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Abstract. It is shown that for n =3 the Lebesgue measure is the unique finitely-
additive isometry-invariant measure on the ring of bounded Lebesgue measurable
subsets of the n-dimensional Euclidean space.

Let 8 be the ring of bounded Lebesgue measurable sets in the n-dimensional
real space R" or in S", the n-dimensional unit sphere in R"™", and let A, be the
Lebesgue measure on 8 normalized by A, (J") =1, where J =[0, 1),0orby A,(S") =1
respectively. It is well known that A, is up to proportionality the unique countably-
additive isometry-invariant measure on 8. In 1923, Banach (see [1]) studied the
following question of Ruziewicz: is A,, up to proportionality, the unique finitely-
additive isometry-invariant (positive) measure on 8. Banach gave a negative answer
to this question for R ! R?*and S'. But for R”, n =3, or S”, n =2, the Ruziewicz
question was unanswered for a long time.

Let v be a finitely-additive isometry-invariant measure on 8 and let LY be the
space of bounded measurable functions on R" or on §" having a compact support.
It is well known (see, for example, [11]) that, for R", n=3, or S", n=2, v is
absolutely continuous with respect to A, i.e. »(X)=0 whenever A,(X)=0, X €.
Then v determines (by the formulae

1p=| ran

an isometry-invariant Jinear positive (/(f)=0 if f=0) functional / on LS. Con-
versely, any isometry-invariant linear positive functional / on L% determines an
isometry-invariant fin'telv-additive measure v on 8 by the formula

v(X) = l(x (X)),
where y (X)) is the characteristic function of X € 8. Therefore, for R", n =3, 0or §",
n =2, the Ruziewicz question is equivalent to the following question:

(A) is any isometry-invariant linear positive functional / on LY proportional to
the functional «, given by

an(f) = j fdr, feLS.
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In {9] and [13] (independently and simultaneously), it was proved that, for S",
n =4, the answer to (A) is positive. The proof in both [9] and [13] is based on
reducing (A) to a question on asymptotically invariant sets (see {2], [5], [11]) and
on using Kazhdan’s results on property (T').

In this paper, it is proved (see theorem 4) that, for R”, n =3, the answer to the
Ruziewicz question (and to the equivalent question (A)) is positive. The proof of
theorem 4 is based, roughly speaking, on a reduction (by arguments of Namioka)
to a question on almost invariant nets of locally integrable functions and on using
methods of representation theory.

Thus the Ruziewicz question remains unanswered only for $* and S°.

1. Property (T) and almost invariant nets

Let H be a separable unimodular locally compact group. Let H (respectively H)
denote the set of unitary (respectively unitary irreducible) continuous representa-
tions of H in separable Hilbert spaces. Let uy be a Haar measure on H and let
A(H) be the set of non-negative continuous functions f on H having a compact
support such that

,[Hfd”'” =1

For any U € H and any uy-integrable function f on H, put

U(f) = Lf(h)U(h) dun(h).

Let L(U) denote the space of a representation U. For fe A(H) and ¢ >0, put
V(e, f)={U € H| there exists x e L(U), x #0,
such that |U (f)x —x[|<e|x|}.

Let T, be the one-dimensional trivial representation of H. One can introduce on
H the standard topology (see [4], [6]) for which sets ¥'(e, f) form a basis of
neighbourhoods of Ty. We say that U € H is close to Ty if T belongs to the closure
of {U}. According to Kazhdan (see {4], [6]), we say that H has property (T') if one
of two following equivalent conditions is satisfied:

(I) there exists a neighbourhood ¥ of T, such that any U € Y ~H is equivalent
to To;

(IT) any representation U € H close to T, contains T, (i.e. there exists x € L(U),
x #0, such that U(H)x =x).

Let us give now a slight generalization of this definition.

DEFINITION 1. Let B < H. We say that the pair (H, B) has property (T) if one of
two following equivalent conditions is satisfied :
(I') there exists a neighbourhood V" of Ty such that any U € V' ~H is trivial on B

(i.e. UB)x=x foranyxelL(U)).
ar ifu e H is close to To, then there exists x € L(U), x #0, such that
U(B)x =x.
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The equivalence of (I') and (II') can be proved in the same way as the equivalence
of (I) and (II) was proved in [6] (by a decomposition of U € H into a continuous
sum of irreducible representations).

Let us give now one further definition. We make the convention that 0/0=0.

DEFINITION 2. Let U el-?, M cH and {x,} be a net (generalized sequence) of
elements of L(U). We say the net {x.} is almost M-invariant if, for any compact set

KcH,
. U (h)xa ~xa||]
lim [ s ——F1=0.
el P PR TP
We say the net {x,} is weakly almost M-invariant if, for any h e M,
a lbeall

THEOREM 1. Let B < H, T be a lattice in H (i.e. I" be a discrete subgroup of H such
that

uu(M\H)<®), UecH and {x.}
be a net of elements of L(U). Denote by S the closure of the set

def
B T ={bylbeB,yeT}.
Let us assume that the pair (H, B) has property (T). If the net {x,} is weakly almost
T-invariant, then {x,} is almost S-invariant.

Proof. Choose (see [3], chapter VII, § 2, exercise 12]) a Borel subset Y < H with
the following properties:
(a) Y is a fundamental domain forT"'i.e. T Y =G and

N Y)n(yY)=C ifyi#y2,v1, v2€T;

(b) for any compact set K < H, the set

{yel(vY)nK # &}
is finite.

Let p € H be the representation of H induced in the sense of Mackey by the
restriction of U to I'. The space J of the representation p consists of measurable
j:H - L(U) such that

Uil = [ 1P duen ) <oo
and
ilyh)=U(y)j(h), foryel,heH. (1)
The scalar product (-, -) on J is introduced by

(Juj2= L (J1(h), j2(h)) dpur (h), forji,jael, (2)

and the representation p is defined by
(p(R)j)(h1)=j(hih), h,hieH,je . 3)
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Since the pair (H, B) has property (T), there exist fe A(H) and € >0 such that
any W e H n V (g, f) is trivial on B. Now decompose the unitary representation p
into a continuous sum of irreducible representations p, e H. Let p1 denote the
continuous sum of p, such that

p:€Vi(s,f)
and let p, denote the continuous sum of p, such that p. 2 V' (e, f). Then
pP=p1 @ p2,

p1is trivialon B and p> € V (g, f). Let P,, r = 1, 2, denote the orthogonal projection
of J onto L(p,). Since po£ V (e, f),

lo ()7 = il=€llP2 &l = eVIIjIF 1P/l )

for any jeJ.
Let us give the following definition. Two nets {u,} and {u.} of elements of a
Banach space are called equivalent if

fim e ~tall_ ¢,
e fludll
Define j, €J by
Julyy)=U(y)xa, vel, yeY. &)

For h € H, define y(h)e T by the inclusion 4 € y(h)Y. Let K < H. In view of (1),
(2), (3) and (5), we have

sup o (k) — 1l = sup [ 7 (hsh) ~ eI s ()
heK heK JY
=sup [ WU Gy xe —xalf dise )
heK JY

sj (sup U (y (h1h))xa — xalP) dises (). 6)
Y hekK

The property (b) of Y implies the set y(M - K) is finite for any compact sets
K cH and M c H. On the other hand, the net {x,} is weakly almost I'-invariant.
Therefore,

0

lim sup ILOGAIx x|
® heK,hjeM "xa"

for any compact sets K =« H and M < H. On the other hand, as U is unitary then

|IU(Y(h1h))xa _xans 2|Ixa"
for any h, h; € H. Therefore, (6) implies the net {/,} is almost H-invariant. On the
other hand, as f€ A(H) then

"P (f)]a _jull = sup “P (h )]a _jm”’

hesupp
where supp f denotes as usual the (compact) support of f. Therefore, the nets {j,.}
and {p(f)j.} are equivalent. From this and (4) we conclude that the nets {/,} and
{P:j.} are equivalent.
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Let us now fix a compact set K < H containing e. For any j € J, we have

[ £0200m2) a0

sup o (F))) ()] = sup
hek heK
<sup j b dpse (h)

heK H

< Gsup f(h') - |
h'eH

K - supp

. 17 ()|l dpess (B)

=Csup o oo [,

(the last inequality is implied by the Schwartz inequality). Since the set K - supp f
is compact, it belongs to M - Y for some finite set M <T'. Then in view of (2),

fllf(if)llz duu () )

[ WGP duy=in1- 1P
K - supp f
This inequality and (7) imply
sup lio (D)= Clj| ®

for any j € J, where
C = (sup f(h") Vst (K -supp ) - VM

Further, put
ja=p(P1ja=P1p(f)fa
Then in view of (8),

sup lia ()= (D)= ClIP1ju = - ©

In view of (1), (3) and (5) we have

sup e~ (o (i)l = sup [ = [ fiho)ia b diors )|
heK heK H

= sup Lf(hl)(xa o hh ) dias (k)|

heK

= sup "xa —ju (;;)”

heK - supp f

= sup |xa ~Uy)xal. (10)

yey(K ‘supp f)
As the nets {j,} and {P,],} are equivalent, the set y(K - supp f) is finite (in view of
the property (b) of Y), the net {x,} is weakly almost I'-invariant, and

lialt= Virrr (Y,
we conclude from (9) and (10) that

.c’x h)— a
a5

0. 1n

https://doi.org/10.1017/5014338570000167X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000167X

388 G. A. Margulis

Let B be a normal subgroup of H generated by B. Since p; is trivial on B, it is
also trivial on B. On the other hand

ja€L(py).
Therefore for any 4 € H, we have

it (Bh)=jL(hB)= (p(B)jL)(h)

= (p1(B)ja)(h) =ju(h). (12)
The equalities (11) and (12) imply
lim sup liat)=xol _ (13)
« heB-K ”xa”

Since U is unitary, we get using (1) that

U (y)x —x||<[|U(v)x —j(y)|+j(y) = x|
= U (y)(x —jeN|+1lj(v) — x|l

=ie)— x|+ i (v)—xl (14)
for any yeT, x e L{U) and j € J. Using (13) and (14), we get
lim  sup W = xall_ (15)
@ ye(B-K)I |lxa||

As K is an arbitrary compact subset of H the representation U is continuous and
B o B, then (15) implies the assertion of the theorem.

LEMMA 1. Let K be a non-discrete locally compact field and let H = SL,(k)xX B be
a semi-direct product of SL,(k) and a separable commutative locally compact group
B (as usual SLy(k) denotes the group of unimodular matrices of order 2 with
coefficients in k). Consider the natural action of H on the character group B* of B

(hx)(b) =x(h"'bh),h e H,x € B*, b€ B).
Let us assume that (1) any orbit under this action is locally closed, (11) the subgroup
G, ={h e SLy(k)lhx =x}

is commutative for any x € B*, x #0. Then the pair(H, B) has property (T).

Proof. Let U eH and suppose U is not trivial on B. Then in view of Mackey’s
results (see [8]), U is induced by an irreducible unitary representation p of a
subgroup

H,={heHlhx =x},x€B* x #0.

On the other hand since G, is commutative, H, is solvable and, consequently, p
belongs to the closure of the regular representation of H,. Therefore, U belongs
to the closure of the regular representation  of H. Now it remains to note that
(see [6]) the regular representation of SL,(k) is not close to T, and so 7 is not
close to T. O

Remark. Some arguments of [6] were in fact used in the proof of lemma 1.
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Let us prove now the following theorem using theorem 1 and lemma 1.

THEOREM 2. Letn =3, H, be the group of isometries of the n-dimensional Euclidean
space R", and let B, < H, be the group of parallel translations of R". Then there
exists a countable subgroup T of H, with the following property: if U e H, and {x.}
is a weakly almost T-invariant net of elements of L(U), then {x.} is almost B,-
invariant.

Proof. For a commutative ring L with identity, denote by O,(L) the group of
matrices of order n with coefficients in L which preserve the quadratic form
C=x?+---+x2 and put

B T )

where A € O, (L) and B is a column vector with coefficients in L. It is well known
that there exists a topological isomorphism of groups G,(R) and H, which maps
F,(R) onto B,. Therefore, one can replace H, by G.(R) and B,, by F,(R) in the
formulation of the theorem.

Let Z(1/5) denote the subring of the field Q generated by 1/5 and let Qs denote
the field of 5-adic numbers. Put

I'=G.(Z(1/5)).

The diagonal embedding of Z(1/5) into R x Qs induces the diagonal embedding
of I into

H = G,(R)x G,(Q5).

Let us suppose we have proved that the pair (G,(Qs), F,(Qs)) has property (T).
Then the pair (H, F,.(Qs)) also has property (T). (We think of the subgroup
F.(Qs5)=G.(Qs)

as naturally embedded in H). On the other hand in view of the Borel reduction
theorem (see [2]), T is a lattice in H. Therefore applying theorem 1 to the pair
(H, F,.(Qs)), the lattice T, the net {x.}, and the representation U’ =p - U, where
p:H -> G,(R) is the natural mapping, we get the net {x.} is almost S-invariant,
where S is the closure in F,,(R) of F,(Z(1/5)). On the other hand as Z(1/5) is
dense in R, then § =F, (R).

Thus, it remains to prove that the pair (G,(Qs), F,(Qs)) has property (T). For
this we consider three cases: (1) n=5; 2)n=4; 3) n =3.
Case (1). Let a representation p efG(~05) be close to Ty. As ~1 is a square in Qs,
the Qs-rank (i.e. the dimension of a maximal Qs-split torus) of O,(Qs) is equal to
the integer part of n/2 and, consequently, is not less than [5/2]=2. On the other
hand if n # 4, then O, is an absolutely (almost) simple algebraic group. Therefore
in view of Kazhdan’s results on property (T) (see [4], [6]), the group O,(Qs) has
property (T'). Hence, there exists x € L{p), x # 0, such that p(P)x = x, where

(2] acocon
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Let
D ={x e Q5|C(x)=0}.

For any d € D, one can find a matrix A, € O,(Q5) such that
lixp Ay(d)=0.
Then

L (AL VY1 d\(Ay 0)‘"_
nll'f‘oo(o 1) (0 1)(0 1) =E (16)

Since p(P)x = x and the representation p is continuous and unitary, (16) and the
generalization of the Mautner lemma given by Prasad (see [10]) imply

(1d)— f deD
ply ;)x=x foranydeD.

On the other hand as —1 is a square in Qs, then D generates Qs as a group.
Therefore, p(F,(Qs))x =x.
Case (2). Letie Qs such that i’=—1. For A € SL,(Qs), put

e(E B )

where ‘A is the matrix transposed to A and E is the identity matrix of the second
order. One can directly check that X, € O4(Qs). Put

{5 9)<cuon

Then applying lemma 1, we obtain the pair (M - F4(Qs), F4(Q5s)) and, consequently,
the pair (G4(Qs), F4(Qs)), has property (T).

Case (3). As —1 is a square in Qs, then C can be reduced to the form x3 +x,x3.
Then identifying a vector (x1, x, x3) with the matrix

(X 1 X,'2)
X3 —Xi
and conjugating this matrix by A eSL,(Qs), we get the homomorphism
¢ :SL2(Qs) > O3(Qs). Now, we can define a semi-direct product
T =SL,(Qs)x F3(Qs)
and a homomorphism
¢:T->G3(Qs)=03(Qs) < F3(Qs)
such that
43‘SL2(05) =¢ and élFs(Qs) =1d.

Applying lemma 1, we get the pair (T, F5(Qs)) and, consequently, the pair
(G3(Qs), F3(Qs)), has property (T).
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2. Almost invariant nets of locally integrable functions and finitely-additive invariant
measures

Let B be the ring of bounded Lebesgue measurable sets in R", and let A,, be the
Lebesgue measure on R" normalized by

A.(J") =1, where J =[O0, 1).

Let L denote the space of locally integrable functions on R". If X e, p=1 and
ffeL, put

i/p
b = ([ 177 )
X
for X ep and fe L, put

x(0)=| fin.
X
Put P={feL|f=0,J"(f)=1}. Let H, and B, be the same as in the formulation
of theorem 2. For h € H, and f € L, define hf e L by
(hf)(x)=f(h 'x),xeR".
THEOREM 3. Let n=3 and {f.} be a net of elements of P. Assume that
(@) lim | X (hf,)—X(f.)|=0 foranyheH,and X cB;

(b) for any X € B3, there exists a limit

def
lim X (f.) = »(X).

Then v(X) = A,(X) for any X € B.
Proof. Introduce on the linear space L the standard topology for which sets

{feLllflx <e}, xeB, e >0,
form a basis of neighbourhoods of zero. Put L, =L and Rx =R for he H and
X € B and consider the Tychonoff product
M= H L,Xx H Ryx.
heH Xep

The space M can be considered as the set of pairs (a, b), where a:H -» L and
b :B - R are arbitrary mappings. Define a linear mapping T:L - M by

Tf =(T.f, T>f), (Ti)ih)=hf—f, ([LHX)=X(f),
feL,heH, X €p.

As Lo(Y, ) is the dual of Li(Y, u) for any space Y with a countably-additive
finite measure u, then the bounded measurable space L2, having compact
support functions on R" is the dual of L. Therefore, the condition (a) implies the
net {hf, —f.} weakly converges to zero for any 4 € H. From this and condition ()
we conclude that the weak closure of T(P) in M contains (0, »). On the other hand
as the space M is locally convex and T'(P) is a convex set, the weak and strict
closures of T'(P) coincide. Therefore, there exists a net {gs} of elements of P such
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that, for any h € H and X € 8, we have
lign hgs — gsllx =0 (1)

and
ligiX(gs)=V(X)- (2)

Let () = B,, denote the subgroup of parallel translations by vectors with integer
coefficients. Let I' < H,, be the countable subgroup defined in theorem 2 and let I
be the subgroup generated by I" and (. Let us fix now X,€ 8 and denote by N*
the set of positive integer numbers. As I" is countable, the space R" is o-compact,
and

Iflx =lflx ifX <X,

then, in view of (1) and (2), one can choose a countable subsequence {g,.}, me N™,
of the net {gs} such that

1 b~ gl =0 5
for any yeI", X €8, and
lim Xo(gm) = v(Xo). @

Any point x € R" is uniquely represented in the form
x=w,we,jeJ".
Define functions g, € L by
Em(wj)=8gm(j), 0w e, jeJ"
Then
1gm — gmllt,rm =l ' gm — gmlls»
for any m e N* and w € Q. On the other hand, any X € 8 can be covered by a finite
number of sets of the type w/", w € ). Therefore, (3) implies
"l‘i}l}o Em — gmllx =0
for any X € 8. On the other hand,
lvflix =Ifly2x foranyfelL.
Therefore, we can replace g,, by g. in (3) and (4) and suppose
gm(wx) = gm(x) (5)
foranymeN", we),xeR".

Let U (r) denote the ball in R” centered at 0 of radius r. As I" is countable, then,
in view of (3), one can choose a sequence {r,, >0} such that

and
,}.‘-l;lc}o "'ng - gmlll,u(,m) =( (7)
for any yeI".
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Let x{(V) denote the characteristic function of a set V < R". Put
Xm =X (U (1)) a0d @ = (mXm)" = g
Then, for any me N* and h € H,,
hom = @m = (Agm)(1Xm) = (& k)
= ((hgh) = 81)Xm + (gm) (X ~ Xom)
= (kg — )X (U (r)
+ (g )X (U (1) = U (1)) = X (U (1) = U (7n))]
and, consequently,
T ”hgén —gh 2.t vl = ”hg%n kU (AU e
= "g§n||2.U(r,,.)Ah"u<rm)-
For V< R", put
F(V)={weQuw/"cV}
and
F(V)={weQuol"nV =T}
Classical theorems on the number of integer points imply
. FUM)_ . [F'U)_

MO i oe) ¢

It is clear that
F'(Vi—=Vy) e F'(V)-F(V3)

for any V3, V, < R". Therefore, (9) implies

. FUn-Ur-d) _

lim

W) 0

for any d > 0.
The equality (5) and the inclusion g,, € p imply that

g llz o = llg llz.rm = Ulgmllsom)* = 1
for any m e N* and w € Q. Therefore, for any me N* and X €8,
IFXO|<lghlbo.x <|F'(X).
For h € H,, denote by dj, the distance between 0 and 4 (0). Then
UMAR'U( < U(r+dn)~U(r—dy)
for any r >0, s € H,. Therefore, (6), (10) and (11) imply, for any & € H,,

. "gén“2 U(rm)AR " U (1)
lim —r 2= =0
mso A (U(rm))

As|a—b><a’—b”for any a, b >0, then
I£} = Fillex <lfi—Foll} x
for any f1, f,€ L and X € 8. Therefore, (6), (7), (8) and (12) imply,

tim 1YOm = @mlarn_

ma>o Ay (U(rm))
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for any v € I". Further, in view of (11),

lomllz.n=llghllz.v e = IF (U (Fa)).
From this and (9) we conclude that

. Nemllo.r
LTI
The equalities (13) and (14) imply {¢...} is a weakly almost ["-invariant sequence
of elements of L,(R", A,). Therefore, in view of theorem 2, {p,.} is almost B,-
invariant. From this and (8), (12) and (14) we conclude that, for any compact set
Kc<B,,

(14)

. thfn—gfn(lz Ulrm)
lim su =
o ek An(U (7))
It follows from (5) and the commutativity of B, that

0. (15)

(hgh —gh)(wx) = (hgh ~ gh)(x)
foranymeN", heB,, 0, xeR". Therefore,
"hg%n - g%n”zwl" = "hg%n _g%nllZ.J"

for any m e N, h € B,.. Hence,

Ilhgé,. - génuz,x2 ‘F(X)] "hg%n - g?nllz,n (16)
forany me N*, h e B, and X € 8. It follows from (9), (15) and (16) that
lim sup g} — ginlsn=0 17)
m-=>% peK

for any compact set K < B,..
The Schwartz inequality implies that

If1=fallix=lfi = Flox - Ufilex +1£3lkx)
for any fi, f€ L and X € 8. On the other hand as any x € R" is uniquely represented
in the form x = wj, w €, j € J", then (5) and the inclusion g,,, € P imply

g tallz.sn=llg o m = lghllasm=1
for any 4 € H, and m € N*. Therefore, (17) implies
lim sup g — gmllis»=0 (18)
m->0 peK

for any compact set K < B,. Identifying R" and B,,, we get using (5), (18) and the
inclusion g, € P that

im, g = .= 5 g = | Chgim) dha )
m-»ao m->co Iid

< lim f lgm — Agmllim dAn (R) = 0. (19)
m->oQ ]"

It follows from (19) and (5) that

lim "gm - 1”1,X0 =0
m-—>o0
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and, consequently,
'11_120 XO(gm) = An(Xo).

From this and (4) we conclude that v(Xo)=A,{(Xo). The theorem has been
proved. d
Now, we can prove the main result of the paper.

THEOREM 4. Let n =3 and let v be a finitely-additive H,-invariant measure on 3
such that v(J")=1. Then v = A,,.

Proof. As n =3 then (see the beginning of the paper) v is absolutely continuous
with respect to A, and, consequently, » determines H,-invariant linear positive
functional / on LY, by

l(f)=Ide, feLd.

As for any space Y with a countably-additive finite measure u, the set

{feL\(Y,n)If=0}
is dense in the weak™® topology in the set of positive linear functionals on Loo(Y, ),
it follows that p is dense in weak* topology in the set of linear positive functionals
b on LY, such that 5(x(J")) = 1. Therefore, there exists a net {f.} of elements of p
such that

lim f fadA, =I(f) (20)
o Rn
for any f € LY. It follows from (20) and the H,-invariance of / that
lim IX (hfoe) =X (fa)| =0

and
lim X (f,) =v(X)

for any A € H, and X € 8. Therefore, in view of theorem 3, v =A,,. O
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