

2. Preliminaries'. [n a Euclidean space E"*! of dimension n + 1 > 3,
let us consider a fixed orthogonal frame OI, ... [,;, with a point O as the
origin. With respect to this orthogonal frame we define the vector product of
n vectors Ay, ..., A, in the space E"! to be the vector 4,,,, denoted by
A, X ... X A4, satisfying the following conditions:

(a) the vector A,41 1s normal to the n-dimensional subspace of E"+! deter-

mined by the vectors A,, ..., 4,,

(b) the magnitude of the vector 4,1 1s equal to the volume of the parallele-
piped whose edges are the vectors 4y, ..., 4,,

(c) the two frames OA4,... 4,4, and OI,...I,1 have the same
orientation.

Let ¢ be a permutation on the » numbers 1, ..., n, then
(2]) A.,(]) X P X A,,(n) = (Sgl] 0') Al X e X Am
where sgn ¢ i1s +1 or —1 according as the permutation ¢ is even or odd.
Let 4y, . . ., 1,41 be the unit vectors from the origin O in the directions of the
vectors [y, ..., I,py and let A2 (7 =1,...,n 4+ 1) be the components? of
the vector A, (@ = 1,...,n) with respect to the frame OI,... I, then
the scalar product of any two vectors 4. and Az and the vector product of n
vectors Ay, ..., A, are, respectively,

'For this section see, for instance, (3, pp. 287-289).

T hroughout this paper all Latin indices take the values 1 to n + 1 and Greck indices the
values 1 to z unless stated otherwise. We shall also follow the convention that repeated indices
imply summation.
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n+1

(2.2) Aardg = D, Aldsg,
i=1
! 11 12 . I;n+1
W | A1 AT AT
(2.3) A X ... X d, = (=1) Lot !
| »11 A2 _ln+1
If A/ are differentiable functions of # variables x!, . .., x", then by equation

(2.3) and the differentiation of determinants

2.4) z (A1X . X )

adg

= <A1X...Xfiﬂ_1><‘5&;XA3+1X...XAn>.

=1

Now we consider a hypersurface V" twice differentiably imbedded in the
space E™! with a closed boundary V*~!of dimension n — 1. Let (3!, ..., y»*!)
be the coordinates of a point P in the space E"*! with respect to the orthogonal
frame OI, ... I,.1. Then the hypersurface V" can be given by the parametric

equations

(2.5) yi= fi(xl, ..., x") t=1,...,n+1),
or the vector equation

(2.6) V= F(«4, ..., x"),

where y* and f* are respectively the components of the two vectors ¥ and F,
the parameters x!,...,x" take values in a simply connected domain D
of the n-dimensional real number space, f(x!, . . ., x") are twice differentiable
and the Jacobian matrix ||dy?/dx%|| is of rank # at all points of the domain D.
If we denote the vector dY/dx* by Vs (e = 1,...,n), then the first funda-
mental form of the hypersurface V" at the point P is

(2.7) ds? = gas dx* dxP,

where

(28) Lap = Ya' Yﬂv

and the matrix ||gas|| is positive definite so that the determinant g = |gag] > 0.
Let N be the unit normal vector of the hypersurface V" at the point P,
and N, the vector dN/dx=, then

(29) ]Va = — baﬂ gﬂ’y Y‘Yv
where
(2.10) bag = bga = — Nua+ Vg

are the coefficients of the second fundamental form of the hypersurface
V™ at the point P, and gf" denotes the cofactor of gs, in g divided by g so that
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(2.11) ¢ goy = 0}

(the Kronecker deltas). The # principal curvatures «j, . . ., x, of the hyper-
surface V™ at the point P are the roots of the determinant equation

(212) ibag - Kga5| = 0,

from which follows immediately the first mean curvature of the hypersurface
V™ at the point P:

I 1, .
(2.13) My= ; Ko = bus g g

The area element of the hypersurface I’* at the point P is
(2.14) dA = g dx' A ... A dx",

where the operator d is the exterior differentiation, and the wedge denotes
the exterior multiplication. Now we choose the direction of the unit normal
vector N in such a way that the two frames PY,... V,N and OI,... [,
have the same orientation. Then from equations (2.3) and (2.14) it follows that

(2.15) ¢N=YV, X...XY,
(21(;) |Y17 s e ey an Nl = gEv

where the left side of equation (2.16) is a determinant indicated by writing
only a typical row.

3. An integral formula. Let V" be an orientable hypersurface with a
closed boundary V"' of dimension n — 1 > 1 twice differentiably imbedded
in a Euclidean space E"™' of dimension n + 1, and suppose that the hyper-
surface 17 is given by the vector equation (2.6). Let I be the unit vector in a
fixed direction R in the space E"!, and w a twice differentiable function over
the hypersurface V*. Then §2 can be applied to the hypersurface 1, and we
shall use the same symbols with a star for the corresponding quantities for the
hypersurface 17*" defined by the vector equation

3.1 V=Y + W,
where
(3.2) W = wl.

Let Q« (a = 1,...,n) be n vectors in the space £"*!, and suppose that the
ccomponents of each vector Q« with respect to the orthogonal frame O, . . . I,1:
are differentiable functions of the n variables x!, ..., x" In order to derive

an integral formula for the two hypersurfaces 1", V** we use the vector
product of vectors and the exterior multiplication of differentials to define the
vector :

33) 9'®... Q'RIR® ... QI
= (@ X .. XQTIX QX X0 d A LA dx
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for « = 1,...,n, where
a ] Be
Q5 = 80%/dx™.

It is obvious that the vector (3.3) is independent of the order of the vectors
dQe, ..., dQ". Thus from equations (2.9), (2.13), (2.14), (2.15) we obtain

B4) dVY ® ...QdV =n! (Vi X ... X V)dc"' A ... Adx" =nlNdd,
8.5 dV ® ...®dY ® dN

= (n—l)(=z YIXX Y*1X1\’Ya>< Ya+1X...X Y,,)dxl/\ /\dx"
a=1
= —n!lM;NdA.

Making use of equations (3.1), (3.2), (3.4) and its analogue for the hypersurface
7*7and noting that

AW ® ... dIWRdY Q@ ...Q®dY =0,

(a factors) (n—a factors)
AW®... QAW QdAY*Q® ... dY* =0
(e factors) (n—a factors)

for a > 2 and
W, Yi,..., Yl =W, Y5 ..., Yl
we are easily led to
(3.6) (n— 1! (N¥dA* — Ndd) =dW ® dYV ® ... Q@ dV
=dWRdV* Q@ ... ® dY*,
(3.7) W-NdA = W-N*dd4*,

(3.8) W, N V. Ve, Vi, ..., Y
= W, N* Vi,..., Yer, Yasu, - . ., Vol (@=1,...,n).

From equations (2.3), (3.3), (3.5), (3.6) it follows immediately that
BY9) W NQIY® ...®dY)

= (=1)"(n — l)lai=1 [W,N, Y1, ..., Yari, Yayu, ..., V3]
A" AN AT A LA X
(3.10) dW- (VN Q®dY ® ... Q@ dY)]
= - N AWRIV®...0dY)+W- AN ®dY ® ... ® dY)
= — Wl My W-NdA — (n — )| (N-N*dA* — dA).

Similarly, in consequence of equations (3.6), (3.7), (3.8) and those analogous
to equations (3.5), (3.9) by changing the vectors Y, N to the vectors Y*, N*
respectively, we obtain
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B.11) dIW- (V*Q®dYV ®...QdY)]|=dW- (N*QdV*® ... ® dV*¥)]
= N AW Q®dAV*® ... ®dV*) + W-dN* Q@ dV*® ... ® dV¥)

= — M W-NdA — (n — 1)! (dA™ = N*- N dd).

Thus, from equations (3.9), (3.10), (3.11),

(3.12) d) [W,N—=N*Vy, ..., Yacy, Yoy, - - ., Vil
a=1
de' Ao A AT A AT LAY

=~ GW N®AY ® ...0dY) — W (N*®dY ® ... ® dV)]
= (=1)' [n(M} = M) W-Ndd + (1 — N-N° (dd + d.15)].

Integrating equation (3.12) over the hypersurface 7" and applying the
Stokes’ theorem to the left side of the equation, we then arrive at the integral
formula

v n

(3.13) (W, N = N* Vi,..., Yaur, Varr, ..., V)]
1

vn-1loa=

dX'A N AN AT LA dr”
= (—1)"_] m(MF — M) W-Ndd + (I — N-N) (dd + dA™)1.
yn

In particular, when the hypersurface 7" is closed and orientable, the integral
on the left side of equation (3.13) vanishes and hence

(3.14) nf (MY — M) W-Ndd + | (1 — N-N%) (@4 + d4™) = o.
vn yn

4. Proof of Theorems 1 and 3. It is easily seen that we can apply the
results in §3 to two hypersurfaces 177", 1™*" satisfying the assumptions of
Theorem 1. Since M7 = M, at every pair of corresponding points of the two
hypersurfaces 17", I7*"  the formula (3.14) becomes

(4.1) J (I — N-N*) (d4 + d.1%) = 0.
vn

But d4 > 0, d4* > 0 and 1 — N-N* > 0 due to the fact that N and N*
are unit vectors. Thus the integrand of equation (4.1) is non-negative, and
therefore equation (4.1) holds when and only when 1 — N-N* = 0, which
implies that

4.2) N* = N.
Now in the space E"t! we choose the orthogonal frame O/ ... [,41, with
respect to which a point in the space E™! has coordinates y!, ..., y*t! in

such a way that the unit vector [, is the fixed unit vector /. Since the hyper-
surface V" has no cylindrical elements whose generators are parallel to the
fixed vector I, the closed set M of all points of the hypersurface 1 at each
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of which the y*t'-component of the unit normal vector N of the hypersurface
/" is zero, has no inner points and therefore the open set 1" — M is everywhere
dense over V™. Thus, in neighborhoods of any point of the set V* — M and
its corresponding point on the hypersurface V**, y! ... 3" are regular
parameters of the two hypersurfaces V*, *" so that the hypersurfaces V", V*"
can be represented respectively by the equations

yr =y ),

(4:3) , $ng1 1 n n 1 a 1 n
Yyt =y ) =y Y el YY)

By means of equations (2.15), (4.3) we obtain the unit normal vectors NV, N*
of the hypersurfaces V", 17*":

. n 6 n+1 ) ) " n a sn+1 ) )
(44) N= - 4 9(21 Tay;}&__ la = lpt1 y V¥ = — g» : 2; __gya_ la = Ing1)

from which and equations (4.2), (4.3) it follows immediately that in a neigh-
borhood of any point of the set V" — M,

Iy /9y = ay"t /oy (@=1,...,m)

and the function w is constant. Thus dw/dy* (« = 1, ..., n) are zero in the
everywhere dense set 1" — M and therefore on the whole hypersurface V™
by continuity. Hence the functien w is constant on the whole hypersurface
17", and the proof of Theorem 1 is complete.

In both parts of Theorem 3 the integral over the boundary V"*! on the
left side of the formula (3.13) also vanishes, since over the boundary V"!
W =0 and N* = N in the two parts respectively. By the same argument
as that in the above proof of Theorem 1, we therefore obtain between the
two hypersurfaces V", 17*" a translation, which in part (i) reduces to an identity.
Hence Theorem 3 is proved.

Now suppose that in Theorem 3 the fixed direction R is along the vector
I,+1 and the hypersurfaces 17, V*" can be represented by equations of the
form y"+! = y"+1 (y1 ... 9"). Then part (i) of Theorem 3 can be stated as
follows: The problem of finding a function y**!(y', ..., y") over a bounded
region in the space (y',...,y") with given boundary values such that the
first mean curvature M, of the hypersurface V" defined by the equation
Yyl = Yyl y™) is a given function Mi(yY, .. ., ¥") admits at most one
solution. Making use of equations (2.10), (2.13), (4.4) and

98 _ o %8

Ix” Ix*’

we can easily obtain the first mean curvature of the hvpersurface 1, namely,

2 ntl
-l 4 a8 Oy
(4.5) M, =n"¢g"¢g PRCEIE
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Thus the above special case of part (i) of Theorem 3 is a consequence ol the
well-known uniqueness theorem for the solutions of elliptic differential equa-
tions of the second order, since the determinant |g*¢| = 1/g > 0.

5. Connection with symmetrizations. Let y',..., y"t! be the co-
ordinates of a point with respect to a fixed orthogonal frame OI, ... I,
in a Euclidean space E"*! of dimension # 4+ 1 > 3, and let a closed orientable
hypersurface V" twice differentiably imbedded in the space E"*! be convex
in the direction of the vector I,.1. Let P be any point of the hypersurface
V", and P* the other point of intersection of the hypersurface V* by the line
[ through the point P and in the direction of the vector [,y;. If the line / is
tangent to the hypersurface 1%, then the point P* coincides with the point P.
Let y™+!, y*"+1 be respectively the (n + 1)th coordinates of the points P, P*
with respect to the frame O/ ... [, and MY, N* the first mean curvature
and the unit normal vector of the hypersurface 7" at the point P*.

The Steiner’s symmetrization of the hypersurface V" with respect to the
hyperplane y**! = 0 is a geometric operation by which any point P of the
hypersurface 1" goes into a point P’ on the line / with

y/n+1 — %(yru—l — y*n+1) — yn+1 _ %(yn+1 + y*/L+l)

as its (n + 1)th coordinate with respect to the frame O/, . .. [,,1. In the time
interval 0 < ¢t < 1, we shift the segment PP* along its line [ into the position
P’P* such that the (# + 1)th coordinates of the points P/, P* with respect
to the frame OF, ... [, are respectively given by
(1) Ty =yt % (yFL o Y gkl gl é (" 4ty
That is, the segment PP* is shifted with uniform velocity into the position
where it is bisected by the hyperplane y"t' = 0. This transformation 7, is
called the continuous symmetrization of Steiner.® Ty is the identity and T
results in a complete symmetrization. It is obvious that the transformation
T, leaves the volume of the hypersurface V" unchanged.

Now let us consider a neighboring hypersurface V" of the hypersurface
I’* defined by the vector equation

(5.2) VO = V4 e(W-N) N,

where e is an infinitesimal, YV is the position vector of the point £ of the hyper-
surface 17" with respect to the frame OI, ... [,4,, and

(5.3) W = wl,p1, w= — ytt— y*tl

An elementary calculation and the use of equations (5.2), (2.8), (2.9) yield
the coefficients of the first fundamental form of the hypersurface 7 :

3For the continuous symmetrization of Steiner in a Euclidean space E* of dimension n = 2,3
see (1, pp. 249-251; 4, pp. 200-202).
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(5.4) gei = gas — 2e(W-N) bug + (0)(€"),
and therefore
(5.5) ¢ =gl =g —2ne(W-N)Myg+ ...,

where the omitted terms are of degrees >2 in e. From equations (5.5), (2.14)
follows immediately the area of the hypersurface 17 :

(5.6) A = VEldx' A L A d = A — ne M, (W-N)dA + . . ..

v By -

Thus we obtain

()
(5.7) (Qi‘l ) = —a | MWy
O0e /=0 i
Similarly, replacing equation (5.2) by V'@ = V* + ¢(W*- N*) N* gives
()
(5.8) (i"i-) = —n f My (W NHaa®
Je =0 vn
Noting that y***! = — y"+! — @ W* = W and making use of equation (3.7),
we obtain immediately
(5.9) W*.N*dA* = — W-NdA,
and therefore equation (5.8) becomes
(€)
(5.10) (9—‘—4———> —u | MW N
af €e=0 oJpn
Thus the addition of equations (5.7), (5.10) gives
(e)
(5.11) (i’i—) - ’—‘f (MY — M) W-N dA.
66 e=0 2 yn

As in the proof of Theorem 2 in §1, we consider the reflection » with respect
to the hyperplane y**! = 0. By this reflection » the point P* of the hypersur-
face 1" goes into the point P* defined by

(5.12) V*=V 4+ W,

which generates a hypersurface V**. If equation (5.12) is used instead of
equation (3.1), then the formula (3.14) becomes

(5.13) nf (MY — My) W-N dA4 + f (1 — N-N% (d4 +dd¥) =0,
vn yn

where N* and dA* are respectively the unit normal vector and the area element
of the hypersurface V** at the point P*. By interchanging the corresponding
quantities of the two hypersurfaces 7, V** at the two points P*, P* respect-
ively it is easily seen that

(5.14) (1 — N-N*)dA* = ] (1 — N*-\)dA.

o/ n 4

https://doi.org/10.4153/CJM-1957-002-1 Published online by Cambridge University Press


file:///-4r-
https://doi.org/10.4153/CJM-1957-002-1

14 CHUAN-CHIH HSIUNG

By means of equation (5.14), equation (5.13) reduces to

(5.15) gj‘ (MY — M) W-NdAd = — Jw (1 — N-NMdd,

from which and equation (5.11) we therefore obtain

(€
(5.16) (Q-A——> = - f (1 — N-N*)d.A.
de / e=0 yn

Making use of equations (5.11), (5.15), (5.16) we can easily reach the following
conclusion:

If MY = M, at every point P of the hypersurface V*, then (04©/d€)es = 0
and the hypersurface V" 1is symmetric with respect to a hyperplane. If the hyper-
surface V' is not symmetric with respect to a hyperplane and N* # N at every
point P of the hypersurface V", then (049/0¢€)—y < 0.
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