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On perturbed stochastic

discrete systems

B.G. Pachpatte

The object of this paper is to study a stochastic discrete

system, including an operator T , of the form

xn+1(w) = AMx^im) + fn[u, xn(u>), [Txn)(oi)) , xQ(o)) = xQ

as a perturbation of the linear stochastic discrete system

where a) € ft , the supporting set of probability measure space

(ft, A, P) and n € N , the set of nonnegative integers. We are

concerned with the existence, uniqueness, boundedness, and

asymptotic behavior of random solutions of the above equation.

1 . Introduction

The theory of stochastic or random equations is in a process of

continuous development and it has become significant for its various

applications in the general areas of the engineering, biological, and

physical sciences. Recently, attempts have been made by many scientists

and mathematicians to develop and unify the theory of stochastic or random

equations using the concepts and methods of probability theory and

functional analysis; see [/], [2]-[4], [5], [7], and some of the references

given there. Observing a certain physical system with random parameter, in

which the independent variable may conveniently be assumed to have only a

discrete set of possible values, often lead to mathematical models involving

stochastic discrete systems. In this paper we shall study a stochastic
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disc re te system, including an operator T , of the form

(1) X
M+1(W) = A{ui)xn((a) + fn[ui, «n(u>), ( T X J ( W ) ) , xo(ai) = xQ , n

The system will be studied as a perturbation of the linear stochastic

discrete system

(2)

Here x , w are stochastic processes, J4(U) is an r * r matrix whose

elements are measurable functions, for each n , f is a vector valued

function defined on !1 x it x f + « , K is an euclidean r space and

T is an operator which maps R into it .

Recently, Morozan [2]-[4], and Tsokos and Padgett [7, pp. 121-129],

have studied the stability of the random solutions of some special forms of

( l ) . The problem considered in this paper is in the general spirit of the

investigations in [2]-[4], [7]. The allowable perturbation terms here

include more than just ordinary random function type perturbations. In

particular if we impose on T various meanings, i t is apparent that

equation (l) has a great diversity. For example, the operators we have in

mind are of the form

n-1 n-1
9'«(a)' x n ( w ) ) o r £ & fl(w)a:(u>) or I fc (u)fl (ID, x (<o))n n g = 0 n,s s e = Q n,s s e

and so on. The particular concern of this paper is the existence,

uniqueness, boundedness, and asymptotic behavior of a random solution of

the stochastic discrete system (l) under some suitable conditions on f

and on the operator T . The tools that will be employed are the well

known fixed point theorem of Banach and the finite difference inequality

recently established in [6].

2 . P r e l i m i n a r i e s

In tnis section we shall define various notations and terms which will

be used in our subsequent discussion. The symbol |#| will denote some

convenient norm on it as well as a corresponding consistent matrix norm.

Let BC[0, ») denote the set of bounded functions x (u)) (n € ff, u € ft)
n

https://doi.org/10.1017/S0004972700044026 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044026


Perturbed stochastic systems 387

in P? , and i f x (w) 6 BC[O, °°) , denote i t s norm by

||x (u))|| = sup |x (a)) | . By a random solution of a stochastic discrete
M n(.N n

system (l) we shall mean that for each n € N , x (w) satisfies the

equation almost surely.

Let k (<i)) be a stochastic kernel bounded in the ordinary sensen,s

except perhaps on a set with probability measure zero for each n and s

satisfying 0 S s S n such that

(3) 5 k » ,
n,s

where Y (u) is the stochastic fundamental matrix solution of the
n

homogeneous system (2) such that YAbi) i s the unit matrix. Let y (co)

be a bounded random solution of a l inear homogeneous system (2) such that

y (w) = x . I t i s easy to observe that y (a)) = Y (u))x .

To obtain our resul ts in Section 4, we require the following f in i te

difference inequality proved in [6 ] .

LEMMA 1. Let u{n), p{n) , and q(n) be real valued non-negative

functions defined on N for which the inequality

n-1 n-1 rs-1 \
u{n) < u + I p(s)u(s) + I p(s)\ I < 7 ( T ) M ( T )

3=0 s=0 *r=0 '

f n-1 r s -1 -i-i
u(n) 5 u. 1 + I pis) T T (l+p(x)+4(T)) , n 6 N .

holds for all n € N 3 where u is a non-negative constant. Then

n-1 rs-1

I

3. Existence of a random solution

In this section we state and prove a theorem that gives conditions

under which the stochastic discrete system (l) possesses a unique random

solution. A well known Banach fixed point theorem will be used in the

proof.

THEOREM 1. Consider the stochastic discrete system (l) subject to

the following conditions:
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(Hi) suppose that there exists a constant M > 0 such that

M - l

I k (u>) 2 U < co , n € N ;
e=0 n ' 8

(H2) /n(io, 0, 0) = 0 for anj/ fixed n (. N ;

(H3) for each a > 0 , there exists x\ > 0 euch that

/ o r a l l n t . I l , w h e n e v e r \ x ( u ) | , | x ( u ) | S i i ;

(Hi,) I (TxM)(w)-(7xn)(a)) | 5 Y|a:M(w)-xn(u)) | , where y > 0 is

a constant and \x ( u ) | , |x (u))| S n .

Then there exists a number eQ > 0 such that to any e € (o, e ] 3 if

!|y (w)|| £ Xe for some fixed X € (o, 1) t then there exists a unique

random solution x (to) of the equation (l) for all n € N , satisfying

l |xn(a»)| | < e .

P roo f . F i x a > 0 , Y > 0 , such t h a t aW(l+y) < 1 . F i x a number

B > 0 such t h a t BM(l+y) 5 1 - X . Us ing ( H 2 ) , ( H 3 ) , and (Hi,) , p i c k

6 > 0 such t h a t

for a l l n € N , whenever |x (u)| S 6 . Define e. = min(6, r|) . For any

e , 0 S e £ £. we define

S(e) = {xn(u) : xn

Define the operator V by the relat ion

M-l

(5) ( toj (a)) = yn(u) + I ^

s=0

fo r x (u) € S(e) , whose f ixed p o i n t corresponds t o the s o l u t i o n of the

equat ion ( l ) . Using ( 3 ) , ( H , ) , (U) , and ( 5 ) , we obta in
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8=0

n-1
< Xe + I k (w)e(l+Y)lk,(co)ll

s=0 n'B s

" *» O * ̂ ^ * * I'M — * # Q

5 Xe +

5 Xe + (l-X)e = e .

Hence £/ maps S(c) into itself. On the other hand using (3), (Hi),

(H3), (Hi,), and (5) we have

n-1

and

for any x (a)), x (to) € 5(e) . Since aW(l+y) < 1 , U is a contraction

on S(e) . Hence by the well known contraction mapping principle, the

equation (1) has a unique solution x (ui) € 5(e) with ||x (a))|| £ e . This

completes the proof of the theorem.

4. Boundedness and asymptotic behavior

In this section we shall study the boundedness and asymptotic behavior

of random solutions of equation (l) as a perturbation of the system (2).

Theorem 2 below establishes that to every bounded random

solution of (2) there corresponds a bounded random solution of (l) under

some suitable conditions on / and on the operator T .
n

THEOREM 2. Suppose that

(6)

where po(w) is a non-negative random function defined for e € N ,
8

00

w € ft , and \ p (u) < <*> . further, suppose that the operator T
8=0

satisfies the inequality
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(7)

where q (oi) is a non-negative random function defined for n € N ,

w-1
a) € fi j and ~\ [ [l+p (u})+q (a))) < <*> . Then to every bounded random

e=0 8 8

solution y (u) of (2) on N , the corresponding random solution x (u)

of (l) is bounded on N .

Proof. The random solutions of (l) and (2) with the same ini t ia l

values are related by

w-1
(8) x (u>) = y (w) + I T

7* 71 __ /£
(a), x (u) , (TxJ(o))) .

8 8 8

From ( 6 ) ,

|x

( 7 ) , and ( 8 ) , we

w-1

+ s=0 Pl

obtain

w-1

8=0 8

(•S-l

4=0

where c i s the upper bound for \y (w) | . Now an application of Lemma 1

with w(rt) = |xM(o))| yields

T l - 1

8=

- 1 / S - l -V

I P-(u) T T (l+P_(a))+a (u)))
=0 4 = 0 T T •"

The above estimation implies the boundedness of |x (co) | on N , and the

theorem is proved.

Our next theorem shows that under sofne suitable conditions on the

fundamental matrix of (2) and the perturbation term in ( l ) , a l l the random

solutions of ( l) approach zero as n -*• °° .

THEOREM 3. Let the fundamental matrix ?n(u) of (2) satisfy the

inequalities

(9)

where M > 0 , a > 0 are constants. Suppose that the perturbation term

fn[u, xnM, [Txn)U)) in (1) satisfies
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(10) |fn((0, xn(to), [TxJ (<*))] 5 pnM (|xn(u>)x n

where PM(a)) ^ s a non-negative random function defined for n € ff ,

a) € n j and £ p (a)) < °° . Further, suppose that the operator T
s=0 s

satisfies the inequality

( I D I [Txn] (a,) | < e"0" ""'I qju) \xg{») | ,

where q (u) i s a non-negative random function defined for n € ff ,

u € ft j ami ] f \\+Mp (u)+q (w)e s < °° . Tfcen a i l random solutions of
s = 0 >• s s J

( l ) approach zero as n •*•<*>.

Proof. The random solutions of (l) and (2) with the same ini t ia l

values are related by

M - l
(12) x (a)) = J (o))x + I 7 (co)rj; (a))/ (co, x (w), (TxJ(o))) .

7* 7Z \J j ^ Tl 8 * X o o o
8=0

Using

|x (a)]

(9) , (10),

l| <W|xQ| e

(11),

-cm +

and (12)

n-1

8=0

, we

Me08

x k

obtain

(u>) |xg(u>)
T=0

Multiplying both sides of the above inequality by e , applying Lemma 1

with u{n) = |x (o))|e , then multiplying by e~ , we obtain

|xn(co)| ±M\xQ\ -an
M-l

1 + I Mp (w)
88=0

ft
The above estimate yields the desired resul t i f we choose M and |x_|

small enough, and the proof of the theorem is complete.

The random function z (w) wi l l be called slowly growing i f and only
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if for every e > 0 there exists a constant M , which may depend on e ,

such that

|«n(u)| 2 MeEn , n € a .

Theorem k below demonstrates that the random solution of (l) grows

more slowly than any positive exponential.

THEOREM 4. Let the fundamental matrix 1 (w) of (2) satisfy the

inequalities

wihere K > 0 , a > 0 are constants. Suppose that the perturbation term
in (l) satisfies the condition (10) of Theorem 3, and the operator T
satisfies the inequality

|(rxj(u>)| <eEM I qU)\xM\ ,
n 8=0 e 8

where q (u) is a non-negative random function defined for n € N ,

a) € il , and

n-1 fs-1 r •>]
1 + I Kp (co) 7 7 \l+Kp (u)+<7 (w)e£T 5 e ,

8=0 S
 [T=0 *• T T -"j

where c > 0 ie a con8tan£; then aU solutions of (l) trre slowly growing.

The proof of this theorem follows by a similar argument as in the

proof of Theorem 3, and hence we omit the details.

We observe that the stochastic discrete system (l) may be written in

the equivalent form

«-l
(13) xM((d) = w (u>) + I I MY'J: Mfo(o), x (u), (TxJ(a))) ,

8-0

where y (u) i s t h e random s o l u t i o n of (2) and Y (<o) i s the s t o c h a s t i c

fundamental m a t r i x s o l u t i o n of (2 ) . I f we l e t
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then the equation (13) reduces to

n-1
(1U) x (u)) = w (u>) + I k Mf (u, x M, (TxJ(u)) .

ri " a _ s \ ft jO o o 8
O—U

The stochastic equation (lit) is a generalization of the recent study of

Tsokos and Padgett [7, Chapter V] in which the equation (lh) with

/ (u>, x (to), (Tx )(U>)) = f [X (to)) is studied with respect'to the
8 8 8 8 8

existence of a unique random solution.
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