
RESTRICTIVE SEMIGROUPS OF CLOSED FUNCTIONS 

K E N N E T H D. MAGILL, JR. 

1. Introduction. / / is assumed that all topological spaces discussed in this 
paper are T\ spaces. A function / mapping a topological space X into itself 
is a closed function if f[H] is closed for each closed subset H of S. The semi­
group, under composition, of all closed functions mapping X into X is denoted 
by T(X). These were among the semigroups under consideration in (4). 

In the study of semigroups of functions, certain subsemigroups distinguish 
themselves quite naturally. One of these is the subsemigroup of T(X) con­
sisting of all those closed functions which map some non-empty subset Y of X 
into itself. Such a semigroup will be referred to as a restrictive semigroup of 
closed functions or, more simply, a restrictive semigroup since, in this paper, 
with the exception of §5, only semigroups of closed functions are considered. 
We state this formally as the following definition. 

Definition (1.1). Let X be a topological space and Y a non-empty subspace 
of X. The semigroup, under composition, of all closed functions mapping X 
into X which also map Y into Y will be denoted by T(X, Y) and will be 
referred to as a restrictive semigroup. 

The results in §2 are concerned mainly with certain (two-sided) ideals of 
restrictive semigroups. Using these results, we are able to determine under 
what conditions T(X, Y) can be isomorphic to some T(Z). This happens 
only when Y = X. The analogous problem for S(X, Y) (the semigroup of all 
continuous functions mapping X into X which also map Y into Y) was 
treated in (5). 

In §3, isomorphisms between restrictive semigroups are investigated. Let 
0 be a bijection from T(X, Y) onto T(U, V). It is an easy matter to verify 
that in order for <j> to be an isomorphism, it is sufficient that there exist a 
homeomorphism h from X onto U which carries Y onto V such that 
<f)f = h of o hr1 for each / in T(X, Y). In Theorem (3.1) of §3 it is stated, 
among other things, that the condition is not only sufficient, but if Y has 
more than one point, then it is also necessary. This generalizes Theorem (2.10) 
of (4), where it is stated that a mapping <j> from T(X) onto T(Y) is an iso­
morphism if and only if there exists a homeomorphism h from X onto Y 
such that <t>f = h of o h~l for each / in T(X). 

Automorphisms of restrictive semigroups are studied in §4. It is shown that 
every automorphism of a restrictive semigroup T (X, Y) is inner and further­
more, that the automorphism group of T(X, Y) is isomorphic to the group, 
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under composition, of all homeomorphisms mapping X onto X which also 
map F onto F. Some concluding remarks are given in §5. 

2. Certain ideals of restrictive semigroups. Those functions mapping 
X into X whose ranges consist of a finite number of points are closed functions 
(since X is T\) and they play a very important role in the subsequent dis­
cussion. Suppose t h a t / is such a function and suppose, for example, that its 
range consists of three points x, y, and z. We find it useful to denote the 
function / by 

(1) (A,x;B,y; C, z), 

where it is to be understood that A is the subset of X whose points are mapped 
b y / into x, B is the subset whose points are mapped into y, and C is the subset 
whose points are mapped into z. In general, then, a function with finite range 
is given by "listing" the points of its range together with those subsets whose 
points are mapped into them. However, certain of these functions appear with 
enough frequency so that it is convenient to reserve special notation for them. 
For example, the functions of the form (F, y; X — F, x), x £ X and y G F, 
play a particularly important role, and consequently, appear often. We shall 
simplify matters by letting 

(2) (Y,y;X - Y,x) = [y,x]. 

In other words, [y, x] denotes that function which sends F into y and the 
remainder of X into x. The function (Ai, y; A2} p) also appears rather often, 
thus it is convenient to let 

(3) (Aux\ A2,p) = Axv. 

Finally, we let 

(4) (Ah xi; A2, x2) . . . ; An, xn) = Ax
n. 

We note that Ax
n belongs to T(X, F) if and only if for some subset {ij}%i of 

{ifi=1, K Î ? = i C F and F C U { i ^ = i . 

LEMMA (2.1). A restrictive semigroup T(X, Y) has a (two-sided) zero element 
if and only if Y consists of one point. 

Proof. Suppose that F has at least two points, p and a. Then (X, p) and 
(X, q) are two distinct left zeros of T(X, Y). This is incompatible with the 
assumption that T(X, F) has a zero. On the other hand, one easily checks 
that if F = {p}, then (X, p) is a zero element of T(X, F) . 

The word ideal, when unmodified, will always mean a two-sided ideal. 

Definition (2.2). Let I be an ideal of a semigroup S. An ideal / of S is said 
to be /-minimal if it properly contains / and there exists no ideal K distinct 
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from both I and / such that I C K C / . If S contains a zero element 0 and 
I = {0}, we say that the ideal / is 0-minimal. 

Suppose that F consists of one point p. Then, according to Lemma (2.1), 
T(X, lp}) has a zero element 0 and, as pointed out in the proof of that lemma, 
0 = (X, p). Now let 

I* = {0} \J {Axp = (Alf x; A2j p): x Ç X - {p}, p G A2). 

THEOREM (2.3). Suppose that X has more than one point. Then I* is a non-zero 
ideal which is contained in every non-zero ideal containing 0. Consequently, 7* 
is not only 0-minimal, but it is the only 0-minimal ideal of T(X, {p}). 

Proof. I t is immediate that if X contains more than one point, then 7* 
consists of more than one element. For a n y / in T(X, {p}) and any Axp G 7*, 
foAxp = 0iî f(x) = p and f o Axp = (Altf(x) ; A2, p) if f(x) ^ p. Futher-
more, Axp of = 0 if f~1[A1] = 0 and Axp of = ( M ^ i L x;f-'[A2]J p) if 
f~l[Ai\ ?*• 0. This proves that I* is an ideal of T(X, {p}). Now suppose that / 
is any non-zero ideal of T(X, {p}). Then / contains a function/ ^ 0 which 
implies that there exists a point x in X such that / (#) 9^ p. Therefore, for any 
Ayp Ç /*, we have that Ayp = [p, y] of o Axp (recall that [p, y] denotes that 
function which sends F, in this case {p}, into p and the remainder of X into y) 
which implies that AVP G / . Thus 7* C / . 

LEMMA (2.4). Suppose that Axp = (Ah x; A2, p) Ç 7*. Then A2 = {p} if 
and only if for every f 9^ 0, we have that Axp of 9e 0. 

Proof. Suppose that A2 = {p} and / ^ 0. Then f(y) 9^ p for some y £ X 
and f-^Ax] = f~l[X - {p}] 9* 0. This implies that 

Axvof= (f-1[A1]1x;f^[A2lp)^0. 

On the other hand, suppose that there exists an element z in A2 — {p\. Then 
[p, z] 9* 0 but Axp o [p, z] = 0. 

If a semigroup has a minimal ideal, then that ideal is unique and is referred 
to as the kernel of the semigroup. The next result concerns the kernel of 
T(X, F). Its proof is straightforward and will not be given. 

LEMMA (2.5). {(X, y): y G F} is the kernel of T(Xy Y). 

Definition (2.6). For each positive integer n, let 

/„ = \AXJ e r (x ) ; i sj Sn). 

THEOREM (2.7). Ii is the kernel of T(X). For each positive integer n which is 
less than the cardinality of X, In+i is an ideal which properly contains In and is 
contained in every other ideal which properly contains In. Thus, In+1 is not only an 
In-minimal ideal of T(X), but it is the only In-minimal ideal of T(X). 

Proof. It follows from Lemma (2.5) by taking F = X, that h is the kernel 
of T(X). One easily shows that each In is an ideal of T(X) and it is evident 
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that In is a proper subset of In+\ if X has more than n elements. To complete 
the proof, we need only show that if J is any ideal of T(X, F) which properly 
contains In, then In+i C. J- H J properly contains In, then / must contain a 
function / whose range contains at least n + 1 distinct elements {s^jtti. 
Choose yt G /"H**) for 1 ^ i ^ n + 1 and let H = X - {zt}

n
M. Then for 

any Ax
n+1 G In+i — In, we have that 

Ax
n+1 = < { 2 i } , x i ; . . . ;{zn},xn;H,xn+1)ofoAy

n+\ 

Thus, Az
n+1 G J and it follows that In+1 C / . 

Definition (2.8.) We shall denote the kernel of T(X, F) by iv0, i.e., 
i£0 = {(X, y): y G F}. Furthermore, suppose that F ^ I and let 

K1 = K0VJ {A/ = <4x, y i ; ^ 2 , y2): ylf y2 G F; F C ^ i j . 

THEOREM (2.9). Suppose that Y ^ X and Y consists of more than one point. 
Then K\ is an ideal which properly contains K0 and is contained in every other 
ideal properly containing K0. Consequently, K± is not only a K0-minimal ideal of 
T(Xj F) but it is the only K^-minimal ideal of T(X, F). 

Proof. For any / in T(X, Y) and Ay
2 = (Ah yi\ A2, y2) in K\ — K0, we 

have that 

foA/ = (X,f(yi)) if/(yi) =/(y 2) , 

foA,/ = <^i,/Cyi);^2,/(y8)) if/(yi) */0y 2) , 

^V o / = (f-H^iL >'i;/-M^2], ys> if/-1[^2] * 0, 

^ / o / = ( X , y i ) if/-i[^2] = 0. 

It follows that Ki is an ideal of Y(X, Y). Moreover, Kx properly contains K0 

since F has more than one point. 
Now suppose that J is any ideal which properly contains K0. This means 

that the range of / contains more than one point. Choose any y f Y. It 
follows that/(x) 9^ f(y) for some x £ X. Let B2 be any element in Kx — K0 

and let H = X - {f(y)}. Then 

Bz
2 = ({f(y)],zù H, z2) of o (Bh y; B2, x) 

which implies that B2
2 G J. Therefore K-i C J and the desired conclusion 

follows. 

Definition (2.10). Denote the following: 

K21 = X i U {A2 = ( i i j i ; i 2 j 2 ) : F C ^1,^1 G F, ^ G Xj, 

i£2
2 = KX\J {Ay

2 = (Aljyi;A2,y2): yuy2 G F}, 

X2
3 = I i U f i / = (Aljyi;A2,y2;A3,yzy. Y C Ai; yi,y2,y3 G F}. 

THEOREM (2.11). Suppose that Y ^ X and Y consists of more than one point. 
Then K2

l and K2
2 are both Kx-minimal ideals. If Y has only two points, these 
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are the only Ki-minimal ideals. If Y has more than two points, K2
Z is also a 

Ki-minimal ideal of T(X, Y) and in this case K2
l, K2

2, and K2
Z are the only 

Ki-minimal ideals of T(X, Y). 

Proof. One verifies that K2
l, K2

2, and K2
Z are all ideals (see, for example, 

the verification of Kx in the previous proof). Since Y j* X, Kx is properly 
contained in K2

l. Now suppose that / is an ideal which properly contains Ki 
and is contained in K2

X and let Ay
2 be any element in K2

l — K\. Then Y C Ai 
and yi G F. Since K± 9^ J, there exists an element which belongs to / (and 
hence to K2

l) but not to K\. This element must then be of the form Bz
2, 

Y C Blt Z! G Y. Moreover, since B2 G Klt it follows that z2 G Y. Choose 
Xi G Y and x2 G B2. Then Ay

2 = [yi} y2] o Bz
2 o Ax

2 which implies that 
Ay2 G J. Thus J = K2

l which proves that K2
l is Xi-minimal. 

Now we consider the ideal K2
2. Here also, K2

2 properly contains the ideal Ki. 
Suppose that J is an ideal which properly contains K± and is contained in 
K2

2 and let Ay
2 be any element of K2

2 — Kx. Then both y± and y2 belong to Y 
and A\C\ Y ^ 0 ^ A2C\ Y. Since Ki ^ J, there exists an element 
B2 G J - Klt where zu z2 G Y and Bx C\ Y 5* 0 ^ B2 C\ F. Choose 
X! G £1 H Y, x2 e B2n Y and let # = X - {Zl}. Then, 

^ V = ({z1},y1;H,y2)oBt*oAx* 

which implies that Ay
2 G / . Thus, K2

2 = J and it follows that K2
2 is 

Xi-minimal. 
Now suppose that F contains at least three points. Then K2

Z is an ideal 
which properly contains K\. Let J be an ideal which properly contains K\ and 
is contained in K2

Z and let Ay
s be an element in K2

Z — K\. Then F C ^ i and 
^1, J2, 3>3 G F. Choose B2

Z G / — i^i. Then F C ^1 and 01, JS2, ZZ G F. Choose 
#i G F, #2 G -£>2, x3 G ^3 and let H = X — {zi, z2}. Then 

- V = <{*i},:Vi; {z2},y2]H,yz)oBz
zoAx

z 

which implies that Ay
z G J. Thus J = K2

Z, which proves that K2
Z is 

Xi-minimal. 
Now we show that if F consists of two points, yi and y2, then K2

l and i£2
2 

are the only two i^i-minimal ideals of T(X, F). Let / be any i£i-minimal 
ideal of T(X, Y). Then J contains an element/ which does not belong to Ki. 
We consider two cases: 

(i) f[X] C Y 

and 

(ii) f[X] (Z Y. 

Suppose that case (i) holds. Since / G KQ, we have that f[X] = {yi,y2\. 
Thus, / G K2

2 — Kx which implies that K2
2 C\ J properly contains K\. Since 

both K2
2 and J are i^i-minimal, this implies that J — K2

2. 
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Now assume that case (ii) holds. Then f(x) (t Y for some x (E X — F. 
Then / o [yh x] = [f(yi),f(x)] belongs to K2

l - Kt. Thus Ko1 H J properly 
contains Kx and since both K2

l and / are if i-minimal, it follows that J = K2
l. 

This proves that when F consists of two elements, K2
l and K2

2 are the only 
ifi-minimal ideals of T(X, F). 

Now we consider the case where F has at least three points and we show 
that K21, K2

2, and K2
Z are the only ifi-minimal ideals of T(X, F). Let / be 

any Xi-minimal ideal of T(X, F) and l e t / be any element which belongs to J 
but not to Ki. We consider three possibilities: 

(i) f[X] C F a n d / [ X ] consists of two points, 
(ii) f[X] C F and f[X] contains more than two points, 

(iii) f[X] (t Y. 
If (i) holds, then / G K2

2 — K± and K2
2 C\ J properly contains Kx. This 

implies that / = K2
2 since both / and K2

2 are i£i-minimal. If the second 
possibility occurs, then there exists points x± Ç F, x2l x 3 f l such tha t / (x i ) , 
f(x2), and/(x3) are all distinct. If X — F has more than one point, we decom­
pose X — Y into two non-empty disjoint subsets H2 and Hz. Then 

fo(Y,xnH2,x2;Hz,x*) = (Y,f(Xl); H2,f(x2); i?3,/(*8)> G K2* - Kx. 

Thus , K2
Z r\ J properly contains Ki which implies t h a t J = i f 2

3. If, however, 
X — Y consists of only one point, then one of x2 and x3, say x2, must belong 
to F. Decompose X into two non-empty disjoint subsets G\ and G2 such that 
GXC\Y * 0 * G2r\Y. Then 

/ o (Gi, xi] G2, x2) = (Gi , /Oi) ; G2,f(x2)) 6 if2
2 - Kx 

which implies that K2
2 C\ J properly contains Kx. Thus, / = K2

2 in this 
instance. 

Suppose that the third possibility occurs. Then there exists a point x2 in X 
such that f(x2) (? F. This, of course, implies that x2 g F. Let x\ be any 
element of F and it follows that 

/ o [*i, x2] = [/(*i),/(x2)] G X2i - i ^ . 

Thus X2
X Pi / properly contains if 1 and it follows that J = K2

l. This proves 
that if F contains more than two elements, then if 2 \ if 2

2, and if 2
3 are the 

only ifi-minimal ideals of T(X, F). 

The following lemma shows, among other things, that K2
l is distinguished 

algebraically from the other two (or one, if F has only two elements) 
if i-minimal ideals. 

LEMMA (2.12). Suppose that Y 9^ X and Y consists of more than one point. 
Then if i[if 21 — if 1] (£ if 0 while if i[if 2

2 — if 1] C if 0 and (if Y has more than 
two elements) if i[if2

3 — if 1] C K0. 

Proof. Choose x 6 X — Y and two distinct points yu y2 £ F. Then 
[3/1, x] e if 21 - Kx and \ylt y2] 6 if 1, but \ylf y2] = [ylf y2] o [yly x] £ K0. 
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In order to prove the two inclusions, it is sufficient to note that if 
Ay* eKi- Ko, and / G i£2

2 - Kx or / G K2* - Kh then F C Ax and 
Ay*of= (X,yi)eKo. 

Definition (2.13). Suppose that F ^ X and Y consists of more than one 
point. The set of all elements in K2

X which are of the form [xi, x2]; Xi ^ x2, 
Xi G Y, x2 G X, will be denoted by the letter L. 

LEMMA (2.14). Suppose that Y ^ X and Y consists of more than one point. 
An element f in K2

l belongs to L if and only if f o g g Ko for each g G K2
l — K\. 

Proof. Suppose that / G L and g G K2
l — i£i. Then / = \ylf y2] ; 3>i G F, 

;y2 G X, and g = (Alf xx; A2j x2>; Y C Ah xi G F, x2 6 X - F Thus, 

Now suppose that / G i£2* — £. Then / = (Ai, Xi\ A2, x2), where x± G F, 
x2 G X and A1 properly contains F Choose z ^ A\ — Y. Then 

[*i, 2] G x , 1 - KX 

and 
/ o [xi, z] = (X, xi} 6 JRTO-

Consequently, if / 6 i£2* and f o g (£ Ko tor each g G X2
1 — K1} then / must 

belong to L. 

LEMMA (2.15). Suppose that Y 7^ X and Y consists of more than one point. 
Let \yi, xi] and [y2j x2] be two elements of L — K\. Then Xi = x2 if and only if 
for every element f G K2

l — Kiy f o [yi, xi] G K0 implies f o [y2, x2] G KQ. 

Proof. Suppose that xi = x2 and / G K2
X — K\. Then / = {A, y%\ B, x3); 

F C Ay 3/3 G F, x3 G X — Y. If / o [3/1, Xi] G i^o, then xi £ A and since 
#1 = x2l f o [y2, ff2] = (X, 3/3) G Ko. On the other hand, suppose that Xi ^ x2 

and let H = X — {x2}. Then 

/ = <ff,yi;{^},x2>G K^-K, 

since x2 G X — F. It follows that 

/ o [yi, xi] = (X, yx) G K0 

while 
/ o [y2, x2] = [yh x2] £ Ko. 

LEMMA (2.16). Suppose that Y 9^ X and Y consists of more than one point. 
Let [3/1, Xi] G L and (X, y2) G K0. Then yi = y2 if and only if 

[3/1, Xi] o (X, y2) = (X, y2). 

Furthermore, xi = y2 if and only if y\ ^ y2 and f' o [yi, Xi] ^ (X, y2) /or every 
/ in r ( X , F) wi/A the property that f o g F^ g /or eac& g G i£0. 

Proof. First of all, [3/1, Xi] o (X, y2) = (X, yi), thus it is immediate that 
\yij Xi] o (X, y2> = (X, y2) if and only if yx = y2. 
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Now suppose t h a t xi = y2. Then yi ^ y2 since j \ and Xi mus t be dis t inct . 
Fur thermore , if / o g ^ g for each g G i£0, t h e n / ( ^ ) ^ y for each 3/ G F and 
it follows readily t h a t / o [3/1, Xi] = / o [yh y2] ^ (X, y2). 

I t remains to verify t h a t if 3/1 ^ 3/2 a n d / o [3/1, Xi] ^ (X, 3/2) for e v e r y / in 
T(X, F) such t h a t / o g 3^ g for each g G K0, then xi = 3>2- Suppose, on the 
contrary , t h a t x\ ^ y2. Define a function / by f(x) = y2 for x ^ y2 and 
fijï) = J> where y is any point of F dist inct from y2. T h e n / o g 9e g for each 
g Ç i?o, b u t / o [yi, Xi] = (X, y2) which is a contradict ion. 

We conclude this section with a result t h a t answers the following quest ion: 
"Unde r wha t conditions does there exist a space Z such t h a t Y(X, F) is 
isomorphic to r ( Z ) ? ' \ T h e analogous problem for the semigroups S(X, Y) 
and S(Z) was t reated in (5). S(Z), we recall, is the semigroup, under composi­
tion, of all continuous functions mapping Z into Z and S(X, Y) is the sub-
semigroup of S(X) consisting of all those functions in S(X) which also m a p F 
into F. I t is s ta ted in (5, Theorem 1) t h a t if X = fi Y (the Stone-Cech 
compactification of F ) , then there does exist a space Z such t h a t S(X, Y) is 
isomorphic to S(Z). Indeed, in this par t icular case, S(X, Y) is isomorphic to 
S(Y). An example is given to show t h a t S(X, Y) may be isomorphic to S(Y) 
without having X = fiY even though X is compact . However, it is s ta ted in 
(5, Theorem 2) t h a t if X is a compact Hausdorff space and the subspace F 
contains an arc, then an isomorphism between S(X, Y) and S(Z) does guaran­
tee t h a t X = /3F if Z satisfies certain conditions. 

T h e si tuat ion for the semigroup T(X, F) is qui te different. This next 
result shows t h a t T(X, Y) is isomorphic to a T(Z) only in the trivial case, 
F - X. 

T H E O R E M (2.17). T(X, Y) is isomorphic to T(Z) for some space Z if and 
only if X = Y. 

Proof. T h e non-trivial portion of the proof consists of showing t h a t if 
F 7e X, then T(X, F) is no t isomorphic to any Y(Z). W e first consider the 
case where F consists of one point . Suppose, in this case, t h a t T(X, Y) is 
isomorphic to T (Z) . According to Lemma (2.1), Y{X, Y) has a zero element. 
Therefore Y(Z) has a zero element and since Y(Z) = Y(Z, Z ) , L e m m a (2.1) 
implies t h a t Z consists of one point which, in turn , implies t h a t T(Z) consists 
of one element. This , however, is a contradict ion since F T6- X implies t h a t 
Y(X, F) has more than one element. 

Now let us consider the case where F contains more than one point . By 
Theorem (2.9), there exists exactly one i£0-minimal ideal, Ki, of Y(X, Y) and 
by Theorem (2.11), there are a t least two Xi-minimal ideals. Le t I\ denote 
the kernel of T (Z) . In Theorem (2.7) i t is s ta ted t h a t there is a t most one 
/ i -min imal ideal, I2, of T (Z) , and if I2 exists, there is a t most one TVminimal 
ideal of T ( Z ) . From these facts, it follows t h a t Y(X, Y) and Y(Z) cannot be 
isomorphic. 
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3. Isomorphisms between restrictive semigroups. 

T H E O R E M (3.1). Let <j> be any isomorphism from the restrictive semigroup 
T(X, Y) onto the restrictive semigroup T(U, V). Then there exists a unique 
bijection h from X onto U which maps Y onto V such that 4>f = h of o h~1 for 
each f in T (X, Y). In fact, h is a homeomorphism provided only that Y has more 
than one point. If Y = {p}, then V = {q}. In this case, h carries every closed 
subset of X containing p into a closed subset of Y and h~l carries every closed 
subset of V containing q into a closed subset of X. 

Proof. We first prove the existence of the bijection h and, in doing so, we 
consider two cases: 

(i) Y consists of one point, 
(ii) Y consists of more than one point. 
Suppose t h a t case (i) holds and <£ is an isomorphism from 

T(X, Y) = Y{X,\p}) 

onto T(U, V). By Lemma (2.1), T(X, {p}) has a zero element. T h u s T(U, V) 
has a zero element and t h a t same lemma implies t h a t T(U, V) = T(U, {q}) 
for some g G U. I t follows from Theorem (2.3) and Lemma (2.4) t h a t the 
isomorphism <j> mus t map {[p, x]: x G X — {p}\ bijectively onto 

{[q,u]:ue U - {q}}. 

Therefore, for each x G X — {p}, there exists a unique u G U — {q} such 
t h a t <j)[p, x] = [q, u]. Define h(x) = u and h(p) = q. T h e function h is a 
bijection from X onto U and for every x G X — {p}, <t>[p, x] = [q, h(x)]. Le t 
/ be any element in T(X, {p}). I t is immediate t h a t 4>f(q) = h of o h~1(q). 
For u G U — {q}, we let h~l(u) = x and we get 

hofohr1^) =hof(x) = [q,hof(x)](u) = 4>[p,f(x)](u) = 

<t>(fo[p,x])(u) = <t>fo(t>[p, x](u) = 4>fo [q, u](u) = <t>f(u). 

Therefore <j>f = h of o h~l. 
Now suppose t h a t case (ii) holds. By Lemma (2.1), T(X, Y) has no zero 

element and therefore T(U, V) has no zero element since T(X, Y) and 
T(U, V) are isomorphic. Thus , Lemma (2.1) implies t h a t V has more than 
one point. Let K0(X) and K0(U) denote the kernels of T(X, Y) and T(U, V), 
respectively. Since the isomorphism </> maps K0(X) bijectively onto KQ(U), 
it follows t h a t for each y G Y, </>(X, y) = (U, v) for some v G V. We define 
h (y) = v- Then h is a bijection from Y onto V such t h a t 

(3.1.1) 4>(X,y) = (U,h(y)) 

for each (X, y) £ K0(X). For any func t ion / in T(X, Y) and any point v Ç V 

we get 
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hofoh-Kv) =hof(y) = (U,hof(y))(v) = <KX,f(y))(v) = 
(3.1.2) 

4>(fo(X,y))(v) =4>fo4>(X,y)(v) = <t>f o (U, v)(v) = <tf(v). 

If Y = Xj then it follows from Theorem (2.17) that V = U. In this case, h 
maps X bijectively onto U and it follows from (3.1.2) that <j>f = h of o hrl. 
The remaining case is where F ^ X and, consequently (by Theorem (2.17)), 
V 9* U. Let 

K,{X) = K0(X) U {Ay*: yh y2 G F; F C ^ i } , 

i ^ P O = i ^ ( X ) U {Ay*: yie Y,y2£ X,YC AJ, 

L(X) = {[xi, x2]: Xi ^ x2, xi G F, x2 G X}. 

Define Ki(U), K2
l(U), and L(U) analogously. I t follows from Theorems (2.9) 

and (2.11) and Lemmas (2.12) and (2.14) that cj> maps L(X) - KX(X) 
(i.e., those functions [xi, x2] in L(X) for which x2 G X — F) bijectively onto 
L(Z7) — Ki(U). This fact allows us to extend the function H o a bijection 
from X onto Z7 as follows: for any x G X — F, choose y G F and get 
0[y, x] = [z>, w]. I t follows from Lemma (2.15) that u does not depend upon 
the choice of y but only upon the point x. We define h(x) = it. I t follows 
from Lemma (2.16) that v = h(y). Hence, for any [y, x] G L(X) — Ki(X), 
we have that $[y, x] = [h(y), h(x)]. Now suppose that [y, x] G L(X) C\Ki{X)} 

i.e., both x and y belong to F. In this case, <f)[y, x] = [v, u] G L(U) C\ K1(U). 
Using Lemma (2.16) once again we see that v = h(y) and u = h(x). Thus, 
<j>[y,x] = [h(y), h(x)] for [y, x] G L(X) H I i ( I ) . Therefore, we can state 
that for any [y, x] G L(X), 

(3.1.3) 0[y,*] = [h(y),h(x)]. 

Now let / be any element in T (X, F) and let u be any element in U — V. 
Choose any v G V and let x = hrl(u) and y = h~x{v). Then using (3.1.3), 
we get 

<t>f(u) =<i>fo[v, u](u) = 0 /o0[y , x](u) = 4>{Jo [y, x])(u). 

Uf(y) = f(x), then fo[y,x] = <X,/(x)> and by (3.1.1), 

<l>(X,f(x))(u) = (U,hof(x))(u) = ho f{x) = hofohrl{u). 

Hf(y) *f(*)> t h e n / o \y,x] = \f(y),f(x)] and by (3.1.3), 

4>U(y)>f(*)Ku) = [hof(y),hof(x)](u) = hof(x) = hofoh^(u). 

In either event, <j>f(u) = h of oh~l{u). This, together with (3.1.2), implies 
that 

(3.1.4) 0/ = hofoh~l 

for e a c h / G T(X, F). 
Now we prove that the bijection h is unique. Let k be any bijection from X 
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onto U which also maps F onto V such that <t>f = kofok'1 for each 
/ G T(X, F). In the event Y = X, we choose any x G X and get 

<Z7, M*)> = A o (X, x) o A-1 = 4>(X, x) = k o (X, *) o yfe"1 = (U, k(x)). 

Consequently, h(x) = k(x). In case 7 ^ J , choose any x £ X — Y and 
3/ G F and get 

[M3O1 M#)] = * ° b> x] ° ^_ 1 = 0b> x] = k o \y, x] o k~l = [k(y), k(x)]. 

Thus, h(y) = k(y) and h(x) = k(x). In either event, h = k. 
Now let H be any closed subset of X which has a non-empty intersection 

with Y and choose y G H Pi F. Define a function/ mapping X into X by 

f(x) = x for x G Jï", 

/ (*) = y for x G X - H. 

For any closed subset K of X, we have that 

f[K] = f[K r\ H] \Jf[K -H] = [KnH] \Jf[K - H]. 

The set K C\ H is closed and/[i£ — H] is either empty or consists of the single 
point y. In either event, f[K] is closed. Since/ maps F into F, it follows that 
/ G T(X, F). Using (3.1.4) and the fact that f[X] = H, we get 

A[ff] = hof[X] = hofoh-^U] = <tf[U]. 

This proves that if H is any closed subset of X which has a non-empty inter­
section with F, then h[H] is a closed subset of U. In a similar manner, one 
shows that if H is any closed subset of U which has a non-empty intersection 
with V, then h~l[H] is a closed subset of X. It follows from Lemma (2.1) 
that F consists of one point if and only if V consists of one point. In view 
of this, the proof will be complete when we show that if F has more than one 
point, then h is a homeomorphism. For this it is sufficient to show that for 
any space Z and any subspace W with more than one point, the family of all 
those closed subsets of which have a non-empty intersection with W is a 
basis for the family of all closed subsets of Z. This is accomplished by noticing 
that for any closed subset H of Z and any pair x, y of distinct points of Wy 

one has H = (H U {x}) H (H U b})-
By taking F = X and V = U in Theorem (3.1), we obtain Theorem (2.10) 

of (4) which states that a mapping <j> from T(X) onto r(Z7) is an isomorphism 
if and only if there exists a homeomorphism h from X onto U such that 
0/ = h 0 / o h-1 for each / in T(X). 

The following example shows that if F consists of one point, then the 
bijection h in Theorem (3.1) need not be a homeomorphism. 

Example (3.2). Let X denote the one-point compactification of the natural 
numbers and let p denote the limit point of X. Let U denote the discrete space 
whose points are the natural numbers and some point, q (? X. It follows that 
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T (X, {p} ) consists of all functions/ mapping X into X such that f(p) = p and 
r ( î7 , {#}) consists of all functions/ mapping £/ into U such tha t / (g ) = q. 
I t is a routine matter to show that the mapping <fi from T(X, \p\) onto 
T(U, {q}) defined by 

<£/(#) = 5 if x Ç Z7 — {g} and/ (x) = p, 

<t>f(x) = / (*) if * 6 ^ - {̂ 1 and / (x) ^ £ 

is an isomorphism. According to Theorem (3.1), the isomorphism uniquely 
determines a bijection h from X onto U such that 0/ = h of o /r-1 for each 
/ Ç T(X, {̂ >}). The function h is defined by hip) = q and &(x) = x for x ^ p 
and is evidently not a homeomorphism. 

4. Automorphisms of restrictive semigroups. We define an auto­
morphism 4> of a semigroup 5 to be inner if there exist elements a, b £ S sucli 
that 0(x) = axe for all x £ S. M. L. Vitanza has shown in (6) that if 0 is 
such an automorphism, then the semigroup must contain an identity and a 
and b must be inverses of each other. 

THEOREM (4.1). Every automorphism of a restrictive semigroup is an inner 
automorphism. 

Proof. We observe that the units of a restrictive semigroup r ( X , F) are 
the homeomorphisms from X onto X which also map F onto F. If Y contains 
more than one point, it follows immediately from Theorem (3.1) that every 
automorphism of T(X, Y) is inner. Therefore, we need only consider the 
case where Y = {p}. Suppose tha t$ is an automorphism T(X, {p}). According 
to Theorem (3.1), there exists a bijection h îromX ontoX such that h(p) = p, 
<t>f = hofoh-1 for each/ G T(X, {p}), and both h[H] and h'^H] are closed if 
p G H. The proof will be complete when we show that the bijection h is a 
homeomorphism. Suppose that H is a closed subset of X. As we observed 
previously, if p £ H, then h[H] is closed. Let us consider the case where 
p (I H. Define a function/ mapping X into X as follows: 

fix) = h(x) for x £ h~l[H], 

f(x) = p for x £ h-l[H]. 

For any closed subset K of X, we have that 

/ [X] = f[K n h-*[H]] Vf[K - h-*[H]] = h[K H h-i[H]] U {£} = 

[A [ x ]n f f ] u {£}. 

Now, I U { ^ } is closed and therefore 

A[X U {p}] = A[X] U {*(£)} = A[X] U {£} 
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is closed. Thus, [h[K] U {p}] Pi H = h[K] H H is closed which implies that 
[h[K] r\H]U {p} is closed. Therefore, / 6 r (X , {£}) and hence, <£/W] is a 
closed subset of X. But 

# W ] = hofo h-'lH] = hoho h~l[H] = h[H]. 

In a similar manner, one shows that hrl[H] is closed for any closed subset 
H of X. This completes the proof. 

Definition (4.2). We shall denote the group, under composition, of all homeo-
morphisms mapping the topological space X into itself by G(X). For any 
non-empty subspace F of X, the subgroup of G (X) consisting of all those 
homeomorphisms which map F onto F will be denoted by G(X, F). Finally, 
the automorphism group of the restrictive semigroup T (X, Y) will be denoted 
by A{X, Y) and the automorphism group of Y(X) will be denoted by A(X). 

COROLLARY (4.3). For any restrictive semigroup T(X, F), A(X, F) is 
isomorphic to G(X, F). 

Proof. For each <f> in A(X, F), there exists, according to Theorem (4.1), a 
homeomorphism & in G(X, F) such that <f>f = h of o h~l for each/ in T(Xy F). 
The function h is uniquely determined by 0 and we define <£(<£) = h. One 
shows, in a straightforward manner, that $ is a homomorphism from A (X, Y) 
onto G(X, F). Furthermore, if $($) = i, the identity mapping of G(X, F), 
then <j>f = i of o i~l = f for each / in T(X, F), i.e., <j> is the identity auto­
morphism. Thus, the kernel of $ consists of the identity and it follows that 
$ is an isomorphism from A{X, F) onto G(X, F). 

For a n y / G G(-X", F), the restriction,//F, of / to F is an element of G(Y). 
The mapping <f> which t a k e s / o n t o / / F is a homomorphism from G(X, Y) 
into G(Y). If X is a Mausdorff space and F is a dense subspace of X, the 
homomorphism 0 is actually a monomorphism since any two functions mapping 
X into X which agree on F must be identical. These observations, together 
with Corollary (4.3), combine to give the following corollary. 

COROLLARY (4.4). Let T(X, Y) be any restrictive semigroup. Then A(X, Y) 
is isomorphic to a subgroup of A (X). If X is Hausdorff and Y is dense in X, 
then A (X, F) is also isomorphic to a subgroup of A(Y). 

In view of the latter result, it is reasonable to ask if there exist instances 
where A (X, F) is isomorphic to A (X) or A ( F) other than in the trivial 
case Y = X. The following result answers this affirmatively. 

THEOREM (4.5). Suppose that X is a completely regular Hausdorff space with 
the property that each point has a countable base and let /3X denote the Stone-Cech 
compactification of X. Then the automorphism groups of the semigroups 
T(PX, X) , T(PX), and T(X) are all isomorphic. 

Proof. By Corollary (4.3), A(0X,X) is isomorphic to G(fiX,X), A(f3X) 
is isomorphic to G(pX), and A (X) is isomorphic to G(X). The proof will be 
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complete when we show that G(PX, X) = G(PX) and that G(X) is isomorphic 
to G(PX). Let h G G{X) be given. Then h can be regarded as a continuous 
mapping from X into PX and, as such, has a unique continuous extension hE 

over PX. The same is true for k = hrl. Since both hE o kE and kE o hE agree 
with the identity mapping on the dense subset X, they are equal to the 
identity mapping. This implies that both hE and kE belong to G(PX). We 
define a mapping 4> from G{X) into G{PX) by cj>(h) = /^. The mapping </> 
is injective. Moreover, since gE ofE and (g of)E agree on the dense subset X, 
it follows that gE ofE = (g of)E and hence, that <j> is a monomorphism. Now 
suppose that & is any element of G(pX). Since each point of X has a countable 
base in X, each point of X also has a countable base in PX (if {i/w}^=i is a 
countable base for x in X, then {int^x(cl^x^)}S=i is a countable base for x 
in PX). However, no point of pX — X has a countable base in PX. In fact, 
no point of PX — X is even a G§ (2, Corollary 9.6, p. 132) in PX. From this, 
it follows that h must map X onto X and PX — X onto /5X — X. Thus, 
ft/JT Ç G(X) and <l>{h/X) = Qi/X)E = h. This proves that 0 is an isomor­
phism from G(X) onto G(PX). Finally, since any function h G G(PX) must 
map points of X onto points of X, it follows that h £ G(PX, X). Therefore, 
G(pX) = G(pX,X). 

5. Some concluding remarks. We close with a few remarks about the 
semigroup S(X, Y) of all continuous functions mapping X into X which also 
map Y into F. I t follows from Theorem (3.1) of this paper that if Y and V 
each contain more than one point, then the restrictive semigroups T(X, Y) 
and T(U, V) are isomorphic if and only if there exists a homeomorphism 
from X onto U which also maps Y onto V. The following example shows 
that it is not possible to prove such a result for S(X, Y) and 5(C7, V). 

Let W denote the space of all ordinals less than the first uncountable 
ordinal. For a nice discussion of some properties of spaces of ordinals, 
see (2, pp. 72-76). Let Y be any infinite set which is disjoint from W and let 
X = YVJW. Topologize Z by defining a subset H of X to be open if and only 
if H Pi W is an open subset of W. Now W is a closed subspace of X which is 
not realcompact (2, p. 114). Therefore, by (2, Theorem 8.10, p. 119), X is 
not realcompact. Hence X is a proper subspace of its Hewitt realcompactifica-
tion, vX. For a discussion of the space uX, see (2, pp. 116-119). As is customary, 
we let C(X) denote the ring of all real-valued continuous functions on X. 
There exist unbounded functions in C(X). To see this, choose any countable 
subset {yn}n=i C Y and define a funct ion/by 

f(jn) = n for each positive integer n, 

f(x) = 0 for each x 6 X — {yn}n=i. 

I t easily follows t h a t / is continuous. We recall, once again, that PX denotes 
the Stone-Cech compactification of X. Since X is not compact, X is a proper 
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subset of f3X. Furthermore, since C(X) contains unbounded functions and 
every function in C(X) can be continuously extended over vX, it follows that 
vX cannot be compact and therefore cannot be homeomorphic to 0X. We shall 
show, however, that S(vX, X) and S(fiX, X) are isomorphic semigroups. Let 
/ £ S(vX, X). Then the restriction, f/X of / to X can be regarded as a con­
tinuous mapping from X into the compact space j3X and, as such, has a 
continuous extension to a function, (f/X)E, in S(($X, X). We define a mapping 
4> from S(vX, X) into S(0X, X) by 0/ = (f/X)E. If two elements of S(&X, X) 
agree on the dense subspace X, they must be identical. Using this fact, one 
can show that <f> is a homomorphism and, moreover, that <f> is injective. Now 
let g be any function in S{fiX, X). Then g/X can be regarded as a continuous 
mapping from X into the realcompact space vX and, consequently, has a 
continuous extension to a function / in S(vX, X). Since (J/X)E and g agree 
on X, it follows that <j>J — g. Thus 0 is an isomorphism from 5(uX, X) onto 
S(0X,X). 
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