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Tate modules of universal p-divisible groups

Eike Lau

Abstract

A p-divisible group over a complete local domain determines a Galois representation
on the Tate module of its generic fibre. We determine the image of this representation for
the universal deformation in mixed characteristic of a bi-infinitesimal group and for the
p-rank strata of the universal deformation in positive characteristic of an infinitesimal
group. The method is a reduction to the known case of one-dimensional groups by a
deformation argument based on properties of the stratification by Newton polygons.

1. Introduction

Let G be a p-divisible group of dimension d and height c+ d over an algebraically closed field k
of characteristic p. Its universal deformation G is defined over a W (k)-algebra R isomorphic to
an algebra of power series in cd variables. For every point x ∈ SpecR we have a natural Galois
representation, also referred to as local p-adic monodromy,

ρx : Gal(x̄/x)→GL(TpG(x̄))∼= GLe(x)(Zp)

where e(x) is the étale rank of the fibre Gx. Note that e(x) = c+ d if x is a point of characteristic
zero and e(x) 6 c if x is a point of characteristic p. Let Ue be the locally closed subset of SpecR
where e(x) = e. If G has positive dimension and e 6 c then Ue lies in SpecR/pR.

Theorem 1.1. If G is bi-infinitesimal and x is the generic point of SpecR then the image of ρx
is the subgroup of all elements whose determinant is a dth power.

Theorem 1.2. If G is infinitesimal and x is a generic point of Ue for some e 6 c then ρx is
surjective.

This is consistent with the general expectation that the monodromy of a universal family
should be as large as possible, where the restriction in Theorem 1.1 is caused by a well-known
result of Raynaud [Ray74] saying that the determinant of ρx is the dth power of the cyclotomic
character. The present article was motivated by recent work of Tian [Tia07] and Strauch [Str07].
Instead of any attempt for a complete review of the literature on p-adic monodromy of p-divisible
groups and abelian varieties we refer the reader to [AN06, Cha00, Cha08] and the references given
therein.

If G is one-dimensional, Theorems 1.1 and 1.2 are proved in [Str07] using the theory of
Drinfeld level structures. This result actually applies to one-dimensional formal modules over
the ring of integers in a local field. Previously, a number of cases were established by different
methods.
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Tate modules of universal p-divisible groups

Theorem 1.1 for one-dimensional p-divisible groups is proved by Rosen and Zimmer-
mann [RZ89, Zim90]. Theorem 1.2 for the one-dimensional group of slope 1/2 is a classical result
of Igusa [Igu68], see [Kat73, Theorem 4.3]. Theorem 1.2 for the one-dimensional group of slope
1/2 is a classical result of Igusa [Igu68], see [Kat73, Theorem 4.3]. When x is the generic point
of SpecR/pR, Y. Tian proved that ρx is surjective for the one-dimensional group of slope 1/3
and conjectured the surjectivity of ρx for elementary p-divisible groups of arbitrary dimension;
see the first version of [Tia07]. Recently Tian has extended his methods to cover all p-divisible
groups of a-number one, see [Tia07].

The present proof of Theorems 1.1 and 1.2 is a reduction to the one-dimensional case using
the results of Oort and de Jong [JO00, Oor00, Oor01] on the Newton stratification of SpecR/pR.
More precisely, to prove Theorem 1.2 we pass to the complete local ring (denoted S) of R/pR
at a generic point of a suitable Newton stratum chosen so that G ⊗ S is the extension of a one-
dimensional infinitesimal p-divisible group H and a group of multiplicative type. Since the Tate
module of the latter is trivial, we only have to observe that H over S is necessarily the universal
deformation of its special fibre, see Lemma 3.1 and Proposition 6.1.

The proof of Theorem 1.1 is more complicated because p-divisible groups of multiplicative
type over a field of characteristic zero have non-trivial Tate modules. This leads us to
consider different complete local rings of R and their contributions to the image of the
Galois representation at the same time. Notably, we need the following observation, proved
in Proposition 7.1: if A denotes the complete local ring of R at the prime pR and if F ′ is an
algebraic closure of the residue field of A, then the set of ring homomorphisms A→W (F ′) lifting
the given homomorphism A→ F ′ is bijective to the set of deformations over W (F ′) of the fibre
G ⊗ F ′. As a consequence, the contribution of A to the Galois representation is sufficiently large,
see Lemma 4.3.

Below we first explain the proof of Theorem 1.1 in §§ 3 and 4 and postpone the required
Lemmas 3.1 and 4.3 until §§ 6 and 7. They are straightforward applications of the deformation
theory of p-divisible groups developed in [Ill85, Mes72]. An alternative proof of Lemma 3.1 in
the case where G has a-number one is given in [Tia07].

2. Newton strata

For reference let us recall the results on Newton strata we need. Let R̄=R/pR.
The Newton polygon of a p-divisible group H is denoted N (H). Newton polygons are

normalized so that slope 0 corresponds to étale groups and slope 1 to groups of multiplicative
type. The set of Newton polygons carries a partial order such that β � γ if and only if β and γ
have the same endpoints and no point of β lies strictly below γ. The subset Vβ of Spec R̄ where
the Newton polygon of the universal deformation is � β is closed. We denote by V ◦β the open
subset of Vβ where the polygon is equal to β. Let codim(β) be the number of lattice points
that lie strictly below β and on or above the unique ordinary Newton polygon with the same
endpoints as β (ordinary polygons are those whose slopes are all 0 or 1).

Theorem 2.1 [Oor01, Theorem 2.10]. The set Vβ is non-empty if and only if N (G)� β. In that
case all irreducible components of Vβ have codimension codim(β) in Spec R̄, and consequently Vβ
is the closure of V ◦β . Generically on Vβ the a-number is at most one.

At those points where the a-number is one the strata are nested nicely.

Proposition 2.2. Let x ∈ Spec R̄ be given such that a(Gx) = 1. Then every Vβ,x = Vβ ∩ Spec R̄x
is regular and thus irreducible. If Vβ,x and Vγ,x are non-empty, in other words if N (Gx)� β and
N (Gx)� γ, then Vβ,x ⊆ Vγ,x if and only if β � γ.
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If x is the maximal ideal of R̄ this is [Oor00, Theorem 3.2]. The general case can be reduced
to this case as is certainly well known, but for completeness a proof is recalled in § 5 below.

We need the following supplement to Theorem 2.1. We write x 6 z if x lies in the closure of z.

Corollary 2.3. Assume that Newton polygons β � γ � δ, a point x ∈ Vβ, and a generic point
z ∈ Vδ are given such that x 6 z. Then there is a generic point y ∈ Vγ such that x 6 y 6 z.

Proof. By a change of β we may assume that x lies in V ◦β . Let Z be the irreducible component
of Vδ that contains z and let x′ be a generic point of Z ∩ Vβ such that x 6 x′. Then x′ also lies
in V ◦β . If n denotes the codimension of x′ in Z, the purity theorem [JO00, Theorem 4.1] implies
that n 6 codim(β)− codim(δ). By Theorem 2.1 we have equality and x′ is a generic point of Vβ,
thus a(Gx′) = 1. By Proposition 2.2 there is a unique generic point y of Vγ between x′ and z. 2

3. Reduction to one-dimensional groups

Let R̄=R/pR as before. We begin with the proof of Theorem 1.2 in the case where x is the
generic point of Spec R̄, or equivalently e= c.

Proof of Theorem 1.2 if e= c. We may assume that d > 1. Let β =N (G) and let γ be the Newton
polygon given by the following slope sequence.

γ =
(

1
c+ 1

, . . . ,
1

c+ 1︸ ︷︷ ︸
c+1

, 1, . . . , 1︸ ︷︷ ︸
d−1

)
.

Then β � γ because G is assumed to be infinitesimal. Choose a generic point p of the Newton
stratum Vγ of Spec R̄, let S be the completion of the local ring R̄p, and let K be its residue
field. Since R̄ is regular and regularity is preserved under localizations and completions, S is a
complete regular local ring. By Theorem 2.1, the dimension of S is c and the Newton polygon
of G ⊗K is γ.

Let K ′ be an algebraic closure of K and let S′ =K ′[[t1, . . . , tc]]. The projection S→K
admits a section K→ S in the category of k-algebras because K is formally smooth over k as k
is perfect. Hence there is an isomorphism of k-algebras S ∼=K[[t1, . . . , tc]] compatible with the
projections to K; we choose one such isomorphism. Then S becomes a subring of S′ by ti 7→ ti
and S′ becomes an R-algebra by the composition R→ S→ S′.

By the choice of γ, the fibre G ⊗K ′ has a unique p-divisible subgroup M ′ of multiplicative
type and dimension d− 1. The quotient H ′ = (G ⊗K ′)/M ′ is a one-dimensional infinitesimal
p-divisible group over K ′ of height c+ 1. There is a unique lift of M ′ to a p-divisible subgroup of
multiplicative type M′ ⊂ G ⊗ S′ (see [Gro74, chapitre 3.1] and [deJ95, Lemma 2.4.4]), and the
quotient H′ = (G ⊗ S′)/M′ is a deformation of H ′ over S′.

Lemma 3.1. In this situation H′ is a universal deformation of H ′.

We postpone the proof until § 6. If f : Spec S′→ Spec R̄ denotes the chosen morphism and
y ∈ Spec S′ is the generic point, then f(y) = x because f is flat. The natural homomorphism
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Tate modules of universal p-divisible groups

G(x̄)∼= G(ȳ)→G′(ȳ) is bijective since M(ȳ) is the zero group. Hence we have the following
commutative diagram.

Gal(ȳ/y)
ρy

//

��

GL(TpH′(ȳ))
∼=

Gal(x̄/x)
ρx

// GL(TpG(x̄))

Here ρy is surjective by [Str07, Theorem 2.1], so ρx is surjective as well. 2

A modification of the argument gives Theorem 1.2 in general.

Proof of Theorem 1.2. By Theorem 2.1 combined with Proposition 2.2 the generic points of Ue
are precisely the generic points of the Newton stratum Vε where ε is the lowest Newton polygon
with exactly e zeros,

ε=
(

0, . . . , 0︸ ︷︷ ︸
e

,
1

c− e+ 1
, . . . ,

1
c− e+ 1︸ ︷︷ ︸

c−e+1

, 1, . . . , 1︸ ︷︷ ︸
d−1

)
.

Let γ, p, S′, H′, and f : Spec S′→ Spec R̄ be chosen exactly as before with the additional
requirement that p 6 x. This is possible by Corollary 2.3 applied to the points mR̄ 6 x. The
inverse image f−1(Ue) is equal to the locus U ′e in Spec S′ where the étale rank of G′ is equal to e.
Let y ∈ U ′e be the unique generic point. Since f is flat and since p 6 x we have f(y) = x. Now
the proof continues as before, using again [Str07, Theorem 2.1]. 2

4. Galois action in characteristic zero

Assume now that x is the generic point of SpecR. Let T = TpG(x̄) and let

χ : Gal(x̄/x)→ Z∗p

be the cyclotomic character. By [Ray74, Theorem 4.2.1 and its proof], Gal(x̄/x) acts on Λc+d(T)
by χd. Let GL′(T) denote the subgroup of all elements of GL(T) whose determinant is a dth
power and let Gal◦(x̄/x) be the kernel of χ. The homomorphism ρx induces the following
homomorphisms ρ′ and ρ◦:

ρ′ : Gal(x̄/x) // GL′(T)
∪ ∪

ρ◦ : Gal◦(x̄/x) // SL(T)

Lemma 4.1. If ρ◦ is surjective then so is ρ′. For d= 1 the converse also holds.

Proof. We have a homomorphism of exact sequences.

1 // Gal◦(x̄/x) //

ρ◦
��

Gal(x̄/x)
χ

//

ρ′
��

Z∗p //

( )d
����

1

1 // SL(T) // GL′(T) det // Z∗,dp // 1

Both assertions follow easily. 2
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Theorem 4.2. If G is bi-infinitesimal then ρ◦ is surjective.

In view of Lemma 4.1 this is a refinement of Theorem 1.1; moreover, the case d= 1 follows
from [RZ89, Zim90] or from [Str08, Theorem 2.1.2]. By duality this also gives the case c= 1
because the Tate module of G∨ is Hom(T, Zp(1)).

Proof of Theorem 4.2. We may assume that c, d > 2. Let β =N (G) and consider the following
Newton polygons γi with the same endpoints as β:

γ1 =
(

1
c+ 1

, . . . ,
1

c+ 1︸ ︷︷ ︸
c+1

, 1, . . . , 1︸ ︷︷ ︸
d−1

)

γ2 =
(

0, . . . , 0︸ ︷︷ ︸
c−1

,
d

d+ 1
, . . . ,

d

d+ 1︸ ︷︷ ︸
d+1

)
.

Since G is bi-infinitesimal we have β � γi. Let pi ∈ SpecR be a generic point of the Newton
stratum Vγi ⊆ SpecR/pR. By Theorem 2.1 the Newton polygon of the fibre Gpi is γi and the
codimension of pi in SpecR is ci + 1 where c1 = c and c2 = d. The complete local ring Si = R̂pi is
regular and unramified in the sense that p is part of a minimal set of generators of the maximal
ideal. Let S′i be an unramified regular complete local ring of dimension ci + 1 whose residue
field K ′i is an algebraic closure of the residue field Ki of Si and choose an embedding Si→ S′i
such that S′i ⊗Si Ki =K ′i.

(More explicitly, put S′i =W (K ′i)[[t1, . . . , tci ]]; then choose a Cohen ring Ci in Si, an
isomorphism of Ci-algebras Si ∼= Ci[[t1, . . . , tci ]], and an embedding of Ci into W (K ′i); extend
this to an embedding Si→ S′i by ti 7→ ti.)

Let q⊂R and qi ⊂ S′i be the prime ideals generated by p. The complete local rings A= R̂q

and Bi = (Ŝ′i)q i
are unramified discrete valuation rings. We have the following commutative

diagram of rings:

S′1

��

R //

��

oo S′2

��

B1 A //oo B2

The scalar extensions of G to these rings admit natural filtrations of different types: since the
fibre Gq is ordinary, over A there is an exact sequence of p-divisible groups

0−→M−→G ⊗A−→ E −→ 0 (4.1)

where M is of multiplicative type of height d and E is étale of height c. By the choice of the
polygons γi, over S′1 there is an exact sequence

0−→M′ −→ G ⊗ S′1 −→H1 −→ 0 (4.2)

whereM′ is isomorphic to µd−1
p∞ and H1 is bi-infinitesimal of dimension 1 and height c+ 1, while

over S′2 there is an exact sequence

0−→H2 −→ G ⊗ S′2 −→ E ′ −→ 0 (4.3)

where E ′ is isomorphic to (Qp/Zp)c−1 and H2 is bi-infinitesimal of dimension d and height d+ 1.
In both cases Hi is the universal deformation of its special fibre over W (Ki)-algebras because
Hi ⊗ Si/pSi is the universal deformation over Ki-algebras according to Lemma 3.1 (applied to
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the dual if i= 2). Since over Bi all homomorphisms from groups of multiplicative type to étale
groups are trivial, as subgroups of G ⊗B1 and G ⊗B2 we have

M′ ⊗S′1 B1 ⊆M⊗A B1, M⊗A B2 ⊆H2 ⊗S′2 B2. (4.4)

Let F ′ be an algebraic closure of the residue field of A, let A′ =W (F ′), and choose an
embedding σ :A→A′ extending the given homomorphism A→ F ′. This time the choice makes
a difference and will be fixed later. In order to relate the various Galois actions on the Tate
module we choose an algebraically closed field Ω together with embeddings of A′ and both Bi
into Ω that coincide over A. For every subring X of Ω let GalX = π1(Quot(X), Ω) and denote
by Gal◦X the kernel of the cyclotomic character GalX → Z∗p.

If we write T = TpG(Ω) by a harmless change of notation, we have to show that the natural
homomorphism ρ◦R : Gal◦R→ SL(T) is surjective. Let

T1 = TpH1(Ω), E = TpE(Ω), E′ = TpE ′(Ω),

T2 = TpH2(Ω), M = TpM(Ω), M′ = TpM′(Ω).

From (4.2), (4.1) and (4.3) in that order we obtain the following exact sequences of free
Zp-modules with actions of the designated groups GalX where the action on T is induced from the
action of GalR by the natural homomorphism GalX →GalR. The vertical arrows exist by (4.4).

GalS′1 0 // M′ //

��

T // T1

��

// 0

GalA′ 0 // M //

��

T // E //

��

0

GalS′2 0 // T2
// T // E′ // 0

Here Gal◦S′1 acts trivially on M′ and GalS′2 acts trivially on E′. By the known cases d= 1 and
c= 1 of Theorem 4.2, the induced homomorphisms Gal◦S′i → SL(Ti) are surjective. In many cases
this already implies that ρ◦R is surjective, but in order to conclude in general we also need the
action of Gal◦A′ . Let U ⊆ SL(T) be the unipotent subgroup that acts trivially on M and on E;
thus U ∼= Zcdp . Then Gal◦A′ acts on T by a homomorphism

ρ◦A′ : Gal◦A′ → U.

Lemma 4.3. For a suitable choice of the embedding σ :A→A′, the homomorphism ρ◦A′ is
surjective.

We postpone the proof of Lemma 4.3 until § 7 and continue in the proof of Theorem 4.2. Let U1

denote the group of all elements of SL(T) that act trivially on M′ and on T1, let U2 ⊆ SL(T) be
the group that acts trivially on T2 and on E′, and let H be the image of Gal◦R→ SL(T). Then H
contains U by Lemma 4.3, so H ∩ U1 contains U ∩ U1. Since Gal◦S′1 → SL(T1) is surjective, H ∩ U1

is invariant under the conjugation action of SL(T1) on U1. Thus H ∩ U1 = U1 and similarly
H ∩ U2 = U2. It follows that H contains the (pointwise) stabilizers of M′ ⊂ T and of E′∨ ⊂ T∨.
These generate SL(T) as is easily shown by straightforward considerations of matrices. 2

The following example shows that the use of Lemma 4.3 cannot be avoided.

Example 4.4. There is a subgroup H of G= GL4(F2) of index 8 such that, for any parabolic
subgroup P ⊂G of type (3, 1) or (1, 3), the projection π :H ∩ P →GL3(F2) is bijective.
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Proof (communicated by V. Paskunas). For any isomorphism α :A8
∼=G, which exists by [Con71,

Theorem 6], we take H = α(A7). Let B ⊂ P be a Borel subgroup. Since B is a 2-Sylow
subgroup of G and since [G :H] = 23, we have [B :H ∩B] = 23; hence [P :H ∩ P ] = 23, and
thus |H ∩ P |= 7 · 6 · 4 = |GL3(F2)|. Therefore, it suffices that U = Ker(π) is trivial. Since U is
contained in the unipotent radical of P , it is an F2-vector space of dimension at most 3. However,
any 2-Sylow subgroup of A7 is non-commutative with 8 elements, so |U |< 8. Let σ ∈H ∩ P be
of order 7. Since in A7 an element of order 7 and an element of order 2 cannot commute, all
σ-orbits in U\{1} have seven elements. Hence |U |= 1. 2

5. Deformations of p-divisible groups

Before proving Lemmas 3.1 and 4.3 let us recall some aspects of the deformation theory of
p-divisible groups. Let G be a p-divisible group over an arbitrary ring R in which p is nilpotent
and write ΛG = HomR(LieG, ωG∨). Here LieG is the Lie algebra of G, which is a finite projective
R-module, and ωG∨ is the dual of the Lie algebra of the Serre dual G∨. If R= S/I where S is an
I-adically complete ring, let DefS/R(G) denote the set of isomorphism classes of lifts of G to S.

Theorem 5.1. If I2 = 0 then DefS/R(G) is naturally a torsor under the R-module

HomR(ωG∨ , I ⊗ LieG) = HomR(ΛG, I).

This is classical and follows either from [Ill85, théorème 4.4 and corollaire 4.7] or (except
for the existence of lifts) from the crystalline deformation theorem [Mes72, V, Theorem 1.6],
because the set of lifts to D(G)S of the Hodge filtration

0−→ ωG∨
i−→ D(G)R

π−→ LieG−→ 0

is a torsor under HomR(ωG∨ , I ⊗ LieG); here D(G) is the covariant Dieudonné crystal defined
in loc. cit. Both constructions give the same action of HomR(ΛG, I) on DefS/R(G) but we could
not find a reference for this fact (and will not use it).

Let ΩR = Ω1
R/Z be the absolute module of differentials of R. Theorem 5.1 implies formally

that for every p-divisible group G over R as above there is a ‘Kodaira–Spencer’ homomorphism

κ′G : ωG∨ → ΩR ⊗ LieG or equivalently κG : ΛG→ ΩR,

uniquely determined by the following property. For any ring homomorphism f :R→A where
A=B/I such that I2 = 0, denote by LiftB/A(f) the set of ring homomorphisms R→B lifting f ,
which is either the empty set or a torsor under theA-module HomR(ΩR, I). Then the obvious map

LiftB/A(f)→DefB/A(G⊗R A) (5.1)

is equivariant with respect to the homomorphism HomR(ΩR, I)→HomR(ΛG, I) induced by κG.
The homomorphism κG is functorial in R in the obvious sense. If one uses the crystalline
construction of the torsor structure in Theorem 5.1, then κ′G can be written down directly
in terms of the connection ∇ : D(G)R→ ΩR ⊗ D(G)R, namely κ′G = (id⊗ π) ◦ ∇ ◦ i.

A homomorphism of p-divisible groups G→H over R induces a homomorphism of arrows
(a commutative square) κ′G→ κ′H . In the special case of an exact sequence of p-divisible groups
0→M →G→H → 0 where M is of multiplicative type, and thus ωG∨ ∼= ωH∨ , this translates
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into the following commutative triangle with split injective λ.

ΛH
� � λ //

κH ""DDD
DD

ΛG

κG}}zzz
zz

ΩR

(5.2)

If G is a p-divisible group over a field k of characteristic p and G is a deformation of G
over a complete local noetherian k-algebra R with residue field k, we may consider the following
composite homomorphism κ̄G :

κ̄G : ΛG ∼= ΛG ⊗ k
κG ⊗ id−−−−→ ΩR ⊗ k→ Ω̂R/k ⊗ k ∼= mR/m

2
R.

The deformation G is universal if and only if R is regular and κ̄G is bijective; let us call G versal
if R is regular and κ̄G is injective. In the universal case κG induces an isomorphism ΛG ∼= Ω̂R/k

because both modules are free over R. If G is universal and k is perfect then κG is an isomorphism
ΛG ∼= ΩR because in that case ΩR

∼= Ω̂R/k.

As announced earlier, we conclude this section with a proof of Proposition 2.2.

Proof of Proposition 2.2. We use a variant of the transitivity argument of [Oor01,
Proposition 2.8]. Let K be the residue field of R̄ at x, let S = R̄[[t1, . . . , tcd]], and let
S(x) =K[[t1, . . . , tcd]]. There is a deformation H over S of G ⊗ R̄ so that H(x) =H⊗S S(x)
is the universal deformation in equal characteristic of its special fibre G ⊗R K. Indeed, let
J = (t1, . . . , tcd) as an ideal of S and choose an isomorphism of R̄-modules u : ΛG⊗R̄ ∼= J/J2.
Let H2 over S/J2 be the deformation of G ⊗ R̄ that, under the torsor structure of Theorem 5.1,
differs from the trivial deformation by u. The required H is any deformation over S of H2, which
exists by Theorem 5.1 again.

Universality of G gives a homomorphism ϕ : R̄→ S such that H∼= G ⊗ϕ S as deformations
of G. Since R̄→ S→ R̄ is the identity, the inverse image of the maximal ideal under R̄→ S→
S(x) is x, so there is a local homomorphism ψ : R̄x→ S(x) making the following commute.

R̄
ϕ

//

��

S = R̄[[t1, . . . , tcd]]

��

R̄x
ψ

// S(x) =K[[t1, . . . , tcd]]

It follows that the universal group H(x) is isomorphic to (G ⊗ R̄x)⊗ψ S(x). In particular,
the inverse images of the various Vβ,x under Spec ψ : Spec S(x)→ Spec R̄x form the Newton
stratification given by H(x). Since that stratification has the required properties by [Oor00,
Theorem 3.2], the proposition follows if we show that S(x) is isomorphic via ψ to a power series
ring over the completion of R̄x.

Let m⊂ R̄x and n⊂ S(x) be the maximal ideals. Since R̄x is regular and ψ an isomorphism
on residue fields, it suffices that m/m2→ n/n2 is injective. Now m/m2 is a submodule of
ΩR̄x

⊗K, and n/n2 is isomorphic to Ω̂S(x)/K ⊗K, so it suffices that ΩR̄x
⊗ψ S(x)→ Ω̂S(x)/K

is an isomorphism. This follows because ΛG⊗R̄x
⊗ψ S(x)∼= ΛH(x) and the Kodaira–Spencer

homomorphisms ΛG⊗R̄x
→ ΩR̄x

and ΛH(x)→ Ω̂S(x)/K are isomorphisms by the universality of G
and of H(x). 2
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6. Universality over completions

In this section we prove Lemma 3.1, but we consider a more general situation. Assume that G
is a p-divisible group over a perfect field k of characteristic p, let R be its universal deformation
ring over k, so R∼= k[[t1, . . . , tcd]], and let G be the universal deformation over R.

For an arbitrary prime p ∈ SpecR we consider the complete local ring S = R̂p with residue
field K = S/mS . The maximal subgroup of multiplicative type M of G ⊗K lifts uniquely to a
subgroup of multiplicative type M of G ⊗ S. The quotient H= (G ⊗ S)/M is a deformation
over S of the p-divisible group H = (G ⊗K)/M over K. To ask whether H is a universal or
versal deformation of H makes sense only after a structure of K-algebra is chosen on S, and in
general the answer depends on the choice (but not in the special case of Lemma 3.1).

Denote by Σ (or Σ̄) the set of all k-algebra homomorphisms σ :K→ S (or σ̄ :K→ S/m2
S)

lifting the identity of K. Since k is perfect, K is formally smooth over k, so Σ is non-empty
and the reduction map Σ→ Σ̄ is surjective. The set Σ̄ is a torsor under the finite-dimensional
K-vector space HomK(ΩK ,mS/m

2
S). Hence the Zariski topology on the vector space induces a

well-defined topology on Σ̄.

Proposition 6.1. There is an open subset U of Σ̄ such that H is versal with respect to
some σ ∈ Σ if and only if its reduction σ̄ lies in U . The set U is non-empty if and only if
dim(S) > dimK(ΛH). We have U = Σ̄ if and only if κH : ΛH → ΩK is zero.

Note that if dim(S) = dimK(ΛH) then ‘versal’ is equivalent to ‘universal’.

Lemma 6.2. The natural homomorphism ΩR ⊗R S→ ΩS is an isomorphism.

Proof. Since this is true with Rp in place of S, it suffices that ΩRp ⊗Rp S→ ΩS is an isomorphism.
The ring S has a finite p-basis because it is isomorphic to a power series ring over the field K
which has a finite p-basis because this holds for R. Thus ΩS is a finite S-module, and hence

ΩS
∼= lim←−

n

(ΩS/m
n
SΩS)∼= lim←−

n

ΩS/mn
S
.

Since ΩRp is a finite Rp-module, the same reasoning shows that ΩRp ⊗Rp S
∼= lim←− ΩS/mn

S
as well. 2

Proof of Proposition 6.1. Assume that σ :K→ S is given. Since S is regular, H is versal
with respect to σ if and only if the homomorphism κ̄H defined by the upper triangle of the
following commutative diagram is injective. The lower triangle is (5.2) and is independent of σ.
The homomorphism κG⊗S : ΛG⊗S → ΩS is an isomorphism because it can be identified with
κG ⊗ id : ΛG ⊗R S→ ΩR ⊗R S by Lemma 6.2 and because κG is an isomorphism as G is universal
and k is perfect.

ΛH ⊗S K
κ̄H //

_�

λ
��

κH ⊗ id

((QQQQQQQQQQQQQ
ΩS/K ⊗S K

ΛG⊗S ⊗S K
κG⊗S ⊗ id

∼= // ΩS ⊗S K

v

OO
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In order to see how the kernel of v varies with σ we write down two standard exact sequences
for modules of differentials. The first depends on σ, while the second does not:

0−→ ΩK
u−→ ΩS ⊗S K

v−→ ΩS/K ⊗S K −→ 0,

0−→mS/m
2
S

d−→ ΩS ⊗S K
π−→ ΩK −→ 0.

Here v ◦ d is an isomorphism and π ◦ u= id, which proves exactness on the left. If σ is changed
so that σ̄ is altered by δ : ΩK →mS/m

2
S then u changes by d ◦ δ. It follows that Σ̄ is bijective

to the set of homomorphisms u with π ◦ u= id, which reduces the proposition to linear algebra.
Namely, κ̄H is injective if and only if the images of u and of κH ⊗ id in ΩS ⊗K have zero
intersection. This condition defines an open subset U of Σ̄ that is non-empty if and only if
dimK(ΛH) 6 dimK(ΩS/K ⊗K) = dim(S). The intersection is zero for all choices of u if and only
if the composition π ◦ (κH ⊗ id) is zero, but this composition is just κH . 2

Proof of Lemma 3.1. Clearly H′ is universal if and only if the group H considered above
is universal with respect to the chosen section σ :K→ S. Since dimK(ΛH) = c= dim(S),
Proposition 6.1 implies that H is universal if σ̄ lies in a dense open subset of Σ̄, which is sufficient
for our applications. In order forH to be universal for all choices of σ, we need in addition that κH
vanishes. Since H is a one-dimensional formal group, its base change to a separable closure Ksep

is defined over the prime field Fp by [Zin84, Satz 5.33]. Using the fact that ΩKsep ∼= ΩK ⊗K Ksep

and ΩFp = 0, the vanishing of κH follows by its functoriality with respect to the base ring. 2

An alternative proof of Lemma 3.1 in the case where a(G) = 1 is given in [Tia07].

7. Generic completion of the universal deformation

In this section we prove Lemma 4.3. As in the previous section let G be a p-divisible group over
a perfect field k of characteristic p, but now let R again be the universal deformation ring of G
over W (k) and G the universal deformation over R.

We consider the unramified discrete valuation rings A= R̂(p) and A′ =W (F ′) where F ′ is
a fixed algebraic closure of the residue field F of A. Let Σ be the set of ring homomorphisms
A→A′ that induce the given embedding F → F ′ modulo p.

Proposition 7.1. The map ψ : Σ→DefA′/F ′(G ⊗ F ′) that maps a homomorphism σ :A→A′

to the scalar extension of G ⊗A by σ is bijective.

Proof. Let R̄=R/pR. Since G ⊗ R̄ is the universal deformation of G in characteristic p, the
homomorphism κG⊗R̄ is an isomorphism, and hence induces an isomorphism

κG⊗F : ΛG⊗F ∼= ΩF

as F is the quotient field of R̄. The proposition is a formal consequence. Let A′n =A′/pnA′.
It suffices that for every n > 1 and every homomorphism σ :A→A′n lifting F → F ′, using the
notation of (5.1), the obvious map

LiftA′n+1/A
′
n
(σ)→DefA′n+1/A

′
n
(σ∗(G ⊗A))

is bijective. Since its source is non-empty by [BM90, Proposition 1.2.6] and since ΩA/pΩA = ΩF ,
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this is an equivariant map of torsors with respect to the homomorphism of F ′-vector spaces

HomF (ΩF , p
nA′/pn+1A′)→HomF (ΛGF

, pnA′/pn+1A′)

induced by κG⊗F , which is bijective. 2

In order to deduce Lemma 4.3 we have to describe the Galois representation on the Tate
module of an arbitrary deformation over A′ of H = G ⊗ F ′. Let K be the quotient field of A′,
choose an algebraically closed field Ω containing K, and write GalK = π1(K, Ω). We fix an
isomorphism of p-divisible groups over F ′,

H ∼= (Qp/Zp)c ⊕ µdp∞ .

Lemma 7.2. The map of sets e : DefA′/F ′(H)→H1(GalK , Zp(1))cd that maps a deformation H
to the isomorphism class of the associated extension of GalK-modules

0−→ Zp(1)d −→ TpH(Ω)−→ Zcp −→ 0

can be written as a composition

DefA′/F ′(H) α−−→ Ĝm(A′)cd i−−→ (K∗)cd δ−−→H1(GalK , Zp(1))cd

where α is bijective, i is the natural inclusion, and δ is the Kummer homomorphism.

Proof. We have an obvious bijection γ : DefA′/F ′(H)∼= Ext1
A′(Qp/Zp, µp∞)cd and an isomorphism

β : Ĝm(A′)∼= Ext1
A′(Qp/Zp, µp∞)

defined as the projective limit over n of the connecting homomorphisms associated to the
exact sequence 0→ Z→ Z[1/p]→Qp/Zp→ 0 over A′n; these are isomorphisms by [Lau08,
Proposition A.1]. Put α= (−β−1)cd ◦ γ. Let K̄ be the algebraic closure of K in Ω. The required
relation e= δ ◦ i ◦ α translates into anti-commutativity of the following diagram, where δ1 is
induced by the exact sequence 0→ µpn → K̄∗→ K̄∗→ 0 and δ2 is induced by 0→ Z→ Z→
Z/pnZ→ 0, while ε1 maps an extension E to E/pnE and ε2 maps E to E[pn].

K∗ = HomGalK (Z, K̄∗) δ1 //

δ2
��

Ext1
GalK

(Z, µpn)

ε1
��

Ext1
GalK

(Z/pnZ, K̄∗) ε2 // Ext1
GalK

(Z/pnZ, µpn)

This is easily checked. 2

Proof of Lemma 4.3. Let K∞ =K[µp∞ ]. The homomorphism ρ◦A′ : Gal◦A′ → Zcdp is surjective if
and only if its reduction ρ̄◦A′ : Gal◦A′ → Fcdp is surjective. By Proposition 7.1 and Lemma 7.2 we
have a bijection a : Σ∼= Ĝm(A′)cd so that ρ̄◦A′ is the image of a(σ) under

Ĝm(A′) i−−→K∗∞
pr−−→K∗∞/(K

∗
∞)p

δ∼= Hom(Gal◦A′ , Fp)

(componentwise) where δ is induced by the Kummer sequence. Thus ρ◦A′ is surjective if and
only if the components of a(σ) map to linearly independent elements in the Fp-vector space
K∗∞/(K

∗
∞)p. Since a(σ) is arbitrary it suffices to show that the image of Ĝm(A′) in K∗∞/(K

∗
∞)p

is infinite.
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Let Kn =K[µpn ] and Vn =K∗n/(K
∗
n)p, which for n > 1 is identified with Hom(GalKn , Fp). By

using the fact that K∞ over K2 is a Zp-extension it is easy to see that the kernel of V2→ Vn is
independent of n for n > 3. Since V1→ V3 has finite kernel, it suffices that the image of Ĝm(A′)
in V1 is infinite. A consideration of valuations shows that for every x ∈A′ of valuation 1 the
element 1 + x does not lie in (K∗1 )p. In other words, the kernel of Ĝm(A′)→ V1 is contained in
the kernel of the surjection Ĝm(A′)→ F ′ given by 1 + px 7→ x̄. Since F ′ is infinite the assertion
follows. 2
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