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Abstract

The bidual E'h' of a unital infrabarrelled l.m.c. C*-algebra E, equipped with the bidual topology and
the regular Arens product, is always an l.m.c. C*-algebra. On the other hand, a unital l.m.c. *-algebra
E has the C*-property if and only if every self-adjoint element x of E is strongly hermitian (x has
real numerical range), or the sets of normalized states and normalized continuous positive linear forms
of E coincide. Finally, every unital complete l.m.c. C*-algebra satisfying, locally, the property 'the
extreme points are dense in the set of continuous positive linear forms" (antiliminal algebra) has the
complexes as its only normal elements.
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1. Introduction

The present paper deals with the study of numerical ranges within the context of
l.m.c. * -algebras (respectively l.m.c. C "-algebras). It thus provides results which
are extensions of various standard results of Banach (respectively C*-) algebra
theory. More precisely, one has the following: let £ be a unital infrabarrelled
l.m.c. C*-algebra and Eb = (E'b)'b, the bidual algebra of E equipped with the
bidual topology b (topology of uniform convergence on the bounded subsetes of
E'b, the strong dual of E). Then, if the Arens product on Eb is regular, Eb (with a
natural involution) is a unital l.m.c. C*-algebra (Theorem 3.4). This extends the
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[2] Numerical ranges in locally rw-convex algebras. I 305

analogous result for C*-algebras in Bonsall-Duncan (1971), page 110, Theorem 5.
Furthermore, let £ be a unital l.m.c. algebra with an involution and D(E,lE),
&>(E) the sets of normalized states and normalized continuous positive linear
forms of E, respectively. Then E has the C*-property if and only if D(E,1E)
and @>(E) are the same (Theorem 3.7). The latter contsitutes an extension as well
as a strengthening of a theorem by G. Lumer for unital normed *-algebras
(Lumer (1961), page 40, Theorem 19). Moreover, E has the C*-property if and
only if every self-adjoint element of E is strongly hermitian (Theorem 3.7,
(1) <=> (3)) or even if E satisfies the apparently weaker condition "the set of
strongly hermitian self-adjoint elements of E is dense in the set of self-adjoint
elements of E" (cf. Corollary 3.9). The last equivalences are obtained by applying
a different and rather simpler technique than that of B. Sims (1971), and we
thereby get an extension to our case of T. W. Palmer's classical characterization
of C*-algebras (cf., for instance, Sims (1971), Theorem A).

Now let £ be a unital complete l.m.c. C*-algebra, let a e E, and let F be the
closed subalgebra of E generated by 1E, a and the elements of w£(a) =
{(a — X • 1£) * ^ E: X € spE(a)}, where sp£(a) is the spectrum of a. Then, if F
has the property

, . the set of extreme points of F is dense in the set of
continuous positive linear forms of F,

the numerical range and the spectrum of a are equal. We thus extend to unital
complete l.m.c. algebras (Theorem 4.7) a criterion of commutativity for Banach
algebras due to le Page (Bonsall and Duncan (1971), page 32, Theorem 10 and
Srinivasacharyulu (1974), Theorem 1). So every unital complete l.m.c. C*-algebra
E which satisfies (I) for each a e E has as normal elements only the complexes
(Corollary 4.8).

Algebras with property (I) are, for instance, the antiliminal algebras (Bratteli-
Robinson (1979), page 346), which are known as "quasi-local" C "-algebras (ibid.,
pages 121, 129) and are particularly used in the axiomatic foundations of
quantum mechanics (ibid).

2. Preliminaries

The topological algebras considered throughout are complex and Hausdorff
with identity elements.

By a locally m-convex (l.m.c.) algebra we mean a topological algebra E whose
topology is defined by (an upper directed) family, say T = { pa}a<=j, of submulti-
plicative semi-norms such that p(lE) = 1 (Michael (1952) and Brooks (1967),
Theorem 3.2).
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Now let E be a locally convex (I.e.) algebra (an algebra whose underlying
topological vector space is locally convex) with continuous multiplication, and let
E', E" = (Eb)' be the dual and bidual space of E, respectively, where b =
P(E', E) is the dual topology on E' (the topology of uniform convergence on the
bounded subsets of E, cf. Horvath (1966), page 209, and Gulick (1966), page 73).
Given / G £", x e E and F G E", we define the elements </, x) and [F, / ] of
£" as follows:
(2-1) (f,x)(y):=f(xy), y^E,

(2-2) [^,/](>'):=i:'((/,>'», > ^ £ .

Then the A rens product on E" is defined by

(2.3) (FG)(f) = F([G,f]), feE',

so that E" equipped with this product becomes an algebra, and the canonical
map

(2.4) / : £ - » £ £ £ " : * - » / ( * ) = *

(x(f):= f(x),/G £") an algebra isomorphism of E onto the subalgebra E of
£"' (Gulick (1966), Theorem 3.5). We call this algebra the Arens algebra corre-
sponding to E.

On the other hand, the algebra E" endowed with the bidual topology (the
topology of uniform convergence on the b = P(E', £')-bounded subsets of £ ' , cf.
Gulick (1966), page 74 and Horvath (1966), page 220) becomes a I.e. algebra with
a separately continuous multiplication (Gulick (1966), Theorem 3.5), called the
locally convex Arens algebra corresponding to E. In particular, E'b' is an l.m.c.
algebra if and only if E, equipped with the strong topology b = f$*(E, E'b) (the
topology of uniform convergence on the bounded subsets of E'b endowed with the
dual topology), is a l.m.c. algebra (Gulick (1966), pages 73, 77).

If a l.m.c. algebra E is, moreover, infrabarrelled (the underlying I.e. space E is
infrabarrelled), then the topology b = P*(E, E'b) coincides with the initial topol-
ogy of E (Horvath (1966), page 220, Exercise 5), so that the Arens algebra E'b is,
in fact, a l.m.c. algebra.

3. L.m.c. C*-algebras

By an l.m.c. C*-algebra we mean an l.m.c. algebra E = (E, { pa}aeI) with an
involution * (l.m.c. * -algebra) such that pa(x*x) = pa(x)2 for any x e E,
a G / . Now let E be an l.m.c. algebra and let a e / . Then we define

(3.1) DPm(E,lE) - {/G {UPm(l))°:f(lE) = l}, a e /,

where (Up(l))° is the polar of Up(\) = {x e E: Pa(x) < 1}.
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The elements of the set

(3-2)
a

will be called normalized states of E. If E is the completion of E, then one has

within a bijection.

DEFINITION 3.1. Let E be an l.m.c. algebra. We define the numerical range of
an element a e E to be the set

(3-4) VE(a) =

with a defined as in (2.4). The number

(3.5) pE(a)= Sup |X|

is then called the numerical radius of a.
For the case of a normed algebra, see Bonsall-Duncal (1971), Definition 2.1.

The above definition is essentially the same as that given by Giles and Koehler
(1973), since / <= (Upa(a))° if and only if \f(x)\ < pa(x), x e E (Mallios (1986),
page 2, Lemma 1.2).

The following theorem and Corollary 3.3, extend the analogous Banach algebra
results (Bonsall-Duncan (1971), Theorem 12.2 and Corollary 12.3, respectively).

THEOREM 3.2. Let E be an infrabarrelled l.m.c. algebra and E'b' the correspond-
ing l.m.c. Arens algebra (see comments before Section 3). Then, for every F e E'b,
one has

(3.6) VE,(F)={F(f):f^D{E,\E)}.

PROOF. Let F e E'b'. Since Eb is dense in Eb, there is a net (jt,-) in Eb c^Eb

with Jc, -* F. Hence,
b

= {T(F):T^D{E'b',\E)} = (r(lim*,): T e Z>(£6",

by (3.3)

= {hm *,.(/):/e/)(£,,l£)} by (2.4)

COROLLARY 3.3. Let E, E'b be as in Theorem 3.2. Then F e Eb is "strongly
hermitian" (VE,,(F) C R) if and only if F(f) e R for every f e D(E, \E).
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Now, a new product F • G may be defined on E" by replacing (2.1), (2.2), (2.3)
by

(3-7) (f\x)(y):=f(yx), y^E,

(3-8) [F\f](y):= F((f\y)), y^E,

(3-9) (F-G)(f):=F([G\f]), y<=E,

respectively. In general F • G # GF, for f , G e E". In case F • G = GF, for F,
G e E", the Arens product is called a regular product (Bonsall and Duncan
(1971), page 107).

Now let E be a I.e. * -algebra, i.e. £ is a I.e. algebra with involution *. Then, if
we define

(3.10) / * ( * ) : = / ( * * ) ,

(3.11) *"*(/):= F(f*), feE',

the map

(3.12) F -^F*: E" ̂  E"

is antilinear and satisfies ( F * ) * = F. However, it is not true in general that
(FG)* = G*F* unless the Arens product on E" is regular. In this case (3.12) is
in fact an involution (Bonsall-Duncan (1971), page 109), and E" is then called a
* -Arens algebra. So, if E is, moreover, an l.m.c. algebra, and if the respective
Arens product is regular, then the corresponding Arens algebra E" (with bidual
topology) is an l.m.c. * -Arens algebra.

The next theorem, the proof of which is given after Lemmas 3.5 and 3.6,
extends a result of Bonsall and Duncan for the bidual of a C*-algebra (Bonsall
and Duncan (1971), page 110, Theorem 12.5).

THEOREM 3.4. Let E be an infrabarrelled l.m.c. C*-algebra such that the Arens
product on E" is regular. Then E'b' (with the Arens involution) is an l.m.c.
C *-algebra.

Let E = (E, {pa}a^i) be a l.mx. algebra and let Na = ker(pa), a e / . If
Ea = E/Na, a e / , and if || • || is the norm on Ea defined by | |x j | a = pa(x),
where xa — x + Na e Ea, then every Ea, a e / , is a normed algebra. Now, for
« < j 8 , « , j 3 e / (ker(^) c ker(/>„)), the surjective homomorphism

(3-13) fap'-Ep-*Ea'Xfi^Xa

is well defined (Michael (1952) and Mallios (1986)), and the families (Ett,fafi),
(Ea, fa/}) (Ea, a G / , denotes the completion of Ea, and fap, a < /?, the extension
of fap to the respective completions) constitute projective systems of normed and
Banach algebras, respectively, corresponding to E (Michael (1952)). Moreover, we
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have E c^ l im Ea C^ l im Ea = E, where E is the comple t ion of E (Michael (1952)
and Mallior(1986)). *~

Furthermore E is an l.m.c. C*-algebra if and only if every normed algebra (Ea,

|| • HJ has the C*-property ( | | * X L = \\xj2
a, xa e Ea).

Now let D(E,lE) and @(E) be, respectively, the normalized states of E (cf.
(3.1), (3.2)) and the normalized continuous positive linear forms on E ( / G E' with
f(lE) = 1 and f(x*x) > 0, x G E). Then one has the following.

LEMMA 3.5. On every l.m.c. C*'-algebra E, the sets of normalized states and
normalized continuous positive linear forms on E coincide, that is

(3.14) D{E,\E)=0>{E).

PROOF. Let / G Dp(E,lE) c D(E, 1E), a G / (cf. (3.1), (3.2)). Then trie func-
tion

(3.15) / „ : £ „ - C : xa ^ x + Na -* /„(*„):= f(x)

is a normalized state of Ea, and its extension to Ea (also denoted by fa) is a
normalized state of the C*-algebra Ea, a G / . But

(3-16) D(Ea,la) = 0>(Ett), « G / ,

(Berberian (1974), Theorem 61.9), so that f(x*x) = fa(x*xa) > 0, x G £, and
hence f <= 0>(E).

Conversely, if / e ^ ( £ ) , then there is a e / such that /„ G ̂ ( £ a ) (cf. (3.15)
and Fragoulopoulou (1981), Theorem 3.1). In particular, the extension of fa to Ea

is an element of &{Ea) (ibid.), so that by (3.16) /„ G D(Ea,la), and hence
= 1. Thus | / (x) | = |/a(jca)| < \\xa\\a=pa(x), x G E, i.e. / G ̂ ( £ , 1 ^ ) c

LEMMA 3.6. Let E be an infrabarrelled l.m.c. C*-algebra, and assume that the
Arens-product on E'b' is regular {see comments after Corollary 3.3). Then every
self-adjoint element ofE'b' is strongly hermitian.

PROOF. Let F G E'b' be such that F* = F. By Corollary 3.3 it is sufficient to
prove that F{f) G U for every / G D(Eb, \E). Let / G D(Eb, \E). By hypothesis
and by Lemma 3.5 we have that / G 0>{E) (cf. also Horvath (1966), page 220,
Exercise 5). Thus, by (3.10), (3.11) and Fragoulopoulou (1981), Lemma 3.3, we
get / = / * and F(f) = F*(f) = F(f*) = F(f), that is, F{f) G R for every
feD(Eb,lE).

PROOF OF THEOREM 3.4. For every x G Eb one has

(3.17) x=y + iz
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with y,ze S(Eb) (self-adjoint elements of E'b'). By Lemma 3.6, y, z e H(Eb)
(strongly hermitian elements of E'b'), so that the decomposition (3.17) of x is
unique. In fact, if x = y' + iz', y', z' e H{E'b') then y - y', z - z' <= H(E'b'),
so that VE..(y -y')=(y- y\D(E'b', 1E..)) = {(j - / ) ( / ) : / e D(E'b', 1E..)} =

2):

/R = (0). Hence, by Giles and Koehler (1973), Corollary 1, y - y' = z - z' = 0.
Consequently, the Vidav-Palmer involution may be defined on E'b (x* = y — iz),
and it actually coincides with the Arens involution. Now the Vidav-Palmer
theorem (Giles and Koehler (1973), Theorem 6) guarantees that E'b is an l.m.c.
C*-algebra.

We shall now give some characterizations of the C*-property on an l.m.c.
* -algebra.

THEOREM 3.7. Let E be an l.m.c. *-algebra. Then the following conditions are
equivalent.

(1) E is an l.m.c. C*-algebra.

(3) Every self-adjoint element of E is strongly hermitian.
(4) S(E) = H(E).
(5) The next two relations hold true

(3.18)(i) E = H(E) ® i • H(E),

(3.19) (ii) H(E) c S(E).

PROOF. (1) => (2): This is Lemma 3.5.
(2) => (3): Let x e S(E). Then by (2) and by Fragoulopoulou (1981), Lemma

3.3, we have f(x) e R for every / e D(E, lE), so that VE(x) c U by (3.4).
(3) => (4): let x G H(E). Then

(3.20) x=y + iz,

where y, z G S(E), SO that, by (3), y,z G H(E).
On the other hand, VE(x) = VE{y) + iVE(z), and since x, y, z e H(E), we

have F£-(z) = 0, whence (Giles and Koehler (1973), page 34) z = 0. Therefore
x = j<= S(£) .

(4) => (5): by (4) and (3.20) we have that E = H(E) + iH{E). Using the
argument in the proof of Theorem 3.4, one gets the uniqueness of (3.20), which
proves (3.18).

(5) => (1): The Vidav-Palmer Theorem (Giles and Koehler (1973), Theorem 6)
guarantees that E (with the Vidav-Palmer involution) becomes an l.m.c. C ""-alge-
bra. On the other hand, (3.19) implies that the Vidav-Palmer involution coincides
with the given one.
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SCHOLIUM 3.8. In the above theorem, condition (3.18) is sufficient to make E
(with the Vidav-Palmer involution) into an l.m.c. C ""-algebra (Giles and Koehler
(1973), Theorem 6). But in general the Vidav-Palmer involution does not coincide
with the given one, the letter being ensured by (3.19). On the other hand,
condition (3.19) is not sufficient by itself to imply (1) of Theorem 3.7, as shown
by an example of B. Sims for Banach algebras (Sims (1971), page 198).

COROLLARY 3.9. Let E be an l.m.c. * -algebra with continuous involution. Then E
has the C*-property if and only if

(3.21) S{E)C\H{E) = S(E).

PROOF. Theorem 3.7, (1) => (4), and the fact that S(E) is closed imply (3.21).
Conversely, if (3.21) is valid, then the conclusion follows from Theorem 3.7,
(3) =» (1), and from Giles and Koehler (1973), Lemma 3.

In Theorem 3.7, the equivalence (1) <=> (2) is an extension as well as a
strengthening of Lumer (1961), Theorem 19 and Berberian (1974), Theorem 61.9
for normed * -algebras. On the other hand, the equivalence (1) <=> (3) of the same
theorem extends to our situation a result of T. W. Palmer for Banach algebras
(Sims (1971), Theorem A).

4. Commutative l.m.c. C "-algebras

Let £ be a (non-commutative) algebra and {al,a2,...,an} a commutative
subset of E. Also let

Then the elementds of %(«;) commute with al,a2,...,an, as well as with one
another, so that the subalgebra A of E generated by w£(a,), i = 1, . . . ,«, and 1E,
ax,...,an is commutative.

PROPOSITION 4.1. Let E be an l.m.c. algebra and {al,...,a2,---,an} a
commutative subset of E. if 3t is a commutative closed subalgebra (of E) containing
the previously constructed (commutative) subalgebra A, then

Spa(a,) = Sp£(a;), i = 1,2 «.

PROOF. Note that Sp£(a,) c Spa(a ,) . On the other hand, if X e Sp a (a , ) and
X £ Sp£(a,), then (a, - Xl^l^)"1 exists in E, so that, by hypothesis for 31, we
have (a, — Xi£)"x e 21, i.e. X € Spa(a,) , which is a contradiction.
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PROPOSITION 4.2. Let E be an l.m.c. algebra and F= (F,{pa^F)) an l.m.c.
subalgebra of E which contains the unit of E. Then, for each b G F,we have

VE(b) = VF{b).

PROOF. For every / G D(E, lE), we have g = f\F G D(F, 1£). Conversely, for
every g e D ( F , l £ ) , the Hahn-Banach Theorem implies the existence of an
/ G D(E, lE) with g = f\F G D(E, \E), so that the result follows from (3.4).

In quantum mechanics one meets C*-algebras satisfying the following condi-
tion (Bratteli and Robinson (1979), pages 345-346).

s e t ®(^) °f extreme points of £P(E) is a dense subset of
(A \

In this concern, one has

PROPOSITION 4.3. In every complete commutative l.m.c. C*-algebra E, the set
93(£ ) is weakly closed.

PROOF. If 3R(E) is the topological spectrum of E (the set of nonzero

continuous characters of E), then (Brooks (1967), Theorem 4.5)

(4.2) ^ ( £ ) n a « ( £

On the other hand, for each a e E,

SpE(a) = a(m(E)) =

(Mallios (1986), page 104, Corollary 6.4). Particularly, if a = x*x, x G E, one
gets (Inoue (1971), Proposition 2.1) Sp£(a) > 0, so that Tt(E) c @(E\ and
hence, by (4.2),

(4.3) 2R(£) = » ( £ ) .

But 3K(£) is closed in E's (Malhos (1986), page 142, Remark 1.1), so

5B(£)c E's is closed.

COROLLARY 4.4. Let E be a complete commutative l.m.c. C*-algebra with

property (4.1). Then, for each a G E, one has

(4.4) Sp£(a) = VE(a).

In particular, one has, in effect, E = C (topological algebraic isomorphism).

PROOF. By hypothesis we have

(4.5)
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(see also Theorem 3.7 and the proof of Proposition 4.3). Furthermore, E =
<#{Wl{E)) (Gel'fand-Naimark), so that we need prove only that E is, in fact, a
division algebra: that is, x{f) # 0, / e %R{E), or, equivalently, 0 £ Sp£(x),
x G E. For if f(x) = 0 for some x G £ and some /<= 3ft(£) = ^>(£), let
g G ̂ ( £ ) . Then one concludes from (4.5) that XJ = X2g = / I G 0>(£) = §B(£)
= 3ft(£) (take, e.g., h = f + g). Thus g(x) = 0, that is, f(x) = 0 for every

= £>(£, 1£), and so x = 0.

THEOREM 4.5. Le/ E be a complete l.m.c. C*-algebra and a a normal element of
E {aa* = a*a). Moreover, let F be the closed subalgebra of E generated by 1E, a,
a* and by the elements of %(a), irE(a*). Assume that Fsatisfies (4.1). Then

(4-6) SpE(a) = VE(a).

PROOF. F is a complete l.m.c. C*-subalgebra of E. Moreover, F is commuta-
tive (see comments before Proposition 4.1), so that the conclusion now follows
from Corollary 4.4 and from Propositions 4.1, 4.2.

For a discussion of Theorem 4.5 in the case of Banach algebras and complete
l.m.c. algebras, see Bonsall and Duncan (1971), Theorem 6 and Giles and Koehler
(1973), Theorem 1, respectively.

The closed subalgebra F of the above theorem will be called the basic
subalgebra of E at the normal element a. If F satisfies (4.1), we shall say that E
satisfies (4.1) locally at the {normal) element a G E. We abbreviate terminology
by saying that E satisfies (4.1) locally if this is the case for every normal element
of E.

In this respect, one already has from Theorem 3.7 the next result.

COROLLARY 4.6. Let E be a complete l.m.c. C*-algebra. Then

(4.7)

where H^E) denotes the hermitian elements of E {self-adjoint elements with real
spectra).

In the sequel we shall give a criterion of commutativity for l.m.c. algebras (cf.
Theorem 4.7), and we shall next prove that the complete l.m.c. C *-algebras which
satisfy (4.1) have the complexes as the only normal elements (cf. Corollary 4.8).

Let £ be a complete l.m.c. algebra and let a e E. Then the exponential
function is defined as follows:

(4.8) exp(a):=l+ E ha"-
n \
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The existence of the "infinite sum" in (4.8) is a consequence of the fact that,
the partial sums xn = T."(l/k\) -ak,n = l,2,..., constitute a Cauchy sequence,
which is true by hypothesis.

Now, for any commuting elements a,beE, one gets

(4.9) exp(a + b) = exp(a) • exp(b),

(4.10) exp(a) • exp(-a) = 1.

The proof of (4.9), (4.10) is analogous to that of Bonsall and Duncan (1971),
page 26, Theorem 2 for Banach algebras. A consequence of (4.10) is that
exp(tf) G G(E) (the invertible elements of E). On the other hand, one has that
the E-valued map X -* exp(Aa), A G C, is holomorphic.

THEOREM 4.7. Let E = {E, {/>o}ae/) be a complete l.m.c. algebra, such that

(4.11) pE(a) > k • vE(a)

for some k > 0, for all a e E. Then E is commutative.

PROOF. Let a,b G E and define

<£: C -» E: A -» <(>(X):= exp(-Aa) • b • exp(Aa),

which is a continuous function. Then, if / G (6^(1))°, a G /, we have | ( / <> <J>)(A)|
< pa(<j>(X)) < e • vE(<l>(X)), X e C, where e = 2.73 (see comments after Defini-
tion 3.1 and Giles and Koehler (1973), Lemma 1).

On the other hand, Sp£(<J>(A)) = SpE(b), since exp(Xa) • (<t>(X) - ju • 1E) = (b
- ju • 1£) • exp(Aa), so that <j>(X) - p. • \E e. G(E) if and only if b - ju • lE G
G(E). Thus,

and hence the function / ° (/> is bounded. Moreover, / ° <j> is holomorphic since <j>
is, and consequently / ° <> is constant by Liouville's theorem. Therefore

for all / e U o e ; ( ^ ( l ) ) ° c £ ' . Hence, g(<?»(X1) - 4>(A2)) = 0, A^ A2 e C, for
all g G £ ' , so that (Hahn-Banach Theorem, Treves (1967), page 187, Corollary 2)
^(Aj) = <f>(A2), X1? X2

 G C- T h u s b = <f>(0) = <>(1) = exp(-a) • b • exp(a), that
is, exp(a) • b = b • exp(a) for all a,b e E, and consequently exp(Aa) • b = b •
exp(Aa), A e C. This in turn implies that

exp(Aa) - 1 exp(Aa) - 1
X b = b Â  ' X G C '

so that by taking limits we obtain a • b = b • a, a,b G E.

COROLLARY 4.8. Let E be a complete l.m.c. C*-algebra satisfying (4.1) locally.
Then the only normal elements of E are the complexes.
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PROOF. If x is a normal element of E, consider the closed (commutative)
subalgebra of E generated by {lE,x,x*} together with the elements of the sets
nE(x) and w£(x*) (cf. Theorem 4.5). If F denotes the latter algebra, then F
satisfies the conditions of Corollary 4.4, and hence F = C.

Now let E be an l.m.c. algebra. Then by (3.5) one has

vE(\x) = \X\-vE(x), x e £ , A e C .

Thus, if vE(x) = 0, then VE(x) = 0, and so x = 0 (Giles and Koehler (1973),
Corollary 1), that is, vE is a linear norm.

In this regard, we have the next result.

THEOREM 4.9. Let E be a Frechet l.m.c. algebra. If the numerical radius vE is a
complete linear norm {the algebra (E,vE) is a Banach space) then E is a
Banachable algebra, i.e. its topology may be defined by a complete algebraic
(submultiplicative) norm.

PROOF. We have that vE(x) > (1/e) • pa(x), x e E, a e / , where e = 2.73
(Giles and Koehler (1973), page 84, Corollary 1), so that the identity map

(4-12) idE:(E,vE)^(E,{pa}aeI)

is continuous. Now the open-mapping theorem guarantees that the map id £ is a
topological isomorphism, and since (E, vE) is a Banach space, E has a continu-
ous multiplication, so that (Mallios (1986), page 34, Theorem 4.1) there is a new
norm, equivalent to vE, with respect to which E is a Banach algebra.

Now if £ is a complete l.m.c. algebra, and if both the spectral and numerical
radii pE and vE are Banach algebra norms for E, then E is commutative. Thus
(Wenjen (1968), Theorem 1), if E is, moreover, a weakly (l.m.c.) C*-algebra
(pa(x*x) > M • pa(x*) • pa(x), x G E, a e / , M > 0) then E is topologically
isomorphic with the algebra ^(T) (continuous complex-valued functions on a
completely regular space T) equipped with a topology T < c (topology of
compact convergence).

In fact, by Giles and Koehler (1973), Theorem 1, pE(x) < vE(x), x e E, so
that the identity map

is continuous, and so (open-mapping theorem) a topological isomorphism; hence,
there is k > 0 with pE(x) > k • vE{x), x e E. Thus, by Theorem 4.7, E is
commutative.
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The above comments provide an extension as well as an improvement of
previous results in Srinivasacharyulu (1974).
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