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Abstract. It is shown that for n > 3 the Lebesgue measure is the unique finitely-
additive isometry-invariant measure on the ring of bounded Lebesgue measurable
subsets of the n-dimensional Euclidean space.

Let j3 be the ring of bounded Lebesgue measurable sets in the n-dimensional
real space R" or in 5", the n-dimensional unit sphere in Rn~\ and let An be the
Lebesgue measure on/3 normalized by A „(/") = l ,where/ = [0, 1), orbyAn(S") = 1
respectively. It is well known that An is up to proportionality the unique countably-
additive isometry-invariant measure on /8. In 1923, Banach (see [1]) studied the
following question of Ruziewicz: is An, up to proportionality, the unique finitely-
additive isometry-invariant (positive) measure on /3. Banach gave a negative answer
to this question for R1, R2 and S\ But for R", n >3 , or 5", n >2, the Ruziewicz
question was unanswered for a long time.

Let v be a finitely-additive isometry-invariant measure on /3 and let L» be the
space of bounded measurable functions on Rn or on S" having a compact support.
It is well known (see, for example, [11]) that, for R", n >3 , or Sn, n >2, v is
absolutely continuous with respect to An i.e. v(X) = 0 whenever \n(X) = 0, X€/3.
Then v determines (by the formulae

an isometry-invariant linear positive (/(/)>0 if / > 0 ) functional / on L?L. Con-
versely, any isometry-invariant linear positive functional / on L» determines an
isometry-invariant fin'tely-additive measure v on /3 by the formula

where x(X) is the characteristic function of X e/3. Therefore, for R", n > 3, or S",
n > 2 , the Ruziewicz question is equivalent to the following question:

(A) is any isometry-invariant linear positive functional / on L« proportional to
the functional an given by

https://doi.org/10.1017/S014338570000167X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000167X


384 G. A. Margulis

In [9] and [13] (independently and simultaneously), it was proved that, for 5",
n > 4, the answer to (A) is positive. The proof in both [9] and [13] is based on
reducing (A) to a question on asymptotically invariant sets (see [2], [5], [11]) and
on using Kazhdan's results on property (T).

In this paper, it is proved (see theorem 4) that, for R", n > 3, the answer to the
Ruziewicz question (and to the equivalent question (A)) is positive. The proof of
theorem 4 is based, roughly speaking, on a reduction (by arguments of Namioka)
to a question on almost invariant nets of locally integrable functions and on using
methods of representation theory.

Thus the Ruziewicz question remains unanswered only for S2 and S3.

1. Property (T) and almost invariant nets
Let H be a separable unimodular locally compact group. Let H (respectively H)
denote the set of unitary (respectively unitary irreducible) continuous representa-
tions of H in separable Hilbert spaces. Let \iH be a Haar measure on H and let
A(H) be the set of non-negative continuous functions f on H having a compact
support such that

f fdnH = l.

For any U eH and any /AH-integrable function / on H, put

U(f)=\ f(h)U(h)dnH{h).

Let L(U) denote the space of a representation U. For/e A(H) and e >0, put
V(e, f) = {UeH\ there exists x e L(U), x * 0,

such that | | t /(/)x-x| | <e||x||}.

Let To be the one-dimensional trivial representation of H. One can introduce on
H the standard topology (see [4], [6]) for which sets V(e,f) form a basis of
neighbourhoods of To. We say that U e H is close to To if To belongs to the closure
of {[/}. According to Kazhdan (see [4], [6]), we say that H has property (T) if one
of two following equivalent conditions is satisfied:

(I) there exists a neighbourhood V of To such that any U eVnH is equivalent
to To;

(II) any representation UeH close to To contains To (i.e. there exists x 6L(U),
x * 0, such that U(H)x = x).

Let us give now a slight generalization of this definition.

DEFINITION 1. Let B ^H. We say that the pair (H,B) has property (T) if one of
two following equivalent conditions is satisfied:

(I') there exists a neighbourhood V of To such that any UeYnH is trivial on B

{i.e. U(B)x=x foranyxeL(U)).

(II') ifUeHis close to To, then there exists x eL(U), x # 0, such that

U(B)x=x.
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The equivalence of (I') and (II') can be proved in the same way as the equivalence
of (I) and (II) was proved in [6] (by a decomposition of U e H into a continuous
sum of irreducible representations).

Let us give now one further definition. We make the convention that 0/0 = 0.

DEFINITION 2. Let U &H, M<^H and {*„} be a net {generalized sequence) of
elements of L(U). We say the net {xa} is almost M-invariant if, for any compact set
KczH,

r sup

We say the net {xa} is weakly almost M-invariant if, for any h e M,

THEOREM 1. Let B <=-H,Y be a lattice in H {i.e. Y be a discrete subgroup of H such
that

iiH{Y\H)<oo), UeH and {xa}

be a net of elements of L{U). Denote by S the closure of the set
def

B Y = {by\beB,yeY}.

Let us assume that the pair {H, B) has property {T). If the net {xa} is weakly almost
Y-invariant, then {xa} is almost S-invariant.

Proof. Choose (see [3], chapter VII, § 2, exercise 12]) a Borel subset Y<^H with
the following properties:

(a) Y is a fundamental domain for Y i.e. Y • Y = G and

{yiY)n{y2Y) = 0 if yi *y2, n ,

(b) for any compact set K <= //, the set

is finite.
Let p e H be the representation of H induced in the sense of Mackey by the

restriction of U to Y. The space / of the representation p consists of measurable
such that

i / f = f \\i(h)\\2dnH{h)-
JY

)<oo

and
j{yh) = U{y)j{h), ioTyeY,heH. (1)

The scalar product (•, •) on / is introduced by

iH{h), for / i , / 2e/ , (2)

and the representation p is defined by

) = j{h1h),h,h1eH,jeJ. (3)
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Since the pair (//,B) has property (T), there exist fsA(H) and e >0 such that
any W € / / n V(e, /) is trivial on B. Now decompose the unitary representation p
into a continuous sum of irreducible representations pz&H. Let pi denote the
continuous sum of pz such that

and let p2 denote the continuous sum of pz such that pzt V{e,f). Then

P=Pl ®P2,

pi is trivial on B and p2g V(e,f). Let Pr, r = 1, 2, denote the orthogonal projection
of / onto L(pr). Since p2 £ V(e, / ) ,

for any ye / .
Let us give the following definition. Two nets {ua} and {u'a} of elements of a

Banach space are called equivalent if

Define /„ eJ by

/«(yy) = tf(y)x«, v ^ r , y e r . (5)
For /i eH, define y(/i) e T by the inclusion h € y(/i)F. Let K <=//. In view of (1),

(2), (3) and (5), we have

sup ||p(A)/„ -/«,||2 = sup f | |/a(*i*)-/«(Ai)||2«WM

= sup f \\U(y(hlh))xa-xafdnH(hl)

< f (sup \\U(y{h,h))xa -jc«||2) ^ H ( A i ) . (6)
Jy heK

f
Jy

The property (b) of Y" implies the set y(M • /C) is finite for any compact sets
K<=-H and M <=-H. On the other hand, the net {xa} is weakly almost F-invariant.
Therefore,

hm sup J:—u = 0
<* M \\Xa\\

for any compact sets K <=-H and M <=-H. On the other hand, as U is unitary then

for any h, h\eH. Therefore, (6) implies the net {/„} is almost //-invariant. On the
other hand, a s / eA( / / ) then

llp(/)/a-/a||=£ SUP ||p(/t)/«-/«||,
hesupp/

where s u p p / denotes as usual the (compact) support of /. Therefore, the nets {/„}
and {p (/)/„} are equivalent. From this and (4) we conclude that the nets {/„} and
{P\ja} are equivalent.
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Let us now fix a compact set K a H containing e. For any / e /, we have

sup ||(p(/)/)(*)|| = sup I f fihjjihh,) dnH(hA
heK heK UJH «

<suP f /(/ii)||y(^i)||^M«(^i)

< (sup/(&'))• f \\i(h)\\dnH{h)
h'eH JK supp/

<(sup f(h')) • s/»H(K-suppf) • Jf \\j(h)\\2 dfiH(h) (7)
(I'EH JK supp/

(the last inequality is implied by the Schwartz inequality). Since the set K • supp/
is compact, it belongs to M • Y for some finite set M c T . Then in view of (2),

f
•IK • supupp/

This inequality and (7) imply

sup ||(p (/)/)(/«)NC||y || (8)
/teJC

for any / e /, where

C = (sup f{h')) • vW/sT-supp/) • >/JAf|.

Further, put

Then in view of (8),

«-U (9)
heK

In view of (1), (3) and (5) we have

sup ||xa -(p(f)ja){h)|| = sup \xa - f{hi)ja(hhi) <W(Ai)
heK heKU JH II

= sup I f /(Ai)(xa -Uhhi)) d(iH(hi)

< SUP |
• supp/

= sup \\xa-U(y)xa\\. (10)
yey(K • supp/)

As the nets {/a} and {P\ja} are equivalent, the set y(K • supp/) is finite (in view of
the property (b) of Y), the net {xa} is weakly almost T-invariant, and

we conclude from (9) and (10) that

\\xa\
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Let B be a normal subgroup of H generated by B. Since pi is trivial on B, it is
also trivial on B. On the other hand

Therefore for any heH,we have

j'a(Bh)=j'a(hB) = (p(B)i'a)(h)

= (pi(B)j'a)(h)=j'a(h). (12)

The equalities (11) and (12) imply

lim sup 11^>-*«IU (13)

Since U is unitary, we get using (1) that

\\U(y)x-x\\<\\U{y)x-j{y)\\

= \\U(y){x-j{e)

x|| (14)

for any y e F, JC eL(U) and jeJ. Using (13) and (14), we get

hm sup - n—r - = 0. (15)
<* ys(B-K)nr \\Xa\\

As K is an arbitrary compact subset of H the representation U is continuous and
B =>B, then (15) implies the assertion of the theorem.

LEMMA 1. Let K be a non-discrete locally compact field and let H = SL2(fe)°cB be
a semi-direct product of SL2(fc) and a separable commutative locally compact group
B (as usual SL2(fc) denotes the group of unimodular matrices of order 2 with
coefficients in k). Consider the natural action of Hon the character group B* of B

£B*, beB).

Let us assume that (I) any orbit under this action is locally closed, (II) the subgroup

is commutative for any ^ e B * , J t # 0 , Then the pair(H, B) has property (T).
Proof. Let UeH and suppose U is not trivial on B. Then in view of Mackey's
results (see [8]), U is induced by an irreducible unitary representation p of a
subgroup

On the other hand since Gx is commutative, Hx is solvable and, consequently, p
belongs to the closure of the regular representation of Hx. Therefore, U belongs
to the closure of the regular representation r of H. Now it remains to note that
(see [6]) the regular representation of SL2(fc) is not close to To and so T is not
close to To. •

Remark. Some arguments of [6] were in fact used in the proof of lemma 1.
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Let us prove now the following theorem using theorem 1 and lemma 1.

THEOREM 2. Let n > 3, Hn be the group of isometries of the n-dimensional Euclidean
space R", and let Bn <=//„ be the group of parallel translations of R". Then there
exists a countable subgroup T of Hn with the following property: if U eHn and {xa}
is a weakly almost T-invariant net of elements of L(U), then {xa} is almost Bn-
invariant.

Proof. For a commutative ring L with identity, denote by On(L) the group of
matrices of order n with coefficients in L which preserve the quadratic form
C = x\ + - • -+x2

n and put

where AeOn(L) and B is a column vector with coefficients in L. It is well known
that there exists a topological isomorphism of groups Gn (R) and Hn which maps
Fn(R) onto Bn. Therefore, one can replace Hn by Gn(R) and Bn by Fn(R) in the
formulation of the theorem.

Let Z(1/5) denote the subring of the field Q generated by 1/5 and let Q5 denote
the field of 5-adic numbers. Put

r = GB(Z(l/5)).

The diagonal embedding of Z(l/5) into RxQ5 induces the diagonal embedding
of T into

Hd=Gn(R)xGn(Qs).

Let us suppose we have proved that the pair (Gn(Qs),Fn(Qs)) has property (T).
Then the pair (H, Fn(Qs)) also has property (T). (We think of the subgroup

Fn(Q5)c=Gn(Qs)

as naturally embedded in H). On the other hand in view of the Borel reduction
theorem (see [2]), F is a lattice in H. Therefore applying theorem 1 to the pair
(H,Fn(Q5)), the lattice T, the net {xa}, and the representation U' = p • U, where
p:H-*Gn(R) is the natural mapping, we get the net {xa} is almost S-invariant,
where S is the closure in Fn(R) of Fn(Z(1/5)). On the other hand as Z(l/5) is
dense in R, then S=Fn(R).

Thus, it remains to prove that the pair (Gn(Q5),Fn(Qs)) has property (T). For
this we consider three cases: ( I ) « s 5 ; ( 2 ) n = 4; (3) n = 3.

Case (1). Let a representation p e G(Q5) be close to To. As - 1 is a square in Q5,
the Q5-rank (i.e. the dimension of a maximal (?5-split torus) of On(Qs) is equal to
the integer part of n/2 and, consequently, is not less than [5/2] = 2. On the other
hand if n # 4, then On is an absolutely (almost) simple algebraic group. Therefore
in view of Kazhdan's results on property (T) (see [4], [6]), the group On(Qs) has
property (T). Hence, there exists xeL(p), x ^ 0 , such that p(P)x =x, where

https://doi.org/10.1017/S014338570000167X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000167X


390 G. A. Margulis

Let

D={xeQ5"|C(x) = 0}.

For any d e D, one can find a matrix Ad e On(Qs) such that

lim A3(<*) = 0.
n-++oo

Then

Since p{P)x = x and the representation p is continuous and unitary, (16) and the
generalization of the Mautner lemma given by Prasad (see [10]) imply

/I d\
\o if=;

On the other hand as - 1 is a square in Q5, then D generates Q5 as a group.
Therefore, p(Fn(Q5))x = x.

Case (2). Let i e Q5 such that i2 = - 1 . For A e SL2(Q5), put

"VA o

where 'A is the matrix transposed to A and E is the identity matrix of the second
order. One can directly check that XA s O4(Q5). Put

(XA 0'H ( t ?)}=<«<»•
Then applying lemma 1, we obtain the pair (M • F4{Q5), F4(Q5)) and, consequently,
the pair (G4{Q5), F4(O5)), has property (T).

Case (3). As - 1 is a square in Qs, then C can be reduced to the form 2

Then identifying a vector (xi, x2, x3) with the matrix

/Xl X2\

\x3 -xj

and conjugating this matrix by A e SL2(Qs), we get the homomorphism
<p : SL2(O5) -» O3(Q5). Now, we can define a semi-direct product

r = SL2(05)ocF3(05)

and a homomorphism

<p : T -* G3(O5) = O3(05) °cF3(Q5)

such that

<p |SL2(O5) = <p and <p |F3(O5) = Id.
Applying lemma 1, we get the pair (T, F3(O5)) and, consequently, the pair
(G3(Qs),F3(Os)), has property (T).
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2. Almost invariant nets of locally integrable functions and finitely-additive invariant
measures
Let /3 be the ring of bounded Lebesgue measurable sets in R", and let An be the
Lebesgue measure on R " normalized by

AB(/") = 1, where / = [0,1).

Let L denote the space of locally integrable functions on Rn. If X e/S, p a 1 and
/"eL.put

forXe/3 and/eL, put

X(f)=\ fdkn.
Jx
\
Jx

Put P = {feL\f>0,Jn(f) = 1}. Let //„ and 5n be the same as in the formulation
of theorem 2. For heHn and / € L, define hf e L by

THEOREM 3. Lef n > 3 and {/„} &e a «ef of elements of P. Assume that

(a) lim |AW«)-X(/J| = 0 for any h€HnandXe(3;

(b) for any X e f t fftere exists a limit
def

lim *•(/„) = v(X).
a

Then v{X) = \n(X) for any Xe/3.
Proof. Introduce on the linear space L the standard topology for which sets

form a basis of neighbourhoods of zero. Put Lh=L and Rx =R for h e H and
X e/3 and consider the Tychonoff product

M = n ihx n RX.

The space M can be considered as the set of pairs (a, b), where a.H -*L and
b.fi^R are arbitrary mappings. Define a linear mapping T: L -» M by

Tf = (T1f,T2f), (T1f)(h) = hf-f, (T2f)(X) =

As Lco(y,/u.) is the dual of L\{Y,n) for any space F with a countably-additive
finite measure fi, then the bounded measurable space L» having compact
support functions on Rn is the dual of L. Therefore, the condition (a) implies the
net {hfa -/„} weakly converges to zero for any h&H. From this and condition (b)
we conclude that the weak closure of T(P) in M contains (0, v). On the other hand
as the space M is locally convex and T(P) is a convex set, the weak and strict
closures of T(P) coincide. Therefore, there exists a net {gs} of elements of P such
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j
| t ha t , for any heH a n d X e ) 3 , w e h a v e
j lim\\hgs-gs\\l,x = 0 (1)
! s

and

s

Let Cl <=• Bn denote the subgroup of parallel translations by vectors with integer
coefficients. Let Y c Hn be the countable subgroup defined in theorem 2 and let F
be the subgroup generated by Y and H. Let us fix now Xoe/3 and denote by N+

the set of positive integer numbers. As F is countable, the space R n is cr-compact,
and

then, in view of (1) and (2), one can choose a countable subsequence {gm}, m eiV+,
of the net {gs} such that

lim ||-ygm-gm||i,x = 0 (3)
m-»°o

for any y e F, X e /3, and

Any point x eRn is uniquely represented in the form

x = <u/, co e fi, y e /".

Define functions gm e L by

gm(w/) = gm(/), w e Q, /e / " .
Then

llgm - gm|| W " = l|w "'gm - gm|tr
for any m G N+ and w e H. On the other hand, any X e /3 can be covered by a finite
number of sets of the type «/", a> e il. Therefore, (3) implies

lim ||gm-gm||i,x = 0
m-»oo

for any X e /8. On the other hand,

lly/lkx=||/||i,Y-x for any/6L.
Therefore, we can replace gm by gm in (3) and (4) and suppose

gmiiOX) = gm(x) (5)

for any m e N+, toeCl,xeRn.
Let C/(r) denote the ball in Rn centered at 0 of radius r. As T' is countable, then,

in view of (3), one can choose a sequence {rm > 0} such that

lim rm = oo (6)
m~*oo

and
lim ||ygm - gm||i,t/(rm) = 0 (7)

m-*oo

for any yeV.
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Let x(V) denote the characteristic function of a set V cRn. Put

Xm =# (£ / ( / •„ , ) ) and (f>m = (gmXm)1 = g'%iXm-

Then, for any m e N+ and h e //„,
k - (gmXm)

~ Xm)

L~gL)x(U(rm))

+ (hgi)[x(hU(rm)-U(rm))-x(U(rm)-hU(rm))]

and, consequently,

| \\h<pm ~ <Pm II2.R" - \\hgm ~ gm lkc/(rm)| ^ | |%L ||2,fcl/(rm)AU(rm)

= l|gm||2,t7(rm)AH-1t7(rm)- (8)

For V^R", put

and

Classical theorems on the number of integer points imply

It is clear that

F'(V1-V2)^F'(V1)-F(V2)

for any Vu V2^R". Therefore, (9) implies

for any d > 0.
The equality (5) and the inclusion gmep imply that

As \a-b\2<a2-b2ioT any a,b>0, then

ll/l-Zzlkx^ll/i-MlU
for any/1, f2eL andX€/8. Therefore, (6), (7), (8) and (12) imply,

for any meN+ and weft. Therefore, for any meN+ and A" 6 /?,

IW)Nllg5mlkx^|F'(*)|. (11)

For h eHn, denote by dh the distance between 0 and fc(0). Then

for any r>0 , h eHn. Therefore, (6), (10) and (11) imply, for any h eHn,

))

n(U(rm)
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for any y e F". Further, in view of (11),

From this and (9) we conclude that

% | ^ - = 1 . (14)
))

The equalities (13) and (14) imply {q>m} is a weakly almost F'-invariant sequence
of elements of L2(R", An). Therefore, in view of theorem 2, {<pm} is almost Bn-
invariant. From this and (8), (12) and (14) we conclude that, for any compact set

^ - O . (15)
)

It follows from (5) and the commutativity of Bn that

(hgi
m-gi)(a>x) = (hgl-gi)(x)

for any meN+, he Bn, <u e fl, x € /?". Therefore,

ll*gm-g«lk«j" = |l*gl.-gmlk/"
for any m eJV*, /i efin. Hence,

llAgi. -glkx^HxMhgl -glh,j- (16)
for any m eiV+, / i e S n and X 6 /3. It follows from (9), (15) and (16) that

lira sup ||Agi,-gi,||2^- = 0 (17)
m-*QO heK

for any compact set K <= Bn.
The Schwartz inequality implies that

for any / i , /2 € L and X e(3. On the other hand as any x e R " is uniquely represented
in the form x = wj, w e fl, / e /" , then (5) and the inclusion gmsP imply

for any h&Hn and m e iV+. Therefore, (17) implies

lim sup||/igm-gm||i,J'. = 0 (18)

for any compact set K <=Bn. Identifying R " and Bn, we get using (5), (18) and the
inclusion gmeP that

lim ||gm-li|i,j"= lim ||gm - f (hgm) d\n(h)\\UJ-

s l i m f \\gm-hgm\\Uj~dAn(h) = 0. (19)
m-.oo Jjn

It follows from (19) and (5) that

lim |
m-*oo
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and, consequently,

From this and (4) we conclude that v(X0) = K(X0). The theorem has been
proved. D

Now, we can prove the main result of the paper.

THEOREM 4. Let n > 3 and let v be a finitely-additive Hn-invariant measure on (5
such that v(Jn) = 1. Then v = \n.

Proof. As n s 3 then (see the beginning of the paper) v is absolutely continuous
with respect to An and, consequently, v determines //^-invariant linear positive
functional / on L» by

) = ]fdv,

As for any space Y with a countably-additive finite measure /J., the set

is dense in the weak* topology in the set of positive linear functionals on L<x,(Y, fi),
it follows that p is dense in weak* topology in the set of linear positive functionals
b on £» such that b (x(/")) = 1. Therefore, there exists a net {/„} of elements of p
such that

limf fad\n = l(f) (20)

for any/£/,£,. It follows from (20) and the //n-invariance of / that

l im|AW t t ) -W a ) | = 0

a

and

\imX(fa) = v{X)
a

for any h&Hn and X E /3. Therefore, in view of theorem 3, v = kn. •
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