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A note on simultaneous polynomial

approximation of exponential functions

J.H. Loxton and A.J. van der Poorten

let a a, be distinct complex numbers and T(1), ..., T(m)

33 v

be non-negative integers. We obtain conditions under which the

functions

(1) T(m)

z exp(alz), vees B exp(amz)
form a perfect system, that is, for every set p(1), ..., p(m) of
non-negative integers, there are polynomials al(z), vees am(z) .

with respective degrees exactly p(1)-1, ..., p{m)-1 , such that

the function
'f (o 2)
R(z) = a,(z)exp(o, 2
k=1 X )

has a zero of order at least p(1) + ... + p(m)-1 at the origin.
Moreover, subject to the evaluation of certain determinants, we
give explicit formulae for the approximating polynomials

al(z), e @ (2) .

1. Introduction

In [4], Mahler has introduced the idea of a perfect system of

functions, defined as follows. Let fi(z), cies fh(z) be functions of one

complex variable which are regular at the origin and do not all vanish

there. Let p = (p(l), cees D(M)) be an m-tuple of non-negative integers
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and set o0 = p(1) + ... + p(m) . Then there are polynomials
al(z), eens am(z) , with respective degrees at most p(1)-1, ..., p(m)-1

and not all identically zero, such that the function
m

(1) R(z) = ] au(2)f,(2)
k=1 k k

has a zero of order at least O - 1 at the origin. The functions

fi(z), RN fh(z) form a perfect system if, for every choice of p , there
are polynomials al(z), cens am(z) with respective degrees exactly

p(1)-1, ..., p{m)-1 such that the function R(z) defined in (1) has a
zero of order at least O - 1 at the origin. The polynomials

al(z), cees am(z) are then uniquely determined up to a common constant
multiple; (see [4], page 113).

In [5], the second author gave several examples of sets of functions
whose perfectness can be established by explicitly constructing the

approximating polynomials al(z), cees am(z) . In this note, we consider
in the same spirit the perfectness of the system of functions

T(m)

(2) zT(l)exp(oclz], cees B exp(otmz) ,

where @,, ..., @ are complex numbers and (1), ..., ©(m) are non-

1°
negative integers. The main result and the corresponding construction are
given in Section 2.

The particular case 7T(1) = ... = t{m) = 0 gives the approximating
polynomials constructed by Mahler [2, 3] and used by him to obtain
arithmetic properties of the exponential function. A lemma on the
simultaneous polynomial approximation of the general system (2) was used
recently by Baker [7] in obtaining a new diophantine inequality involving
the exponential function. Unfortunately, our construction, at least in its

present form, does not appear to have any applications of this kind.

2. Construction of the approximating polynomials
Let a = [a s sees am) be an m-tuple of complex numbers and

p = (p(l), vees p(m)) end T = (T(l), vees T(m)] be m-tuples of non-
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negative integers. Set o = p(1) + ... + p(m) . We denote by D(a, p, T)

the determinant of order ¢ with the element

-1

oL'll;—‘r(r')—s
T(r)+s-1
in the <th row and Jth column, where J = p(1) + ... + p{r-1)+s

A=sr=m, 155 =p() .

THEOREM. Let o o be distinct complex numbers and

1 e
(1), ..., ©m) be non-negative integers with
0=1(1) =1(2) = ... =1(m) .

If, for each m-tuple p = (p(1), ..., p(m)) of non-negative integers, the

determinant D(a, p, T) defined above is non-zero, then the functions

(3) zT(l)exp(alz), cees zT(M)exp(amz)
form a perfect system.

Proof. let p = (p(l), ey p(m)) be an m-tuple of non-negative
integers and set 0 = p(1) + ... + p(m) . Let w (1 <r=m,

rs
1 <8 =p(r)) be O distinct complex numbers and denote their difference
product by A(w) . Thus

7-1

AMw) = A(m W,

110 e wm,p(m)) =

is the determinant of order ¢ with w;;l in the Zth row and jth
column, where g§ = p(1) + ... + p(r-1)+e¢ (1 sr=m, 1ss < p(r))

Define a function S(z) by

(%) S(z) = 28 f TT (tw,,)e™az

2m Cr,s

where C is a simple closed contour in the g-plane containing all the

W On the one hand, evaluating the integral by obtaining the residue of

the integrand at each of the poles wrs inside C , we obtain

(5) S(z) = Ars(w)exp(wrsz) s

!
r,s
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where

o(r,s)A( ~

Brg(w) = (-1) pps res Upgs wees w,,,,p(,,,))

is, except for sign, the difference product of the wkl with “’rs

omitted, and we have introduced o(r, 8) = p(1) + ... + p(r-1)+s-1 . 1In

particular, Ars(w) is independent of On the other hand,

rs °
evaluating the integral (4) by considering the behaviour of the integrand
at its remaining singularity at 7 = ©» , we see that S(2) has a Taylor

expansion gbout the origin which begins

zO'—l
(6) - S(Z)=A(w)-(—d:-1—)—!+...

Define the differential operators

1 T(k)+1-1
L= H (t(x)y+2-1]r [Bwkz] 7
r1™%
and, for each pair (r, 8) with 1 <r=m, 1=<g =<o(r) ,
_ 1 3 ]T(k)-fl-—l
bro © (k,ZI;I;,s) (T(k)“z‘ﬂ’(a“’kzJ ’

Yr1™%
where, after differentiation, we replace each wkZ by otk . On applying

the operator L to (5), we obtain

v (k)
(7 R(z) = L5(z) = kgl 4 (2)s" Ve (wz)
where
p(k) 1 -1
(8) a (z) = Zzl TR+ )T Ly By @)z (L=k=m

is a polynomial of degree at most p(k) -1 in 2z . From (6), the
function R(z) has a zero of order at least o - 1 at the origin and its

Taylor expansion about the origin begins

201 o-1
(9) R(z) = I8(w) Toyy * v = Dla, 0, T) TEgyy b -ee
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Moreover, the leading coefficient of the polynomial ak(z) is

1 '
{10) + v(T(k)‘f'p(k)—l)! D((l, pk’ T) s
where pé = (p(1), «.vy p(R)-1, ..., p(m)} , so by hypothesis, ak(z) has

exact degree p(k) - 1 . Thus the functions (3) form a perfect system.

3. Construction of linearly independent approximations

Following the general theory of [4], pages 104-107, we can use the
preceding work to construct explicitly systems of linearly independent

forms in the functions (3).
As before, let o, ..., o, be distinct complex numbers and

7(1)% ..., T(m) be non-negative integers satisfying the hypotheses of the
theorem of Section 2. We carry out the construction of Section 2 with the

parameters p replaced in turn by the m-tuple

o, = (p(1), ooy p(h)41, .o, p(m) (L =h=m),

denoting quantities obtained from Py by a subscript h . Thus, from (7)

and (9), we obtain the functions

(k)

m
(11) R,(z) = kzl ay, (2)z exp(akz)

g
= D(a, 0y, 1) §? + ... A=h=m,

where, by (8) and (10), ahk(z) is a polynomial in 2z of degree

p(k) + th and the leading coefficient of akk(z) is

D(a,p,T) -

(12) * "o O]T -
Let A(z) be the m x m determinant
Az) = |ay(2)] g pam -

From (11) and the hypothesis +t(1) = 0 , it follows that A4(z) has a zero
of order at least O at the origin. On the other hand, from the above

remarks, A(2) is a polynomial of degree at most O and, in the expansion
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of A(z) , a term of degree O can only arise from the main &iagonal.

Using (12) to compute this term, we find

. m D(a,p,T) g
Alz) = _{I:I'I;szjg?ijji}z .

In particular, from our hypothesis, 4(1) # 0 , so on writing z =1
in (11), we obtain m linearly independent forms in

exp(al), eees exP(ahJ , say

m
Rh = kzl ahkexp(ak) (L=h=m)

However, it does not seem at all easy to estimate the size of the numbers

and R

h which the applications such as those in [1] and [2, 3]

Tk

require.
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