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Abstract. The article concerns the existence and uniqueness of quantisations of
cluster algebras. We prove that cluster algebras with an initial exchange matrix of full
rank admit a quantisation in the sense of Berenstein–Zelevinsky and give an explicit
generating set to construct all quantisations.
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1. Introduction. Sergey Fomin and Andrei Zelevinsky have introduced and
studied cluster algebras in a series of four articles [1,9–11] (one of which is coauthored
by Arkady Berenstein) in order to study Lusztig’s canonical basis and total positivity.
Cluster algebras are commutative algebras which are constructed by generators and
relations. The generators are called cluster variables and they are grouped into several
overlapping sets, so-called clusters. A combinatorial mutation process relates the
clusters and provides the defining relations of the algebra. The rules for this mutation
process are encoded in a rectangular exchange matrix usually denoted by the symbol
B̃. Surprisingly, Fomin–Zelevinsky’s Laurent phenomenon [9, Theorem 3.1] asserts
that every cluster variable can be expressed as a Laurent polynomial in an arbitrarily
chosen cluster. The second main theorem of cluster theory is the classification of
cluster algebras with only finitely many cluster variables by finite type root systems,
see Fomin–Zelevinsky [10].

The connections of cluster algebras to other areas of mathematics are manifold. A
major contribution is Caldero–Chapoton’s map [4] which relates cluster algebras and
representation theory of quivers. Another contribution is the construction of cluster
algebras from oriented surfaces which relates cluster algebras to differential geometry,
see Fomin–Shapiro–Thurston [7] and Fomin–Thurston [8].

Arkady Berenstein and Andrei Zelevinsky [2] have introduced the concept
of quantum cluster algebras. Quantum cluster algebras are q-deformations which
specialise to the ordinary cluster algebras in the classical limit q = 1. Such quantisations
play an important role in cluster theory: On the one hand, quantisations are essential
when trying to link cluster algebras to Lusztig’s canonical bases, see for example,
[12, 18, 20–25]. On the other hand, Goodearl–Yakimov [15] use quantisations to
approximate cluster algebras by their upper bounds. The latter result is particularly
important since it enables us to study cluster algebras as unions of Laurent polynomial
rings. A different but closely related quantisation of cluster algebras can be found in
Fock–Goncharov’s work [6].
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In general, the notion of q-deformation turns former commutative structures
into non-commutative ones. In the case of quantum cluster algebras, this yields
q-commutativity between variables within the same quantum cluster which is stored
in an additional matrix usually denoted by the symbol �. In order to keep the
q-commutativity intact under mutation, Berenstein and Zelevinsky require some
compatibility relation between the matrices B̃ and �. The very same compatibility
condition also parametrises compatible Poisson structures for cluster algebras, see
Gekhtman–Shapiro–Vainshtein [13]. Solutions to a homogeneous version of the
compatibility equation are used in recent works by Grabowski and Launois, see [17]
and [16], to construct gradings of cluster algebras.

Unfortunately, not every cluster algebra admits a quantisation, because not every
exchange matrix admits a compatible �. But in the case where there exists such a
quantisation, Berenstein–Zelevinsky have shown that B̃ is of full rank.

This paper has several aims. First, we reinterpret what it means for exchange
matrices without frozen indices to be of full rank via Pfaffians and perfect matchings.
Second, we show the converse of the above statement posted by Zelevinsky [26]:
Assuming B̃ is of full rank, there always exists a quantisation. This result is shown by
using concise linear algebra arguments. It should be noted that Gekhtman–Shapiro–
Vainshtein in [13, Theorem 4.5] prove a similar statement in the language of Poisson
structures. Third, when a quantisation exists, it is not necessarily unique. This ambiguity
we make more precise by relating all such quantisations via matrices we construct from
a given B̃ using particular minors.

2. Berenstein–Zelevinsky’s quantum cluster algebras.

2.1. Notation. Let m, n be integers with 1 ≤ n ≤ m and A an m × n matrix with
integer entries. For n < m, we use the notation [n, m] = {n + 1, . . . , m} and in the case
n = 1 the shorthand [m] = [1, m]. For a subset J ⊆ [m], we denote by AJ the submatrix
of A with rows indexed by J and all columns. By q, we denote throughout the paper a
formal indeterminate.

2.2. The definition of quantum cluster algebras. Let B̃ = (bi,j) be an m × n matrix
with integer entries. For further use, we write B̃ = [

B
C

]
in block form with an n × n

matrix B and an (m − n) × n matrix C. The matrix B is called the principal part of B̃.
We call indices i ∈ [n] mutable and the indices j ∈ [n + 1, m] frozen.

We say that the principal part B is skew-symmetrisable if there exists a diagonal
n × n matrix D = diag(d1, d2, . . . , dn) with positive integer diagonal entries such that
the matrix DB is skew-symmetric, i.e. dibi,j = −djbj,i for all 1 ≤ i, j ≤ n. The matrix D
is then called a skew-symmetriser for B and B̃ is called an exchange matrix. Note that
skew-symmetrising from the right yields identical restraints and bi,j �= 0 if and only if
bj,i �= 0.

The skew-symmetriser is essentially unique by the following discussion: Consider
the unoriented simple graph �(B) with vertex set {1, 2, . . . , n} such that there is an
edge between two vertices i and j if and only if bi,j �= 0. We say that the principal part
B is connected if �(B) is connected.

Assume now that B is connected. Suppose there exist two diagonal n × n-matrices
D and D′ with positive integer diagonal entries such that both DB and D′B are skew-
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symmetric. Then there exists a rational number λ with D = λD′, as for all indices i, j
with bi,j �= 0 the equality di/dj = d ′

i/d ′
j holds true. We refer to the smallest such D as the

fundamental skew-symmetriser. If B is not connected, then every skew-symmetriser D
is an �+-linear combination of the fundamental skew-symmetrisers of the connected
components of B.

This concludes the discussion of the first datum to construct quantum cluster
algebras. The next piece of data is the notion of compatible matrix pairs.

From now on, assume that B̃ = [
B
C

]
is a not necessarily connected matrix

with skew-symmetrisable principal part B. A skew-symmetric m × m integer matrix
� = (λi,j) is called compatible with B̃ if there exists a diagonal n × n matrix D′ =
diag(d ′

1, d ′
2, . . . , d ′

n) with positive integers d ′
1, d ′

2, . . . , d ′
n such that

B̃T� = [
D′ 0

]
(1)

as a block matrix with a first block of size n × n and a second block of size n × (m − n).
In this case, we call (B̃,�) a compatible pair. To any m × n matrix B̃, there need not
exist a compatible �. As a necessary condition Berenstein–Zelevinsky [2, Prop. 3.3]
note that if a matrix B̃ belongs to a compatible pair (B̃,�), then its principal part B
is skew-symmetrisable, D′ itself is a skew-symmetriser and B̃ itself is of full rank, i. e.
rank(B̃) = n.

Let us fix a compatible pair (B̃,�). We are now ready to complete the necessary
data to define quantum cluster algebras. First of all, let {ei : 1 ≤ 1 ≤ m} be the standard
basis of �m. With respect to this standard basis, the skew-symmetric matrix � defines
a skew-symmetric bilinear form β : �m × �m → �. The based quantum torus T�

associated with � is the �[q±1]-algebra with �[q±1]-basis {Xa : a ∈ �m} where we define
the multiplication of basis elements by the formula XaXb = qβ(a,b)Xa+b for all elements
a, b ∈ �m. It is an associative algebra with unit 1 = X0 and every basis element Xa has
an inverse (Xa)−1 = X−a. The based quantum torus is commutative if and only if � is
the zero matrix, in which case T� is a Laurent polynomial algebra. In general, it is an
Ore domain, see [2, Appendix] for further details. We embed T� ⊆ F into an ambient
skew field.

Although T� is not commutative in general, the relation

XaXb = q2β(a,b)XbXa

holds for all elements a, b ∈ �m. Because of this relation, we say that the basis elements
are q-commutative. Put Xi = Xei for all i ∈ [m]. The definition implies XiXj = qλi,j XjXi

for all i, j ∈ [m]. Then we may write T� = �[q±1][X±1
1 , X±1

2 , . . . , X±1
m ] and the basis

vectors satisfy the relation

Xa = q
∑

i>j λi,jaiaj Xa1
1 Xa2

2 · . . . · Xam
m

for all a = (a1, a2, . . . , am) ∈ �m.
We call a sequence of pairwise q-commutative and algebraically independent

elements such as X = (X1, X2, . . . , Xm) in F an extended quantum cluster, the elements
X1, X2, . . . , Xn of an extended quantum cluster quantum cluster variables, the elements
Xn+1, Xn+2, . . . , Xm frozen variables and the triple (B̃, X,�) a quantum seed.

Let k be a mutable index. Define mutation map μk : (B̃, X,�) 	→ (B̃′, X ′,�′) as
follows:
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(M1) The matrix B̃′ = μk(B̃) is the m × n matrix with entries

b′
i,j = −bi,j if i = k or j = k,

b′
i,j = bi,j + sgn(bi,k) max(0, bi,kbk,j) if i �= k �= j.

(M2) The matrix �′ = (λ′
i,j) is the m × m matrix with entries λ′

i,j = λi,j except for

λ′
i,k = −λi,k +

∑
r�=k

λi,r max(0,−br,k) for all i ∈ [m]\{k},

λ′
k,j = −λk,j −

∑
r�=k

λj,r max(0,−br,k) for all j ∈ [m]\{k}.

(M3) To obtain the quantum cluster X ′, we replace the element Xk with the element

X ′
k = X

−ek+
m∑

i=1
max(0,bi,k)ei + X

−ek+
m∑

i=1
max(0,−bi,k)ei ∈ F .

The variables X ′ = (X ′
1, X ′

2, . . . , X ′
m) are pairwise q-commutative: for all j ∈ [m] with

j �= k, the integers

β

(
−ek +

m∑
i=1

max(0, bi,k)ei, ej

)
= −λk,j +

m∑
i=1

max(0, bi,k)λi,j,

β

(
−ek +

m∑
i=1

max(0,−bi,k)ei, ej

)
= −λk,j +

m∑
i=1

max(0,−bi,k)λi,j

are equal, because their difference is equal to the sum
∑m

i=1 bi,kλi,j which is the zero
entry indexed by (k, j) in the matrix B̃T�. So the compatibility condition implies that
the variable X ′

k q-commutes with all Xj. Hence, the variables X ′ = (X ′
1, X ′

2, . . . , X ′
m)

generate again a based quantum torus whose q-commutativity relations are given by
the skew-symmetric matrix �′. Moreover, the pair (B̃′,�′) is compatible by [2, Prop.
3.4] so that the matrix B̃′ has a skew-symmetrisable principle part. We conclude that
the mutation μk(B̃′, X ′,�′) = (B̃′, X ′,�′) is again an extended quantum seed. Note
that the mutation map is involutive, i. e. (μk ◦ μk)(B̃, X,�) = (B̃, X,�).

A main property of classical cluster algebras are the binomial exchange relations.
For the quantised version, we require pairwise q-commutativity for the quantum cluster
variables in a single cluster. This implies that a monomial Xa1

1 Xa2
2 · . . . · Xam

m with
a ∈ �m remains (up to a power of q) a monomial under reordering the quantum cluster
variables.

We call two quantum seeds (B̃, X,�) and (B̃′, X ′,�′) mutation equivalent if one
can relate them by a sequence of mutations. This defines an equivalence relation
on quantum seeds, denoted by (B̃, X,�) ∼ (B̃′, X ′,�′). The quantum cluster algebra
Aq(B̃, X,�) associated to a given quantum seed (B̃, X,�) is the �[q±1]-subalgebra of
F generated by the set

χ (B̃, X,�) = {
X±1

i | i ∈ [n + 1, m]
} ∪

⋃
(B̃′,X ′,�′)∼(B̃,X,�)

{
X ′

i | i ∈ [n]
}
.
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Specialising at q = 1 identifies the quantum cluster algebra Aq(B̃, X,�) with the
classical cluster algebra A(B̃, X). Generally, the definitions of classical and quantum
cluster algebras admit additional analogies. One such analogy is the quantum Laurent
phenomenon, as proven in [2, Cor. 5.2]: we have Aq(B̃, X,�) ⊆ T�. Remarkably,
Aq(B̃, X,�) and A(B̃, X) also possess the same exchange graph by [2, Theorem 6.1].
In particular, quantum cluster algebras of finite type are also classified by Dynkin
diagrams.

3. The quantisation space.

3.1. Remarks on skew-symmetric matrices of full rank. The condition for an
exchange matrix B̃ to be of full rank plays a crucial part in quantisations and gradings
of cluster algebras: we show in this section that the cluster algebra A(B̃, X) associated
to B̃ allows a quantisation if and only if B̃ has full rank. On the other hand, Grabowski–
Launois [17] show in the case n = m that A(B̃, X) possesses a non-trivial grading if
and only if B̃ is of smaller rank.

How can we decide whether an exchange matrix B̃ has full rank? Let us consider
the case n = m. Multiplication with a skew-symmetriser D does not change the rank,
so without loss of generality, we may assume that B̃ = B is skew-symmetric. In this
case, B = B(Q) is the signed adjacency matrix of some quiver Q with n vertices.

First of all, if n is odd, then B cannot be of full rank, because det(B) = (−1)n det(B)
implies det(B) = 0. Especially, no (coefficient-free) cluster algebra attached to a quiver
Q with an odd number of vertices admits a quantisation.

Now suppose that n = m is even. In this case, a theorem of Cayley [5] asserts
that there exists a polynomial Pf(B) in the entries of B such that det(B) = Pf(B)2.
The polynomial is called the Pfaffian. Hence, the cluster algebra A(B̃, X) admits a
quantisation if and only if the Pfaffian does not vanish.

The formula for the Pfaffian in the entries of B is given by

Pf(B) =
∑

sgn(i1, . . . , in/2, j1, . . . , jn/2)bi1j1 bi2j2 · · · bin/2jn/2 , (2)

where the sum is taken over all (n − 1)(n − 3) · · · 1 possibilities of writing the set
{1, 2, . . . , n} as a union {i1, j1} ∪ {i2, j2} ∪ . . . ∪ {in/2, jn/2} of n

2 sets of cardinality 2
and sgn(i1, . . . , in/2, j1, . . . , jn/2) ∈ {±1} is the sign of the permutation σ ∈ Sn with
σ (2k − 1) = ik and σ (2k) = jk for all k ∈ {1, 2, . . . , n

2 }, cf. Knuth [19, Equation
(0.1)]. It is easy to see that the sum is well-defined. For example, if n = 4, then
Pf(B) = b12b34 − b13b24 + b14b23.

DEFINITION 3.1. Let G = {V, E} be an undirected graph with a set of vertices V
and a set of edges E ⊆ (V

2

)
. A perfect matching of G is a collection of pairwise distinct

edges {i, j} with i, j ∈ V such that every vertex of V is part of precisely one edge.

In this notation, a summand in the sum (2) vanishes unless the collection of pairs
{i1, j1}, {i2, j2}, . . . , {in/2, jn/2} is a perfect matching of the underlying undirected graph
of Q.

In particular, if there exists no perfect matching of the underlying undirected graph
of Q, then the Pfaffian Pf(B) vanishes, the determinant det(B) is zero, the matrix B
does not have full rank and there exists no quantisation of A(B̃, X).
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For example, let Q = −→
An be an orientation of a Dynkin diagram of type An with

an even number n. Then Q admits exactly one perfect matching {1, 2}, {3, 4}, . . . , {n −
1, n}. Hence, det(B(Q)) = ±1 so that B(Q) has full rank. The same is true for all quivers
Q of type

−→
E6 or

−→
E8. On the other hand, there does not exist a perfect matching for a

Dynkin diagram of type Dn. Hence, det(B(Q)) = 0 for all quivers Q of type Dn.
To summarise, a (coefficient-free) cluster algebra of finite type has a quantisation

if and only if it is of Dynkin type An with even n or of type E6 or E8.

REMARK 3.2. These are precisely the Dynkin diagrams for which the stable category
CM(R) of Cohen–Macaulay modules of the corresonding hypersurface singularity R
of dimension 1 does not have an indecomposable rigid object, see Burban–Iyama–
Keller–Reiten [3, Theorem 1.3].

3.2. Existence of quantisation. Suppose that rank(B̃) = n. In this subsection, we
prove that the cluster algebra A(x̃, B̃) admits a quantisation.

The n column vectors of B̃ are linearly independent elements in �m. We extend
them to a basis of �m by adding m − n appropriate column vectors. Hence, there is
an invertible m × n plus m × (m − n) block matrix

[
B̃ Ẽ

] ∈ GLm(�) which we denote
by M. We also write Ẽ itself in block form as Ẽ = [

E
F

]
with an n × (m − n) matrix E

and an (m − n) × (m − n) matrix F . Of course, the choice for the basis completion is
not canonical. In particular, one can choose standard basis vectors for columns of Ẽ,
making it sparse. After these preparations, we are ready to state the theorem about the
existence of a quantisation.

THEOREM 3.3. Let D be a skew-symmetriser of B. Then there exists a skew-
symmetric m × m-matrix � with integer entries and a multiple D′ = λD with λ ∈ �+

such that B̃T� = [
D′ 0

]
.

Proof. Put

�0 = M−T
[

DB DE
−ET D 0

]
M−1 ∈ Matm×m(�),

and let � be an integer multiple of �0 which lies in Matm×m(�). The matrix � is
skew-symmetric by construction and the relation MT M−T = Im,m implies B̃T M−T =[
In,n 0n,m−n

]
. Thus,

B̃T�0 = [
DB DE

]
M−1 = D

[
B E

]
M−1 = D

[
In,n 0n,m−n

] = [
D 0

]
.

Scaling the equation yields B̃T� = [
D′ 0

]
for some multiple D′ of D. �

Together with Berenstein–Zelevinsky’s initial result, this means that a cluster
algebra A(B̃) admits a quantisation if and only if B̃ has full rank. Since the rank
of the exchange matrix is mutation invariant, one can use any seed to check whether a
cluster algebra admits a quantisation.

Zelevinsky suggested in a private communication to reformulate the statement in
terms of bilinear forms. With respect to the standard basis, the matrix � defines a
skew-symmetric bilinear form.

Let us change the basis. The column vectors b1, b2, . . . , bn of B̃ are linearly
independent over �. Let V ′ = span�(b1, b2, . . . , bn) be the column space of B̃. The
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column vectors ẽn+1, ẽn+2, . . . , ẽm of Ẽ extend to a basis of V = �m. Let V ′′ =
span�(ẽn+1, ẽn+2, . . . , ẽm). The compatibility condition B̃T� = [

D′ 0
]

says that for
any given D′, the skew-symmetric bilinear form V × V → � is completely determined
on V ′ × V , hence also on V × V ′. Such a bilinear form can be chosen freely on
V ′′ × V ′′ giving a 1

2 (m − n − 1)(m − n)-dimensional solution space. In particular, the
quantisation is essentially unique (i.e. unique up to a scalar) when there are only 0 or
1 frozen vertices.

4. A minor generating set. In the previous section, we observed that any full-
rank skew-symmetrisable matrix B̃ admits a quantisation. In the construction yielding
Theorem 3.3, we chose some m × (m − n) integer matrix Ẽ which completed a basis
for �m. This choice we now reformulate by giving a generating set of integer matrices
for the equation

B̃T� = [
0 0

]
. (3)

As previously remarked, this ambiguity does not occur for 0 or 1 frozen vertices,
hence we may start with the case m = n + 2 in Section 4.1. From this result, we construct
such a generating set for arbitrary m with |m − n| > 2 in the subsequent section. The
construction below holds in more generality than what is naturally required in our
setting. Thus, we now consider an arbitrary integer matrix A of dimension m × n
instead of B̃ and obtain the generating set for equation (3) as a consequence.

4.1. Minor blocks. In this subsection, we assume m = n + 2.
For distinct i, j ∈ [m], define a reduced indexing set R(i, j) as the n-element subset

of [m] in which i and j do not occur. To an arbitrary m × n integer matrix A = (ai,j), we
associate the skew-symmetric m × m integer matrix M = M(A) = (

mi,j
)

with entries

mi,j =

⎧⎪⎨
⎪⎩

(−1)i+j · det(AR(i,j)), i < j,
0, i = j,
(−1)i+j+1 · det(AR(i,j)), j < i.

(4)

Then we first observe the following property of M, which carries some similarity
to the well-known Plücker relations.

LEMMA 4.1. For A, an m × n integer matrix, we obtain

AT · M = [0 0].

Proof. By definition, we have

[
AT · M

]
i,j =

m∑
k=1

ak,imk,j =
∑

k∈[m]\{j}
ak,imk,j.

Now, let Aj be the matrix we obtain from A by removing the jth row and Ai
j the matrix

that results from attaching the ith column of Aj to itself on the right. Then det(Ai
j) = 0

and we observe that using the Laplace expansion along the last column, we obtain the
right-hand side of the above equation up to sign change. The claim follows. �
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EXAMPLE 4.2. Let α, a, b, c and d be positive integers which we use below to
indicate multiple arrows. Then consider the quiver Q given by

1 2

3 4

α

a
b c

d

Thus, the matrices B̃ and M are

B̃ =

⎡
⎢⎢⎣

0 α

−α 0
a b
c d

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣

0 −ad + bc −αd αb
ad − bc 0 αc −αa

αd −αc 0 −α2

−αb αa α2 0

⎤
⎥⎥⎦ ,

and we immediately see the result of the previous lemma, B̃T · M = [0 0].

4.2. Composition of minor blocks. In this section, let n + 2 < m and as before
let A ∈ Matm×n(�) be some rectangular integer matrix. Choose a subset F ⊂ [m] of
cardinality n and obtain a partition of the indexing set [m] of the rows of A as [m] = F �
R. Note that |R| = m − n. For distinct i, j ∈ R set, the extended indexing set associated
to i, j to be

E(i, j) := F ∪ {i, j}.

By Lemma 4.1 (after a reordering of rows) and slightly abusing the notation, there
exists an (n + 2) × (n + 2) matrix ME(i,j) = (mr,s) such that

AT
E(i,j) · ME(i,j) = [0 0]. (5)

Now, let ME(i,j) = ME(i,j)(A) = (mr,s) be the enhanced solution matrix associated to
i, j, the m × m integer matrix we obtain from ME(i,j) by filling the entries labelled by
E(i, j) × E(i, j) with ME(i,j) consecutively and setting all other entries to zero.

EXAMPLE 4.3. Consider the quiver Q with associated exchange matrix B̃ as shown
below:

Q :

1 2

3 4 5

and B̃ =

⎡
⎢⎢⎢⎢⎣

0 α

−α 0
a 0
b 0
0 c

⎤
⎥⎥⎥⎥⎦.

α

a b c
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We choose F = {1, 2}, assuming α �= 0 and get the following matrices ME(i,j) and their
enhanced solution matrices for distinct i, j ∈ {3, 4, 5}:

ME(3,4) =

⎡
⎢⎢⎣

0 0 0 0
0 0 αb −αa
0 −αb 0 −α2

0 αa α2 0

⎤
⎥⎥⎦ , ME(3,4) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 αb −αa 0
0 −αb 0 −α2 0
0 αa α2 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

ME(3,5) =

⎡
⎢⎢⎣

0 −ac −αc 0
ac 0 0 −αa
αc 0 0 −α2

0 αa α2 0

⎤
⎥⎥⎦ , ME(3,5) =

⎡
⎢⎢⎢⎢⎣

0 −ac −αc 0 0
ac 0 0 0 −αa
αc 0 0 0 −α2

0 0 0 0 0
0 αa α2 0 0

⎤
⎥⎥⎥⎥⎦,

ME(4,5) =

⎡
⎢⎢⎣

0 −bc −αc 0
bc 0 0 −αb
αc 0 0 −α2

0 αb α2 0

⎤
⎥⎥⎦ , ME(4,5) =

⎡
⎢⎢⎢⎢⎣

0 −bc 0 −αc 0
bc 0 0 0 −αb
0 0 0 0 0
αc 0 0 0 −α2

0 αb 0 α2 0

⎤
⎥⎥⎥⎥⎦.

Here, we highlighted the added 0-rows/columns in gray. We observe by considering the
lower right 3 × 3 matrices of ME(3,4),ME(3,5),ME(4,5) that these matrices are linearly
independent. This we generalise in the theorem below.

THEOREM 4.4. Let A ∈ �m×n as above. Then for distinct i, j ∈ R, we have

AT · ME(i,j) = 0.

Furthermore, if A is of full rank and F is chosen such that the submatrix AF yields the
rank, then the matrices ME(i,j) are linearly independent.

Proof. By construction, for s ∈ R\{i, j} the sth column of ME(i,j) contains nothing
but zeros. Hence, for arbitrary r ∈ [m], we have[

AT · ME(i,j)
]

r,s = 0. (6)

Now, let s ∈ E(i, j). Then,

m∑
k=1

ak,rmk,s =
∑

k∈E(i,j)

ak,rmk,s = 0

by Lemma 4.1. Without loss of generality, assume i < j and F = [n]. Then by
assumption on the rank, β := (−1)i+j det

(
A[n]

) �= 0 and by construction, ME(i,j)

is of the form as in Figure 1. Then, ±β is the only entry of the submatrix
of ME(i,j) indexed by [n + 1, m] × [n + 1, m]. This immediately provides the linear
independence. �

As an immediate consequence, we obtain that there are at least
(m−n

2

)
many m × m

integer matrices M satisfying

AT · M = [0 0].
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Figure 1. An example of the form of enhanced solution matrices.

Together with the final remark from Section 3.2, we can thus conclude that the above
constructed matrices form a basis for the space of solutions � of the homogeneous
equation (3).

In addition, we can apply this result to gradings of cluster algebras as introduced
in [16], since equation (3) is used by Grabowski to define gradings on cluster algebras,
see [16, Definition 3.1]. In the above setting, any column of any enhanced solution
matrix yields a grading of the corresponding cluster algebra.

5. Conclusion. When does a quantisation for a given cluster algebra A(B̃) exists
and how unique is it?

The answer we have seen above: it depends on the rank of B̃, the number of
connected components r of the mutable part and the number of frozen indices. If the
rank of B̃ is small, then no quantisation exists, see Section 3.1. On the other hand, if B̃
is of full rank, the solution space of matrices satisfying the compatibility equation (1)
to a fixed skew-symmetriser is a vector space over the rational numbers of dimension( m−n

2

)
. Thus, if there is no or only one frozen index, a quantisation only depends on

the choice of a skew-symmetriser. Recall that every skew-symmetriser is an �+-linear
combination of the fundamental skew-symmetrisers of the connected components of
B. We summarise our findings in the following corollary.

COROLLARY 5.1. Let B̃ be an m × n exchange matrix of full rank and r the number
of connected components of the mutable part . Then the solution space of matrices �

satisfying the compatibility equation B̃T� = [
D′ 0

]
to a given skew-symmetriser D′ is a

vector space over the rational numbers of dimension
( m−n

2

)
.

In particular, the set of all quantisations lies in a rational vector space of dimension
r + ( m−n

2

)
.

By Theorem 4.4, the vector space of matrix solutions in the first statement of the
above corollary can be explicitly constructed:

COROLLARY 5.2.

(a) All solutions of the compatibility equation B̃T� = [
D′ 0

]
to a fixed skew-

symmetriser D′ can be constructed as the sum of a solution �0 and a linear
combination of all ME(i,j) for i, j ∈ [m].
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(b) In the special case where the principal part of B̃ is already invertible,
quantisations of full subquivers with all mutable and two frozen vertices yield
a basis of the homogeneous solution space.

To construct quantum seeds, it is necessary to have integer solutions � for the
compatibility equation (1). Both � from Theorem 3.3 and the enhanced solution
matrices ME(i,j) have integer entries. General integer solutions � to (1) form a semi-
group with respect to addition: if �1 and �2 are skew-symmetric m × m integer matrices
satisfying

B̃T�1 = [D′
1 0] and B̃T�2 = [D′

2 0],

where D′
1 and D′

2 are integer matrices with positive diagonal entries, then D′
1 + D′

2 has
also positive diagonal entries and B̃T (�1 + �2) = [(D′

1 + D′
2) 0] holds. However, they

do not generate the semi-group of all integer quantisations in general.
What came as a surprise to us is the simple structure of the matrices ME(i,j).

Their computation only depends on so-called minor blocks which are matrices of
size (n + 2) × (n + 2) depending on the entries of B̃, which can be realised with little
effort. The authors used SAGE in their investigations of the problem and the first
author makes a complementary website available at [14]. There, one can follow the
construction of the matrices above in detail, compute a general solution to (1) and a
generating set of matrices to (3).
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