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Abstract

In this paper we discuss the simplicity criteria of (−1,−1)-Freudenthal Kantor triple systems and give
examples of such triple systems, from which we can construct some Lie superalgebras. We also show
that we can associate a Jordan triple system to any (ε, δ)-Freudenthal Kantor triple system. Further, we
introduce the notion of δ-structurable algebras and connect them to (−1, δ)-Freudenthal Kantor triple
systems and the corresponding Lie (super)algebra construction.
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1. Introduction

The history of nonassociative algebras seems to have its roots at the end of the 19th
century. Hamilton, Cayley, and Hurwitz were the first investigators in this field.
They characterized an algebraic image of a generalization of the complex numbers
by the concept of quaternion, octonion numbers, and composition algebras. Later
generations, for example Artin and Zorn, studied alternative and nearly associative
algebras. And of course, as a later generalization, we have the investigation of Jordan
and Lie algebras with applications to physics.

Nonassociative algebras are rich in algebraic structures, and they provide important
common ground for various branches of mathematics, not only pure algebra and
differential geometry, but also representation theory and algebraic geometry. Specially,
the concept of nonassociative algebras such as Jordan and Lie (super)algebras plays
an important role in many mathematical and physical subjects [5, 10–13, 15, 27, 29,
43, 44, 48, 51, 52]. We also note that the construction and characterization of these
algebras can be expressed in terms of the notion of triple systems [19, 35, 46] by using
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the standard embedding method [23, 37, 38, 47, 50]. In particular, the generalized
Jordan triple system of second order (that is, the (−1, 1)-Freudenthal Kantor triple
system) is a useful concept for the construction of simple Lie algebras [13–20, 31–
34, 36, 49] and Lie superalgebras [6, 23, 26, 28], while the δ-Jordan Lie triple systems
play a similar role in the construction of Jordan superalgebras [24, 25, 46]. Two of the
present authors have constructed a model of Lie superalgebras D(2, 1; α), G(3) and
F(4) [26].

The purpose of this paper is the main structure theory of this project on applications
of our triple systems. We show that we can associate a Jordan triple system to any
(ε, δ)-Freudenthal Kantor triple system and we deal with a property of the associated
Jordan triple systems. Further, we introduce the notion of δ-structurable algebras and
connect them to (−1, δ)-Freudenthal Kantor triple systems and the corresponding Lie
(super)algebra construction.

2. Definitions and the Jordan triple systems associated with Freudenthal
Kantor triple systems

2.1. (ε, δ)-Freudenthal Kantor triple systems, δ-Lie triple systems and Lie
(super)algebras. We are concerned in this paper with triple systems which have
finite dimension over a field 8 of characteristic not equal to 2 or 3, unless otherwise
specified.

In order to make this paper as self-contained as possible, we recall first the definition
of a generalized Jordan triple system (GJTS) of second order.

A vector space V over a field 8 endowed with a trilinear operation V × V × V →
V , (x, y, z) 7−→ (xyz) is said to be a GJTS of second order if the following conditions
are fulfilled:

(ab(xyz))= ((abx)yz)− (x(bay)z)+ (xy(abz)), (2.1)

K (K (a, b)x, y)− L(y, x)K (a, b)− K (a, b)L(x, y)= 0, (2.2)

where L(a, b)c := (abc) and K (a, b)c := (acb)− (bca).
A Jordan triple system (JTS) satisfies (2.1) and the condition

(abc)= (cba). (2.3)

We can generalize the concept of the GJTS of second order as follows (see [13, 14,
17, 23, 50] and the earlier references therein). For ε =±1 and δ =±1, a triple product
that satisfies the identities

(ab(xyz))= ((abx)yz)+ ε(x(bay)z)+ (xy(abz)), (2.4)

K (K (a, b)x, y)− L(y, x)K (a, b)+ εK (a, b)L(x, y)= 0, (2.5)

where
L(a, b)c := (abc), K (a, b)c := (acb)− δ(bca), (2.6)

is called an (ε, δ)-Freudenthal Kantor triple system ((ε, δ)-FKTS).
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REMARK 2.1. We note that

K (b, a)=−δK (a, b). (2.7)

From now on we will mainly deal with this type of triple system. Furthermore, an
(ε, δ)-FKTS is said to be balanced if it satisfies dim8{K (a, b)}span = 1.

Triple products are generally denoted (xyz), {xyz}, [xyz] and 〈xyz〉 according to
context.

REMARK 2.2. We note that the concept of GJTS of second order coincides with that
of (−1, 1)-FKTS. Thus we can construct the simple Lie algebras by means of the
standard embedding method [6, 13–17, 23, 26, 28, 33, 50].

REMARK 2.3. We note that the pairs of identities (2.8) and (2.9) are equivalent:

(i) (ab(xyz))= ((abx)yz)+ ε(x(bay)z)+ (xy(abz)),

(ii) K (K (a, b)x, y)− L(y, x)K (a, b)+ εK (a, b)L(x, y)= 0; (2.8)

and

(i) [L(a, b), L(x, y)] = L((abx), y)+ εL(x, (bay)),

(iii) K (K (a, b)x, y)− K ((yxa), b)− K (a, (yxb))= 0, (2.9)

where ε =±1, δ =±1 and L(a, b), K (a, b) are defined by (2.6). Indeed, from (i)
and (2.8) it follows that (2.9) holds. Conversely, from (i) and (2.9) it follows that (2.8)
holds.

REMARK 2.4. For an (ε, δ)-FKTS U we denote

S(a, b) := L(a, b)+ εL(b, a), A(a, b) := L(a, b)− εL(b, a), (2.10)

where L(a, b) is defined by (2.6).

REMARK 2.5. We note that

S(a, b)= εS(b, a). (2.11)

Then S(a, b) (A(a, b)) is a derivation (anti-derivation) of U .

Indeed, we note that the following identities are valid:

[S(a, b), L(c, d)] = L(S(a, b)c, d)+ L(c, S(a, b)d),
[A(a, b), L(c, d)] = L(A(a, b)c, d)− L(c, A(a, b)d).

For δ =±1, a triple system (a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie triple
system (δ-LTS) if the following three identities are satisfied:

[abc] = −δ[bac],
[abc] + [bca] + [cab] = 0,

[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]],
(2.12)

where a, b, x, y, z ∈ V . A 1-LTS is an LTS while a (−1)-LTS is an anti-LTS, by [14].
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PROPOSITION 2.6 [14, 23]. Let U (ε, δ) be an (ε, δ)-FKTS. If J is an endomorphism
of U (ε, δ) such that J 〈xyz〉 = 〈J x J y J z〉 and J 2

=−εδ Id, then (U (ε, δ), [xyz]) is
an LTS (if δ = 1) or an anti-LTS (if δ =−1) with respect to the product

[xyz] := 〈x J yz〉 − δ〈y J xz〉 + δ〈x J zy〉 − 〈y J zx〉. (2.13)

COROLLARY 2.7. Let U (ε, δ) be an (ε, δ)-FKTS. Then the vector space T (ε, δ)=
U (ε, δ)⊕U (ε, δ) becomes an LTS (if δ = 1) or an anti-LTS (if δ =−1) with respect
to the triple product defined by[(

a

b

)(
c

d

)(
e

f

)]
=

(
L(a, d)− δL(c, b) δK (a, c)
−εK (b, d) ε(L(d, a)− δL(b, c))

)(
e

f

)
. (2.14)

Thus we can obtain the standard embedding Lie algebra (if δ = 1) or Lie
superalgebra (if δ =−1), L(ε, δ)= D(T (ε, δ), T (ε, δ))⊕ T (ε, δ), associated to
T (ε, δ) where D(T (ε, δ), T (ε, δ)) is the set of inner derivations of T (ε, δ), that is,

D(T (ε, δ), T (ε, δ)) :=

{(
L(a, b) δK (c, d)
−εK (e, f ) εL(b, a)

)}
span

,

T (ε, δ) :=

{(
x

y

) ∣∣∣∣ x, y ∈U (ε, δ)

}
span

.

REMARK 2.8. We note that L(ε, δ) := L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 is the five
graded Lie (super)algebra, such that L−1 ⊕ L1 = T (ε, δ) and D(T (ε, δ), T (ε, δ))=
L−2 ⊕ L0 ⊕ L2 with [L i , L j ] ⊆ L i+ j . This Lie (super)algebra construction is one of
the reasons to study nonassociative algebras and triple systems.

2.2. JTSs associated with (ε, δ)-FKTSs. In this section, we consider first the
properties of {K (x, y)}span defined by (2.6).

PROPOSITION 2.9. Let U be an (ε, δ)-FKTS. Then

K (u, v)K (x, y) = L(v, K (x, y)u)− δL(u, K (x, y)v) (2.15)

= εδL(K (u, v)y, x)− εL(K (u, v)x, y) (2.16)

for any u, v, x, y ∈U, where L(x, y), K (x, y) are defined by (2.6).

PROOF. Although (2.15)–(2.16) were noted in [50] the proof was not given. Since
its validity is an important tool in what follows, we give the proof below. By (2.6) it
follows that

K (u, v)K (x, y)z = K (u, v){xzy − δyzx} = u(xzy)v − δv(xzy)u

− δ{u(yzx)v − δv(yzx)u}

= u(xzy)v − δv(xzy)u − δu(yzx)v + v(yzx)u. (2.17)

Next, from (2.4) we get

(zx(uyv))= ((zxu)yv)+ ε(u(xzy)v)+ (uy(zxv))
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as well as the relations obtained by letting u↔ v, or x↔ y and so on, so that

ε(u(xzy)v)= (zx(uyv))− ((zxu)yv)− (uy(zxv)),

ε(v(xzy)u)= (zx(vyu))− ((zxv)yu)− (vy(zxu)),

ε(u(yzx)v)= (zy(uxv))− ((zyu)xv)− (ux(zyv)),

ε(v(yzx)u)= (zy(vxu))− ((zyv)xu)− (vx(zyu)).

Then (2.17) can be written as

εK (u, v)K (x, y)z

= zx(uyv)− (zxu)yv − uy(zxv)− δzx(vyu)+ δ(zxv)yu

+ δvy(zvu)− δzy(uxv)+ δ(zyu)xv + δux(zyv)

+ zy(vxu)− (zyv)xu − vx(zyu)

= zx(K (u, v)y)− δzy(K (u, v)x)− K (zxu, v)y

− K (u, zxv)y − K (v, zyu)x − K (zyv, u)x

= K (z, K (u, v)y)x + δ(K (u, v)y)xz

− δ{K (z, K (u, v)x)y + δ(K (u, v)x)yz} − K (zxu, v)y

− K (u, zxv)y − K (v, zyu)x − K (zyv, u)x

= δ(K (u, v)y)xz − (K (u, v)x)yz

+ {K (z, K (u, v)y)− K (v, zyu)− K (zyv, u)}x

− {δK (z, K (u, v)x)+ K (zxu, v)+ K (u, zxv)}y. (2.18)

Then from the definition of an (ε, δ)-FKTS and (2.7) we remark that

δK (z, K (u, v)x)+ K (zxu, v)+ K (u, zxv)= 0,

hence the last term in (2.18) vanishes. Similarly,

K (z, K (u, v)y)− K (v, zyu)− K (zyv, u)

= K (z, K (u, v)y)+ δK (zyu, v)+ δK (u, zyv)

= δ{δK (z, K (u, v)y)+ K (zyu, v)+ K (u, zyv)} = 0,

hence the second term in (2.18) also vanishes. Therefore, (2.18) becomes

εK (u, v)K (x, y)z = δ(K (u, v)y)xz − (K (u, v)x)yz,

which is rewritten as

εK (u, v)K (x, y)= δL(K (u, v)y, x)− L(K (u, v)x, y).

This proves (2.16). Next we note that

[L(u, v), L(x, y)] = L(L(u, v)x, y)+ εL(x, L(v, u)y)
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so that, by letting u↔ x and v↔ y,

L(L(u, v)x, y)+ εL(x, L(v, u)y)=−L(L(x, y)u, v)− εL(u, L(y, x)v)

or
L(uvx, y)+ εL(x, vuy)+ L(xyu, v)+ εL(u, yxv)= 0. (2.19)

Letting u↔ x , this also gives

L(xvu, y)+ εL(u, vxy)+ L(uyx, v)+ εL(x, yuv)= 0. (2.20)

Calculating (2.19)–δ(2.20), we obtain

L(uvx − δxvu, y)+ εL(x, vuy − δyuv)

+ L(xyu − δuyx, v)+ εL(u, yxv − δvxy)= 0,

that is,

L(K (u, x)v, y)+ εL(x, K (v, y)u)+ L(K (x, u)y, v)+ εL(u, K (y, v)x)= 0.

Exchanging x↔ v, this yields

L(K (u, v)x, y)+ εL(v, K (x, y)u)+ L(K (v, u)y, x)+ εL(u, K (y, x)v)= 0

hence, by (2.7),

L(K (u, v)x, y)− δL(K (u, v)y, x)=−εL(v, K (x, y)u)+ εδL(u, K (x, y)v),

which proves the equivalence of (2.15) and (2.16) and completes the proof. 2

COROLLARY 2.10. The K (x, y) defined by (2.6) satisfies a Lie relation type, that is,

[K (x, y), [K (u, v), K (a, b)]]

= δK ([K (u, v), K (a, b)]y, x)− K ([K (u, v), K (a, b)]x, y), (2.21)

and the following component-wise relations are valid for S(a, b) defined by (2.10):

[K (a, b), K (x, y)] = δS(x, K (a, b)y)− εS(K (a, b)x, y), (2.22)

[S(x, y), K (a, b)] = K (K (a, b)y, x)+ εK (K (a, b)x, y) (2.23)

= K (S(x, y)a, b)+ K (a, S(x, y)b), (2.24)

[S(a, b), S(x, y)] = S(S(a, b)x, y)+ S(x, S(a, b)y). (2.25)

PROOF. We note that

[K (x, y), [K (u, v), K (a, b)]]

= K (x, y)(K (u, v)K (a, b)− K (a, b)K (u, v))

− (K (u, v)K (a, b)− K (a, b)K (u, v))K (x, y)

= K (x, y)K (u, v)K (a, b)+ K (a, b)K (u, v)K (x, y)

−K (x, y)K (a, b)K (u, v)− K (u, v)K (a, b)K (x, y)

= K (K (a, b)K (u, v)x, y)− δK (K (a, b)K (u, v)y, x)

− K (K (u, v)K (a, b)x, y)+ δK (K (u, v)K (a, b)y, x),
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by (2.28). This proves the validity of (2.21). Next, by (2.15) and (2.16), it follows that

K (a, b)K (x, y) = L(b, K (x, y)a)− δL(a, K (x, y)b)
= εδL(K (a, b)y, x)− εL(K (a, b)x, y).

(2.26)

Letting a↔ x and b↔ y, then

K (x, y)K (a, b) = L(y, K (a, b)x)− δL(x, K (a, b)y)
= εδL(K (x, y)b, a)− εL(K (x, y)a, b),

(2.27)

hence

K (a, b)K (x, y)− K (x, y)K (a, b)

= δ{L(x, K (a, b)y)+ εL(K (a, b)y, x)}

− ε{L(K (a, b)x, y)+ εL(y, K (a, b)x)},

which gives (2.22). Also, since

K (K (a, b)x, y)= L(y, x)K (a, b)− εK (a, b)L(x, y),

we easily obtain (2.23). Moreover, by (2.9),

K (K (a, b)y, x)= K (xya, b)+ K (a, xyb),

hence

K (K (a, b)y, x)+ εK (K (a, b)x, y)= K (S(x, y)a, b)+ K (a, S(x, y)b).

Thus these imply that (2.23) and (2.24) hold. Straightforward calculations also show
that (2.25) holds. The proof is thus complete. 2

REMARK 2.11. Corollary 2.10 shows that the K (a, b) defined by (2.6) has an LTS
structure with respect to the product

[[K (a, b), K (c, d)], K (e, f )] = [K (a, b), K (c, d), K (e, f )].

PROPOSITION 2.12. Let U be an (ε, δ)-FKTS. Then the K (x, y) defined by (2.6)
satisfies a JTS relation type, that is,

K (a, b)K (x, y)K (u, v)+ K (u, v)K (x, y)K (a, b)

= K (K (a, b)K (x, y)u, v)− δK (K (a, b)K (x, y)v, u), (2.28)

= εδK (K (a, b)x, K (u, v)y)− εK (K (a, b)y, K (u, v)x). (2.29)

PROOF. From (2.15)–(2.16),

K (u, v)K (x, y)K (a, b)
= L(v, K (x, y)u)K (a, b)− δL(u, K (x, y)v)K (a, b)
= εδL(K (u, v)y, x)K (a, b)− εL(K (u, v)x, y)K (a, b).

(2.30)
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Also

K (x, y)K (u, v) = L(y, K (u, v)x)− δL(x, K (u, v)y)

= εδL(K (x, y)v, u)− εL(K (x, y)u, v),

which becomes

K (a, b)K (x, y)K (u, v)
= K (a, b)L(y, K (u, v)x)− δK (a, b)L(x, K (u, v)y)
= εδK (a, b)L(K (x, y)v, u)− εK (a, b)L(K (x, y)u, v).

(2.31)

Adding (2.30) and (2.31) yields

K (u, v)K (x, y)K (a, b)+ K (a, b)K (x, y)K (u, v)
= {L(v, K (x, y)u)K (a, b)− εK (a, b)L(K (x, y)u, v)}
− δ{L(u, K (x, y)v)K (a, b)− εK (a, b)L(K (x, y)v, u)}

= εδ{L(K (u, v)y, x)K (a, b)− εK (a, b)L(x, K (u, v)y)}
− ε{L(K (u, v)x, y)K (a, b)− εK (a, b)L(y, K (u, v)x)}.

(2.32)

By (2.8), Equation (2.32) leads to (2.28) and (2.29) and completes the proof. 2

Let κ = {K (x, y) | x, y ∈U }span and define a triple product in κ by

{K1, K2, K3} := K1K2K3 + K3K2K1 (K j ∈ κ). (2.33)

REMARK 2.13. From Proposition 2.12 it then follows that

{K (a, b), K (x, y), K (c, d)} = K (K (a, b)K (x, y)c, d)− δK (K (a, b)K (x, y)d, c).

PROPOSITION 2.14. The triple product {K1, K2, K3} defined by (2.33) is a JTS.

PROOF. Since the K j are associative the assertion follows from the last remark. 2

PROPOSITION 2.15. For the triple product {·, ·, ·} defined by (2.33), let σ(x, y) ∈
End κ and θ(x, y) ∈ End κ, x, y ∈U, be defined by

σ(x, y)K (a, b) := K (K (a, b)x, y)− εδK (x, K (a, b)y), (2.34)

θ(x, y)K (a, b) := K (K (a, b)x, y)+ εδK (x, K (a, b)y). (2.35)

Then σ(x, y) is a derivation and θ(x, y) is an anti-derivation of the JTS κ .

PROOF. We prove first that

σ(x, y){K (a, b), K (c, d), K (e, f )} = {σ(x, y)K (a, b), K (c, d), K (e, f )}

+ {K (a, b), σ (x, y)K (c, d), K (e, f )} + {K (a, b), K (c, d), σ (x, y)K (e, f )}.
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Indeed, by the properties of K (x, y), we calculate:

σ(x, y){K (a, b), K (c, d), K (e, f )}

= σ(x, y)(K (K (a, b)K (c, d)e, f )+ K (e, K (a, b)K (c, d) f ))

= K (K (K (a, b)K (c, d)e, f )x, y)− εδK (x, K (K (a, b)K (c, d)e, f )y)

+ K (K (e, K (a, b)K (c, d) f )x, y)− εδK (x, K (e, K (a, b)K (c, d) f )y)

= K ({K (a, b), K (c, d), K (e, f )}x, y)

− εδK (x, {K (a, b), K (c, d), K (e, f )}y),

{σ(x, y)K (a, b), K (c, d), K (e, f )}

= {(K (K (a, b)x, y)− εδK (x, K (a, b)y)), K (c, d), K (e, f )}

= {K (e, f ), K (c, d), K (K (a, b)x, y)}

− εδ{K (e, f ), K (c, d), K (x, K (a, b)y)}

= K (K (e, f )K (c, d)K (a, b)x, y)+ K (K (a, b)x, K (e, f )K (c, d)y)

− εδK (K (e, f )K (c, d)x, K (a, b)y)

− εδK (x, K (e, f )K (c, d)K (a, b)y),

{K (a, b), σ (x, y)K (c, d), K (e, f )}

= {K (a, b), K (K (c, d)x, y), K (e, f )}

− εδ{K (a, b), K (x, K (c, d)y), K (e, f )}

= εδK (K (a, b)K (c, d)x, K (e, f )y)+ εδK (K (e, f )K (c, d)x, K (a, b)y)

− K (K (a, b)x, K (e, f )K (c, d)y)− K (K (e, f )x, K (a, b)K (c, d)y),

{K (a, b), K (c, d), σ (x, y)K (e, f )}

= {K (a, b), K (c, d), K (K (e, f )x, y)}

− εδ{K (a, b), K (c, d), K (x, K (e, f )y)}

= K (K (a, b)K (c, d)K (e, f )x, y)+ K (K (e, f )x, K (a, b)K (c, d)y)

− εδK (K (a, b)K (c, d)x, K (e, f )y)

− εδK (x, K (a, b)K (c, d)K (e, f )y).

Thus, these mean that σ(x, y) is a derivation of κ . Similarly, we can prove that θ(x, y)
is an anti-derivation, but we omit this here. This completes the proof. 2

An (ε, δ)-FKTS U is called unitary if the identity map Id is contained in κ :=
K (U,U ), that is, if there exist ai , bi ∈U such that∑

i

K (ai , bi )= Id . (2.36)

REMARK 2.16. We note that a balanced triple system (that is, which satisfies
K (x, y)= 〈x |y〉 Id) is unitary, since Id ∈ κ = K (U,U ). If we assume the unitary
property, we can get more interesting results as follows.
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PROPOSITION 2.17. Let U be an (ε, δ)-FKTS. If U is unitary, then:

(i)
ε = δ (or εδ = 1);

(ii)
K (x, y)= L(y, x)− εL(x, y)=−εA(x, y);

(iii)

K (x, y)K (u, v)+ K (u, v)K (x, y)

= K (K (u, v)x, y)+ K (x, K (u, v)y)

= K (u, K (x, y)v)+ K (K (x, y)u, v);

(iv) K (x, y) is an anti-derivation of U.

PROOF. From Proposition 2.9,

K (u, v)K (x, y) = L(v, K (x, y)u)− δL(u, K (x, y)v)

= εδL(K (u, v)y, x)− εL(K (u, v)x, y).

Choosing u = ai and v = bi and summing over i leads, by (2.36), to

K (x, y)= εδL(y, x)− εL(x, y). (2.37)

Now, setting x = ai and y = bi , gives

K (u, v)= L(v, u)− δL(u, v). (2.38)

Changing u→ x and v→ y in (2.38) and comparing it with (2.37) requires the validity
of

(εδ − 1)L(y, x)= (ε − δ)L(x, y).

If εδ = 1 then ε = δ and (i) is clear. Moreover, if εδ =−1 then ε =−δ and the
last identity gives −2L(y, x)= 2εL(x, y), that is, L(y, x)=−εL(x, y). Thus by
(2.37), K (x, y)=−L(y, x)− εL(x, y)= 0 which contradicts (2.36). This proves
ε = δ. Then, by (2.37), it follows that K (x, y)= L(y, x)− εL(x, y)=−εA(x, y),
which is (ii), and so K (x, y) is an anti-derivation of U .

Next, Equations (2.15)–(2.16) are rewritten as

K (u, v)K (x, y) = L(v, K (x, y)u)− εL(u, K (x, y)v)

= L(K (u, v)y, x)− εL(K (u, v)x, y)

so that

K (x, y)K (u, v) = L(y, K (u, v)x)− εL(x, K (u, v)y)

= L(K (x, y)v, u)− εL(K (x, y)u, v)
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and hence, by (ii),

K (u, v)K (x, y)+ K (x, y)K (u, v) = L(K (u, v)y, x)− εL(K (u, v)x, y)

+ L(y, K (u, v)x)− εL(x, K (u, v)y)

= K (x, K (u, v)y)+ K (K (u, v)x, y). 2

PROPOSITION 2.18 (Associated Jordan algebra). Let U be a unitary (ε, δ)-FKTS.
Then the commutative product in K (U,U ) defined by

K (u, v) ∗ K (x, y) = K (u, v)K (x, y)+ K (x, y)K (u, v)
= K (x, K (u, v)y)+ K (K (u, v)x, y)

(2.39)

defines a Jordan algebra κ∗. Moreover, σ(x, y) is a derivation of the Jordan
algebra κ∗, that is,

σ(a, b)(K (u, v) ∗ K (x, y)) = (σ (a, b)K (u, v)) ∗ K (x, y)

+ K (u, v) ∗ (σ (a, b)K (x, y)). (2.40)

PROOF. By (2.34) we have σ(x, y) Id= 0 since εδ = 1. Applying Proposition 2.15 to

σ(a, b){K (u, v), Id, K (x, y)} = {σ(a, b)K (u, v), Id, K (x, y)}

+ {K (u, v), σ (a, b) Id, K (x, y)} + {K (u, v), Id, σ (a, b)K (x, y)}

gives (2.40), since {K (u, v), Id, K (x, y)} = K (u, v) ∗ K (x, y). This completes the
proof. 2

REMARK 2.19. We note that the property of κ is the same as the property of

L−2 =

{(
0 K (x, y)
0 0

) ∣∣∣∣ x, y ∈U (ε, δ)

}
span

,

thus the investigation of U (ε, δ) means the study of the standard embedding Lie
(super)algebra.

REMARK 2.20. We give below another proof of the facts that σ(x, y) is a derivation
of κ and θ(x, y) is an anti-derivation, since the method may be used for some structure
theory of triple systems to be given elsewhere.

(i) Note that σ(x, y)= ε ad S(x, y) because, according to (2.23),

ε[S(x, y), K (a, b)] = εK (K (a, b)y, x)+ K (K (a, b)x, y)

= −εδK (x, K (a, b)y)+ K (K (a, b)x, y)

= σ(x, y)K (x, y).

Hence, it is clear that σ(x, y) is a derivation of the JTS without any calculation, since
ad S is a derivation of any associative algebra.
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(ii) Similarly, by (2.10),

A(x, y)K (a, b)+ K (a, b)A(x, y) = K (A(x, y)a, b)+ K (a, A(x, y)b)

= −δK (x, K (a, b)y)− εK (K (a, b)x, y).

On the other hand, by (2.35),

θ(x, y)(K (a, b))= K (K (a, b)x, y)+ εδK (x, K (a, b)y).

Thus this means that θ(x, y)(K (a, b))=−ε{A(x, y), K (a, b)}, where {A, B} :=
AB + B A. Then the map θ(x, y) is an anti-derivation of the JTS κ induced from U .
These imply that

A(x, y){K (a, b), K (c, d), K (e, f )} + {K (a, b), K (c, d), K (e, f )}A(x, y)

= A(x, y)K (K (a, b)K (c, d)e, f )+ K (K (a, b)K (c, d)e, f )A(x, y)

− δ(A(x, y)K (K (a, b)K (c, d) f, e)+ K (K (a, b)K (c, d) f, e)A(x, y))

from the fact that any associative algebra satisfies a relation

A(BC D)+ (BC D)A = (AB + B A)C D − B(AC + C A)D + BC(AD + D A).

2.3. Simplicity. In this section, we will consider unitary (−1,−1)-FKTSs U unless
specified otherwise and the JTSs κ induced from U .

LEMMA 2.21. If U is a simple unitary (δ, δ)-FKTS, then κ has no nontrivial proper
Der κ-invariant ideal.

PROOF. Since the proof is essentially the same for both cases δ = 1 and δ =−1, we
will consider here only the case of δ =−1.

Let β 6= κ be a Der κ-invariant ideal of κ and
∑

i K (si , ti ) be an arbitrary element
of β. Since σ(x, y), which maps∑

i

K (si , ti )→
∑

i

(K (K (si , ti )x, y)− K (x, K (si , ti )y)),

is a derivation of κ , then∑
i

(K (K (si , ti )x, y)− K (x, K (si , ti )y)) ∈ β, (2.41)

for all
∑

i K (si , ti ) ∈ β, x, y ∈U. On the other hand, since Id ∈ κ , we get{∑
i

K (si , ti ), Id, K (x, y)

}
=

∑
i

(K (K (si , ti )x, y)+ K (x, K (si , ti )y)).

From the fact that
∑

i K (si , ti ) ∈ β, Id ∈ κ and β is an ideal, thus we obtain∑
i

(K (K (si , ti )x, y)+ K (x, K (si , ti )y)) ∈ β. (2.42)
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Hence, by (2.41)–(2.42), it follows that
∑

i K (K (si , ti )x, y) ∈ β. This implies that
K (βU,U )⊂ β.

We set
V := {x ∈U |K (x,U )⊂ β}. (2.43)

Then βU ⊂ V holds.
By Proposition 2.17, K (a, b)= L(a, b)+ L(b, a) and by (2.9) we can easily show

that V is an ideal of U as follows. Indeed, by (2.43), we note that K (V,U )⊂ β,
so that K (V,U )U ⊂ βU ⊂ V . Hence K (U, K (V,U )U )⊂ β, that is, for all c ∈ V ,
a, b, d ∈U , we get

K (a, K (c, d)b) ∈ β.

By (2.9),
K (abc, d)=−K (c, abd)+ K (a, K (c, d)b)

and then from

K (c, abd) ∈ K (V,U )⊂ β, K (a, K (c, d)b) ∈ β

it follows that K (abc, d) ∈ β, hence abc ∈ V , that is, for all c ∈ V implies abc ∈ V ,
for all a, b ∈U .

Also, we get
cba + abc = K (a, c)b ∈ K (U, V )U ⊂ V,

and thus
cba ∈ V since abc ∈ V, c ∈ V, a, b ∈U.

Again, by (ii),
acb + cab = K (a, c)b ∈ K (U, V )U ⊂ V .

But, for all c ∈ V and a, b ∈U, we had cba ∈ V, in particular, cab ∈ V and summing,
acb ∈ V . Therefore we get

(UU V )⊂ V, (U V U )⊂ V, (V UU )⊂ V . (2.44)

That is, V is an ideal of U . Since U is simple, either U = V or V = {0}. The case of
V =U contradicts the assumption that K (x,U )⊂ β 6= κ for all x ∈ V . It must be that
V = {0}. Hence βU = {0}. This implies β = {0}, which completes the proof. 2

PROPOSITION 2.22. Let U be a unitary (−1,−1)-FKTS over a field of
characteristic 0 and κ be the special JTS associated with U. If U is simple, then
κ is semisimple.

PROOF. Let R(κ) be the radical of the JTS κ . It is well known that R(κ) is a
derivation-invariant ideal of κ. By Lemma 2.21, we have R(κ)= 0 or R(κ)= κ .
But the case of R(κ)= κ contradicts the hypothesis of unitarity. This completes the
proof. 2
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LEMMA 2.23. Let κ be as in Proposition 2.22. If κ is semisimple, then any ideal of κ
is Der κ invariant as well as Anti-Der κ invariant.

PROOF. Assume that κ is semisimple. Then for a JTS it is well known that Der κ =
Inn Der κ .

From the fact that the set of the inner derivations of κ is the linear span of the set
{L(x, y)− L(y, x) | x, y ∈ κ}, it follows that any ideal of κ is Der κ-invariant.

Indeed, if β G κ and z ∈ β, (L(a, b)− L(b, a))z = abz − baz ∈ β, hence Dz ∈ β
for any D inner derivation, and hence for any derivation.

The case of anti-derivation is similarly straightforward, because the set of anti-
derivations is the linear span of {L(a, b)+ L(b, a)}. This completes the proof. 2

The JTS κ is called nondegenerate if K (x, y)= 0 for all y ∈U implies x = 0.

THEOREM 2.24. Let U be a unitary (−1,−1)-FKTS over a field of characteristic 0
and κ be the special JTS associated with U. Then the following are equivalent:

(i) U is simple;
(ii) κ is simple and nondegenerate.

PROOF. We first prove that (i) implies (ii). From Lemmas 2.21 and 2.23 it follows
that κ is simple. If κ is degenerate, then we can show that V = {x ∈U |K (x,U )= 0} is
a nonzero ideal of U by means of the relations K (c, d)= L(c, d)+ L(d, c) and (2.9).

Indeed, take a ∈ V, b, c, x, y ∈U. From (2.9),

K (K (a, b)x, y)− K (yxa, b)− K (a, yxb)= 0.

Then it follows by K (a, yxb)= 0 and K (K (a, b)x, y)= 0 that K (yxa, b)= 0 and
hence

yxa ∈ V .

Now from K (a, b)c = acb + bca, it follows that

acb ∈ V

since K (a, b)= 0 and bca ∈ V . Finally, from K (a, b)c = abc + bac we obtain

bac ∈ V

since K (a, b)= 0, abc ∈ V . Thus V is an ideal of U .
Since U is simple and V 6= {0} we have that V =U . Therefore we get

K (U,U )= 0, which contradicts the unitary hypothesis. Hence, κ is nondegenerate.
To prove that (ii) implies (i), let V 6= {0} be an ideal of U . We set

M := {K (x, y) | x ∈ V, y ∈U }span. (2.45)

Then by the results of Propositions 2.9 and 2.12, we can show that M is an ideal of the
JTS κ .
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Indeed, we see that for all K (x, y) ∈M, x ∈ V, y ∈U ,

{K (a, b), K (c, d), K (x, y)} = K (K (a, b)K (c, d)x, y)+ K (K (a, b)K (c, d)y, x)

and so
K (K (a, b)K (c, d)x, y) ∈M.

From
K (K (a, b)K (c, d)x, y)+ K (K (a, b)K (c, d)y, x) ∈ K (V,U ),

it follows that
{K (a, b), K (c, d), K (x, y)} ∈ K (V,U )=M.

Next, from K (a, b)x ∈ V, K (c, d)x ∈ V,

{K (a, b), K (x, y), K (c, d)}

= K (K (a, b)x, K (c, d)y)+ K (K (c, d)x, K (a, b)y) ∈ K (V,U )=M.

That is, {K (a, b), K (x, y), K (c, d)} ∈M, thus M is an ideal of κ . Since κ is simple
and nondegenerate, the above fact gives M= κ .

Observe now that K (x, y)U ⊂ V for any x ∈ V and y ∈U. Then MU ⊂ V . Since
M= κ , we get κU ⊂ V . Since U is unitary (that is, Id ∈ κ), this means that V =U.
This completes the proof. 2

REMARK 2.25. For (1, 1)-FKTSs we refer to [15].

2.4. Examples. In this section we will give several examples of (−1,−1)-FKTSs.
Let Mm,n(8) denote the vector space of m × n matrices over8 and for x ∈Mm,n(8)

denote by x> the transposed matrix.

THEOREM 2.26. Let U be the set Mk,n(8). Then U is a unitary (−1,−1)-FKTS
with respect to the product

xyz := zy>x + yx>z − xy>z, x, y, z ∈Mk,n(8).

Furthermore, this triple system is simple.

PROOF. From κ = {x>z + z>x}span = {A|A> = A, A ∈Mn,n(8)}, by means of
Theorem 2.24, straightforward calculations show that the triple system U is simple
and unitary. 2

REMARK 2.27. Hence by the methods of the standard embedding associated with
U (see Section 1 in this paper or [26]), we can obtain the standard embedding Lie
superalgebra as follows:

(i) L(U )= D(m, n), if k = 2m(m ≥ 1);
(ii) L(U )= B(m, n), if k = 2m + 1(m ≥ 0).
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EXAMPLE 2.28 [6, 26]. Let U be a balanced (−1,−1)-FKTS associated with
quaternion (octonion) algebra H (O). Then we have the construction of simple Lie
superalgebras D(2, 1 : α), F(4) and G(3) by the method of the standard embedding.
Indeed, since K (x, y)= 〈x |y〉 Id, it is clear that κ = {K (x, y)}span is one-dimensional
and so nondegenerate, hence simple.

EXAMPLE 2.29 (Counterexample [28]). For the Lie superalgebras P(n), Q(n) we
have a construction from the cases of anti-JTSs. This implies a nonunitary case of
(−1,−1)-FKTSs, since K (x, y) is identically zero.

EXAMPLE 2.30. Let A be an involutive associative algebra so that (xy)z = x(yz).
Then both xyz := (x ȳ)z − (z ȳ)x + (zx̄)y and x ◦ y ◦ z := x̄ ȳ z̄ = z(ȳx)− x(ȳz)+
y(x̄ z) are (−1,−1)-FKTSs. Moreover, if there exists a f ∈ A satisfying f f̄ = e =
identity element of A, then this (−1,−1)-FKTS is unitary.

Let γ be the trace form of (−1,−1)-FKTS given by

γ (x, y) := 1
2 Tr[2(R(x, y)+ R(y, x))+ L(x, y)+ L(y, x)] (2.46)

where Tr denotes the trace and let us calculate it for our previous examples.

In the case of Theorem 2.26, straightforward calculations give γ (x, y)= cx,y(2n +
2− k) for some cx,y ∈8.

In the case of D(2, 1; α), we obtain γ (x, y)= (4− N )〈x |y〉, for N = dim U , and
K (x, y)= 〈x |y〉 Id.

REMARK 2.31. By [16], the Killing form α(t, s) of an anti-LTS is given by

α(t, s)= 1
2 Tr(R(t, s)− R(s, t)), (2.47)

where R(x, y)z = [zxy]. We note that this formula is a variation of the case of an LTS
trace form (= Killing form) α(t, s) defined by

α(t, s)= 1
2 Tr(R(t, s)+ R(s, t)). (2.48)

PROPOSITION 2.32 [16]. For the Killing forms (= bilinear trace forms) of the
(−1,−1)-FKTS, the anti-LTS, and the Lie superalgebra:

(i) α(( a
b ), (

c
d ))= γ (c, b)− γ (d, a);

(ii) α(x, y)= β(y, x),

where β(x, y) is the Killing form of the standard embedding Lie superalgebra
associated with their triple systems.

REMARK 2.33. For k = 2(n + 1), that is, m = n + 1 in Theorem 2.26, from the above
results, the standard embedding Lie superalgebra D(n + 1, n) is degenerate. For
N = 4 in the first example, similarly, D(2, 1; α) is degenerate.

REMARK 2.34. Let U be a (−1,−1)-FKTS and γ :U ×U →8 be the trace form
given by (2.46). If γ is nondegenerate, then U is a direct sum of simple ideals (to be
shown elsewhere).
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3. δ-structurable algebras

The motivation for the study of such nonassociative algebras is as follows. The
existence of the class of nonassociative algebras called structurable algebras is an
important generalization of Jordan algebras giving a construction of Lie algebras.
Hence from our concept, by means of triple products, we define a generalization of
such class to construct Lie superalgebras as well as Lie algebras.

Our start point briefly described in a historical setting is the construction of Lie
(super)algebras starting from a class of nonassociative algebras. Hence within the
general framework of (ε, δ)-FKTSs (ε, δ =±1) and the standard embedding Lie
(super)algebra construction studied in [6, 7, 13–15, 28] (see also references therein)
we define δ-structurable algebras as a class of nonassociative algebras with involution
which coincides with the class of structurable algebras for δ = 1 as introduced and
studied in [1, 2]. Structurable algebras are a class of nonassociative algebras with
involution that include Jordan algebras (with trivial involution), associative algebras
with involution, and alternative algebras with involution. They are related to GJTSs
of second order (or (−1, 1)-FKTSs) as introduced and studied in [31, 32] and further
studied in [3, 4, 30, 39–42, 45] (see also references therein). Their importance lies
with constructions of five graded Lie algebras

L(ε, δ)= L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, [L i , L j ] ⊆ L i+ j . (3.1)

For δ =−1 the anti-structurable algebras defined here are a new class of non-
associative algebras that may similarly shed light on the notion of (−1,−1)-FKTSs,
hence (by [6, 7]) on the construction of Lie superalgebras and Jordan algebras as will
be shown.

Let (A,−) be a finite-dimensional nonassociative unital algebra with involution
(involutive anti-automorphism, that is, x = x, xy = y x, x, y ∈A) over 8. The
identity element of A is denoted by 1. Since char 8 6= 2, by [1] we have A=H⊕ S ,
where H= {a ∈A|a = a} and S = {a ∈A|a =−a}.

Suppose that x, y, z ∈A. Put [x, y] := xy − yx and [x, y, z] := (xy)z − x(yz).
Note that

[x, y, z] = −[z, y, x]. (3.2)

The operators Lx and Rx are defined by Lx (y) := xy, Rx (y) := yx .
For δ =±1 and x, y ∈A define

δVx,y := L Lx (y) + δ(Rx Ry − Ry Rx ), (3.3)
δBA(x, y, z) :=δ Vx,y(z)= (x y)z + δ[(zy)x − (zx)y], x, y, z ∈A. (3.4)

+BA(x, y, z) is called the triple system obtained from the algebra (A,−). We will call
−BA(x, y, z) the anti-triple system obtained from the algebra (A,−). We shall write

Vx,y :=
δVx,y, BA := (

δBA, A). (3.5)
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REMARK 3.1. The upper left index notation is chosen in order to avoid confusion
with the upper right index notation of [1] which has a different meaning.

A unital nonassociative algebra with involution (A,−) is called a structurable
algebra if the identity

[Vu,v, Vx,y] = VVu,v(x),y − Vx,Vv,u(y) (3.6)

is satisfied for Vu,v =
+Vu,v, Vx,y =

+Vx,y, u, v, x, y ∈A, and we will call (A,−) an
anti-structurable algebra if the identity (3.6) is satisfied for Vu,v =

−Vu,v, Vx,y =
−Vx,y .

If (A,−) is structurable then, in the terminology of [32], the triple system BA is
called a generalized Jordan triple system and by [8], BA is a GJTS of second order,
that is, satisfies the identities (2.4) and (2.5). If (A,−) is anti-structurable then we
call BA an anti-GJTS.

Put Tx := Vx,1 for x ∈A. Then, by (3.3),

Tx = Lx + δRx−x (3.7)

for x ∈A. In particular, Th = Lh for h ∈H.

REMARKS. (i) If u = h ∈H and x, y ∈A, (3.6) becomes

[Lh, Vx,y] = Vhx,y − Vx,hy . (3.8)

Identity (3.8) written in element form is

((hx)y)z − h((x y)z)+ δ[((hz)y)x − h((zy)x)− ((hz)x)y + h((zx)y)]
= (x(yh))z − (x y)(hz)+ δ[(z(yh))x
− (zy)(hx)+ (z(xh))y − (zx)(hy)],

(3.9)

for x, y, z ∈A.
(ii) Suppose that − is the identity map and hence that A is commutative. If (A,−)

is δ-structurable then A is a Jordan algebra, by [22]. Conversely, by [36, Section 3],
any Jordan algebra satisfies (3.8) if Vx,y =

+Vx,y for x, y ∈A, hence it is structurable.
Thus, by (3.9), any Jordan algebra is anti-structurable if it satisfies

((hx)y)z − h((xy)z)= (x(yh))z − (xy)(hz) (3.10)

for h, x, y, z ∈A. Using commutativity, then (3.10) for example can be written
[x, h, y]z = [xy, z, h]. Clearly, (3.10) is satisfied by an associative algebra.

(iii) If x ∈A and Tx (1)= 0 then x = 0, by [22].
For s ∈ S and h ∈H we say that (A,− ) is S skew-alternative if [s, x, y] =

−[x, s, y] while (A,−) is H skew-alternative if [h, x, y] = −[x, h, y] for x, y ∈A.
We remark that if (A,−) is S skew-alternative then by [1, Section 1],

[s, x, y] = −[x, s, y] = [x, y, s], s ∈ S, x, y ∈A, (3.11)

while if (A,−) is H skew-alternative then by (3.2),

[h, x, y] = −[x, h, y] = [x, y, h], h ∈H, x, y ∈A. (3.12)
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PROPOSITION 3.2 [22]. If (A,−) is structurable, then (A,−) is S skew-alternative. If
(A,−) is anti-structurable, then (A,−) is H skew-alternative.

REMARKS. (i) If (A,−) is anti-structurable then (3.12) is valid symmetrically with
respect to x and y, by [22].

(ii) Let (A,−) be a δ-structurable algebra and let Der(A,−) be the set of derivations
of A that commute with −. By Remark (iii) above TA ∩ Der(A,−)= 0 and so we
may define the structure algebra Str(A,−) := TA ⊕ Der(A,−). This algebra plays an
important role in the structure study of structurable algebras [1] and may play a role in
the structure study of anti-structurable algebras (theory to be presented elsewhere).

3.1. Examples. For examples of structurable algebras we refer to [1, 2].

REMARK 3.3. Let (B,U ) and (B ′,U ′) be two triple systems. We say that a
linear map µ of U into U ′ is a homomorphism if µ satisfies µ(B(x, y, z))=
B ′(µ(x), µ(y), µ(z)), x, y, z ∈U . Moreover, if µ is bijective, then µ is called an
isomorphism. In this case (B,U ) and (B ′,U ′) are said to be isomorphic.

Let (A,− ) be a unital nonassociative algebra over 8 with involution − and let
(Aop,− ) denote the opposite algebra, that is, the algebra with multiplication defined by
x ·op y = yx, x, y ∈ A, where in the right-hand side of the equality the multiplication
is done in A. The algebras (A,− ) and (Aop,− ) are isomorphic under the map x 7→ x
(this is true for any algebra with involution). Let us define

δV op
x,y := RRx (y) + δ(Lx L y − L y Lx ), (3.13)

δBop
A (x, y, z) :=δ V op

x,y(z)= z(yx)+ δ[x(yz)− y(xz)], x, y, z ∈A. (3.14)

Then A is a δ-structurable algebra if and only if Aop is a δ-structurable algebra since
clearly, Bop

A is the triple system obtained from the algebra (Aop,− ), and so BA and
Bop

A are isomorphic under the map x 7→ x , by (3.4) and (3.14).

EXAMPLES. Let Mm,n(8) denote the vector space of m × n matrices over 8 and for
x ∈Mm,n(8) denote by x> the transposed matrix.

(i) Mm,n(8) with the product

{x, y, z} := xy>z + δ(zy>x − zx>y), (3.15)

where x, y, z ∈Mm,n(8), is a (−1, δ)-FKTS. Indeed, straightforward calcula-
tions show that (2.4) and (2.5) hold. Hence Mn,n(8) with the involution x 7→ x>

is a δ-structurable algebra.
(ii) Mm,n(C) with the product

{x, y, z} := x y>z + δ(zy>x − zx>y),

where x, y, z ∈Mm,n(C), is a (−1, δ)-FKTS. Indeed, straightforward calcula-
tions show that (2.4) and (2.5) hold so Mn,n(C) with the involution x 7→ x> is a
δ-structurable algebra.
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REMARK 3.4. By [28], the following construction of Lie superalgebras is obtained
by the standard embedding method. If U (−1,−1) :=M2n,m(8) with the product
(3.15) then the corresponding standard embedding Lie superalgebra is osp(2n|2m)=
D(n, m) (as defined by [12] and [9]), hence the standard embedding Lie superalgebra
of the anti-structurable algebra M2n,2n(8) is osp(2n|4n). Similarly, if U (−1,−1) :=
M2n+1,m(8) with the product (3.15) then the corresponding standard embedding Lie
superalgebra is osp(2n + 1|2m)= B(n, m) (as defined by [12] and [9]), hence the
standard embedding Lie superalgebra of the anti-structurable algebra M2n+1,2n+1(8)

is osp(2n + 1|4n + 2). Furthermore, the construction of these Lie superalgebras
and the correspondence with extended Dynkin diagrams is the subject of the next
section. The structure theory of anti-structurable algebras their Peirce decomposition
(in analogy with [21, 35]) will form the subject of future work.

3.2. Anti-structurable algebras and extended Dynkin diagrams. In this section
we will deal with a correspondence of anti-structurable algebras and extended Dynkin
diagrams.

Let U :=Ml,l(8) with the product (3.15) and δ =−1, that is,

{x, y, z} := xy>z − zy>x + zx>y. (3.16)

Then from the previous section this triple system is an anti-structurable algebra and
a simple unitary (−1,−1)-FKTS by means of a variation of Theorem 2.26 (κ is
simple and nondegenerate). Hence by the methods of standard embedding associated
with U we can obtain the standard embedding Lie superalgebra from the following
proposition; the Lie (super)algebras notations and extended Dynkin diagrams are those
of [9].

PROPOSITION 3.5. Let (U, { }),U =Ml,l(8), be a simple unitary (−1,−1)-
FKTS defined by formula (3.16) and L(U )=

⊕2
l=−2 Ll be the corresponding

standard embedding Lie superalgebra. Then L(U ), L−2 ⊕ L0 ⊕ L2, L0 and the
corresponding extended Dynkin diagrams with ⊗ roots deleted are

(i)


L(U )= B(n, l)

L−2 ⊕ L0 ⊕ L2 = Cl ⊕ Bn for l = 2n + 1,

L0 = Al−1 ⊕ Bn ⊕8H

◦

α0

> ◦

α1

. . . ◦

α2n

⊗

α2n+1

. . . ◦

α3n

> ◦

α3n+1

(ii)


L(U )= D(n, l)

L−2 ⊕ L0 ⊕ L2 = Cl ⊕ Dn, for l = 2n.

L0 = Al−1 ⊕ Dn ⊕8H
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◦

α0

> ◦

α1

. . . ◦

α2n−1

⊗

α2n

. . . ◦

α3n−2

�
�
�

Q
Q
Q

◦

α3n−1

◦

α3n

REMARK 3.6. These results mean that the correspondence between anti-structurable
algebras and extended Dynkin diagrams is a useful concept for the structure theory of
triple systems.

Finally, we state a conjecture.

CONJECTURE 3.7. Let U :=M p,q(8) and L(U )=
⊕2

l=−2 Ll be the standard
embedding Lie superalgebras of type (i) B(m, n) or (ii) D(m, n). Then there exist
5-tuples (p, q, k, m, n) ∈ N5 such that:

(i) pq = 2(n + m − k)k + n, where 1≤ k ≤ n + m;
(ii) pq = 2(n + m − k)k + n − k, where 1≤ k ≤ n + m − 1.

These extended Dynkin diagrams with ⊗ roots deleted are

(i) ◦

α0

> ◦

α1

. . . ◦

αk−1

⊗

αk

. . . ◦

αn+m−1

> ◦

αn+m

(ii) ◦

α0

> ◦

α1

. . .◦

αk−1

⊗

αk

. . . ◦

αn+m−2

�
�
�

Q
Q
Q

◦

αn+m−1

◦

αn+mhence we have:

(i) L−2 ⊕ L0 ⊕ L2 = Ck ⊕ Bn+m−k ;
(ii) L−2 ⊕ L0 ⊕ L2 = Ck ⊕ Dn+m−k .
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