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Abstract

In this paper, some new coincidence point theorems in continuous function spaces are presented. We
show the hybrid mapping version and multivalued version of both Lou’s fixed point theorem (Proc. Amer.
Math. Soc. 127 (1999)) and de Pascale and de Pascale’s fixed point theorem (Proc. Amer. Math. Soc.
130 (2002)). Our new results encompass a number of previously known generalizations of the theorems.
Two examples are presented.
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1. Introduction

Let E be a Banach space equipped with the norm ‖ · ‖E , I = [0, T ] for T > 0. Here
C(I, E) denotes the Banach space consisting of all continuous mappings from I
into E with norm ‖u‖C =max{‖u(t)‖E : t ∈ [0, T ]} for u ∈ C(I, E). In 1999, Lou
[5, Corollary 2.1] proved a fixed point theorem in continuous function spaces. Using
the notion of K -normed spaces, de Pascale and de Pascale in [2, Corollary 2.2] proved
a similar fixed point theorem. Then, de Pascale and Zabreiko gave a generalization
result in [3]. Recently, Suzuki [6] presented simple proofs for the above theorems.

In this paper, we present some new coincidence point theorems in continuous
function spaces. These results have both a hybrid mapping version and a multivalued
version of the previous fixed point theorems in [2, 5] and encompass a number of
previously known generalizations of the theorems in [1, 5, 6]. In the final section, two
examples are presented to illustrate the effectiveness of our results.
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2. Main results

In this section, we show two generalizations of Lou’s fixed point theorem in [5] and
de Pascale and de Pascale’s result in [2]. First, we give a coincidence point theorem
for two self-mappings in continuous function spaces.

2.1. Hybrid-map version for Lou’s fixed point theorem

THEOREM 2.1. Let F be a nonempty closed subset of C(I, E) and A, B : F→ F two
operators. If there exist α, β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F and t ∈ I \ {0},

‖Au(t)− Av(t)‖E ≤ β‖Bu(t)− Bv(t)‖E +
K

tα

∫ t

0
‖Bu(s)− Bv(s)‖E ds. (2.1)

If B F is a closed subset of F and AF ⊂ B F, then A and B have a coincidence
point. Furthermore, if A or B is injective and AB = B A, then A and B have a unique
common fixed point.

PROOF. For any given x0 ∈ F , set y0 = Bx0, since AF ⊂ B F , there is x1 ∈ F such
that Bx1 = Ax0, and set y1 = Bx1. For x1, there is x2 ∈ F such that y2 = Bx2 = Ax1.
We continue this process to obtain a sequence {yn} in F such that

xn ∈ F and yn = Bxn = Axn−1, n = 1, 2, . . . . (2.2)

Using the equivalent norm method [6], we prove that the sequence {yn} is a Cauchy
sequence with respect to norm ‖ · ‖C . First, we choose a τ ∈ (0, T ] such that

β + K τ 1−α < 1

and define a decreasing function f from I into (0, 1] by

f (t)=

{
1 if t ∈ (0, τ ],

e1−t/τ if t ∈ (τ, T ].

Define another norm ‖ · ‖1 in C(I, E) by

‖u‖1 =max{ f (t)‖u(t)‖E : t ∈ I } ∀u ∈ C(I, E).

Then the two norms ‖ · ‖C and ‖ · ‖1 are equivalent.
Next, we prove that {yn} is a Cauchy sequence with respect to the norm ‖ · ‖1. Set

an(t)= ‖yn+1(t)− yn(t)‖E and an = ‖yn+1 − yn‖1.

Following (2.1) and (2.2),

an+1(t)≤ βan(t)+
K

tα

∫ t

0
an(s) ds.
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If t ∈ (0, τ ], since an(t)≤ an ,

f (t)an+1(t)= an+1(t)≤ βan + K τ 1−αan = (β + K τ 1−α)an.

If t ∈ (τ, T ], since an(t)≤ e−1+t/τan ,∫ t

0
an(s) ds =

∫ τ

0
an(s) ds +

∫ t

τ

an(s) ds ≤ τe−1+t/τan.

Thus,
f (t)an+1(t)= e1−t/τan+1(t)≤ (β + K τ 1−α)an.

Then, for t ∈ (0, T ],
f (t)an+1(t)≤ (β + K τ 1−α)an.

This implies an+1 ≤ (β + K τ 1−α)an . So

an+1 ≤ (β + K τ 1−α)n+1a0.

Then {yn} is a Cauchy sequence with respect to the norm ‖ · ‖1 for β + K τ 1−α < 1.
Thus, {yn} is a Cauchy sequence with respect to the norm ‖ · ‖C . Then there is a point
y ∈ F such that

lim
n→∞

Axn = lim
n→∞

Bxn = y.

Since B F is a closed subset of F and y ∈ B F , then there exists a u ∈ F such that
y = Bu. We claim that y = Au. In fact, by (2.1),

‖Au(t)− Axn(t)‖E ≤ β‖Bu(t)− Bxn(t)‖E +
K

tα

∫ t

0
‖Bu(s)− Bxn(s)‖E ds

= β‖y(t)− Bxn(t)‖E +
K

tα

∫ t

0
‖y(s)− Bxn(s)‖E ds

≤ (β + K T 1−α)‖y − Bxn‖C .

Thus, y = Au and u is a coincidence point of A and B.
Now we prove the uniqueness of the coincidence point. Without loss of generality,

we suppose that B is injective. If both u and v (u 6= v) are the coincidence points of A
and B, then Au = Bu, Av = Bv and Bu 6= Bv. Following (2.1),

‖Au(t)− Av(t)‖E ≤ β‖Bu(t)− Bv(t)‖E +
K

tα

∫ t

0
‖Bu(s)− Bv(s)‖E ds.

Based on the above arguments, it is easy to see that

‖Bu − Bv‖1 = ‖Au − Av‖1 ≤ (β + K τ 1−α)‖Bu − Bv‖1.

This is impossible. Thus, the coincidence point of A and B is unique.
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Noting that y = Au = Bu and AB = B A,

Ay = ABu = B Au = By.

Thus y is also the coincidence point of A and B. Then y = u for the uniqueness.
This means

u = Au = Bu.

So u is the unique common fixed point of A and B. This completes the proof of
Theorem 2.1. 2

Let I = [η,∞) for η > 0, BC(I, E) be a Banach space consisting of all bounded
continuous mappings from I into E with the norm ‖u‖B =max{‖u(t)‖E : t ∈ [η,∞)}
for u ∈ BC(I, E). In a similar way to Theorem 2.1, we have the following result.

THEOREM 2.2. Let F be a nonempty closed subset of BC(I, E) and A, B : F→ F
two operators. If there exist α ∈ (1,∞), β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F
and t ∈ I ,

‖Au(t)− Av(t)‖E ≤ β‖Bu(t)− Bv(t)‖E +
K

tα

∫ t

η

‖Bu(s)− Bv(s)‖E ds. (2.3)

If B F is a closed subset of F and AF ⊂ B F, then A and B have a coincidence
point. Furthermore, if A or B is injective and AB = B A, then A and B have a unique
common fixed point.

PROOF. Following the proof of Theorem 2.1, we choose a sequence {yn} in F such
that

xn ∈ F and yn = Bxn = Axn−1, n = 1, 2, . . . . (2.4)

Next, we choose two constants τ ≥ η and c > 0 such that

β +
K

cηα
+ K τ 1−α < 1

and define a nonincreasing function f1 from I into (0, 1] by

f1(t)=

{
e−ct if t ∈ (η, τ ],

e−cτ if t ∈ (τ,∞).

Define another norm ‖ · ‖2 in BC(I, E) by

‖u‖2 =max{ f1(t)‖u(t)‖E : t ∈ I } ∀u ∈ BC(I, E).

Then the two norms ‖ · ‖B and ‖ · ‖2 are equivalent.
Set

an(t)= ‖yn+1(t)− yn(t)‖E and an = ‖yn+1 − yn‖2,
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then we have

an+1(t)≤ βan(t)+
K

tα

∫ t

η

an(s) ds.

If t ∈ (η, τ ], since an(t)≤ ect an ,∫ t

η

an(s) ds ≤
∫ t

η

ecsan ds ≤
ect

c
an.

Thus,

f1(t)an+1(t)= e−ct an+1(t)≤ βan +
K

cηα
an =

(
β +

K

cηα

)
an.

If t ∈ (τ,∞), since an(t)≤ ecτan ,∫ t

η

an(s) ds =
∫ τ

η

an(s) ds +
∫ t

τ

an(s) ds ≤

(
1
c
+ t

)
ecτan.

Thus,

f1(t)an+1(t) = e−cτan+1(t)≤ e−cτ
(
βan(t)+

K

tα

∫ t

η

an(s) ds

)
≤

(
β +

K

cηα
+ K τ 1−α

)
an.

Then, for t ∈ [η,∞),

f1(t)an+1(t)≤

(
β +

K

cηα
+ K τ 1−α

)
an.

This implies an+1 ≤ (β + K/cηα + K τ 1−α)an . So

an+1 ≤

(
β +

K

cηα
+ K τ 1−α

)n+1

a0.

Thus, {yn} is a Cauchy sequence with respect to the norm ‖ · ‖2 for β + K/cηα +
K τ 1−α < 1. Then {yn} is a Cauchy sequence with respect to the norm ‖ · ‖B .
Therefore, there is a point y ∈ F such that

lim
n→∞

Axn = lim
n→∞

Bxn = y.

Similarly, we have y ∈ B F and there exists a u ∈ F such that y = Bu. We prove
y = Au. In fact, by (2.3),

‖Au(t)− Axn(t)‖E ≤ β‖Bu(t)− Bxn(t)‖E +
K

tα

∫ t

η

‖Bu(s)− Bxn(s)‖E ds.
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This implies

‖Au − Axn‖B ≤

(
β +

K

ηα−1

)
‖y − Bxn‖B .

Thus, y = Au and u is a coincidence point of A and B.
A similar argument to that used in Theorem 2.1 shows the existence and uniqueness

of common fixed point of A and B. This completes the proof of Theorem 2.2. 2

In order to investigate the existence of solutions of functional differential equations
by using fixed point theorems in continuous function spaces, we consider the Banach
space C[[−σ, 0], E] for some σ > 0 with supremum norm. For I = [0, T ] and
ϕ ∈ C[[−σ, 0], E], define a closed subset as F = {u ∈ C[I, E] | u(0)= ϕ(0)}. Then
following similar arguments as in Theorem 2.1, we obtain a useful result. We omit the
details of the proof.

THEOREM 2.3. Let F be given as above, A : F→ F be an operator. For any u, v ∈ F
and t ∈ [−σ, 0], define u(t)= v(t)= ϕ(t), if there exist α, β ∈ [0, 1), K ≥ 0 such that
for t ∈ I \ {0},

‖Au(t)− Av(t)‖E ≤ β sup
s∈[−σ,0]

{‖u(t + s)− v(t + s)‖E }

+
K

tα

∫ t

0
‖u(s)− v(s)‖E ds.

Then A has a unique fixed point.

COROLLARY 2.4 (Lou [5]). Let I = [0, T ], F be a nonempty closed subset of
C(I, E) and A : F→ F an operator. If there exist α, β ∈ [0, 1), K ≥ 0 such that
for any u, v ∈ F and t ∈ I \ {0},

‖Au(t)− Av(t)‖E ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

0
‖u(s)− v(s)‖E ds.

Then A has a unique fixed point.

COROLLARY 2.5 (de Pascale and de Pascale [2]). Let I = [η,∞), F be a nonempty
closed subset of BC(I, E) and A : F→ F an operator. If there exist α ∈ [1,∞),
β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F and t ∈ I ,

‖Au(t)− Av(t)‖E ≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

η

‖u(s)− v(s)‖E ds.

Then A has a unique fixed point.

2.2. Multivalued version for Lou’s fixed point theorem Let (X, d) be a metric
space, for x ∈ X , A ⊂ X , define D(x, A)= inf{d(x, y), y ∈ A}. We denote C B(X)
as the class of all nonempty bounded closed subsets of X . Let H be the Hausdorff
metric with respect to d , that is, H(A, B)=max{supx∈A D(x, B), supy∈B D(y, A)}
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for every A, B ∈ C B(X). Then we have the following multivalued coincidence
point theorem, which can be regarded to some extent as a multivalued version of
Lou’s theorem.

THEOREM 2.6. For I = [0, T ], let F be a nonempty closed subset of C(I, E), A :
F→ C B(F) a multivalued operator and B : F→ F a single-valued operator. If there
exist α, β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F and t ∈ I \ {0},

H(Au, Av)≤ β‖Bu(t)− Bv(t)‖E +
K

tα

∫ t

0
‖Bu(s)− Bv(s)‖E ds. (2.5)

If B F is a closed subset of F and AF ⊂ B F, then A and B have a coincidence point.

PROOF. First, we choose a τ ∈ (0, T ] such that β + K τ 1−α < 1. Set λ= β + K τ 1−α .
Following the method in [4], we construct a fixed point iteration sequence in F .
For any given x0 ∈ F , by virtue of AF ⊂ B F , there is an x1 ∈ F such that y1 =

Bx1 ∈ Ax0. Since Ax0 and Ax1 are closed sets and y1 ∈ Ax0, we can find y2 ∈ Ax1
such that

‖y1 − y2‖C ≤ H(Ax0, Ax1)+ λ.

Using AF ⊂ B F again, for x1 ∈ F , there exists an x2 such that Bx2 = y2 ∈ Ax1,
then we choose y3 ∈ Ax2 satisfying

‖y2 − y3‖C ≤ H(Ax1, Ax2)+ λ
2,

and y3 = Bx3 for some x3 ∈ F .
We continue this process to obtain a sequence {yn} in F such that

yn = Bxn ∈ Axn−1 and ‖yn+1 − yn‖C ≤ H(Axn−1, Axn)+ λ
n,

n = 1, 2, . . . .

Let bn = ‖yn − yn+1‖1 and bn(t)= ‖yn(t)− yn+1(t)‖E , where ‖ · ‖1 has been
defined in the proof of Theorem 2.1, then

‖yn+2 − yn+1‖C ≤ H(Axn+1, Axn)+ λ
n+1

≤ βbn(t)+
K

tα

∫ t

0
bn(s) ds + λn+1.

If t ∈ (0, τ ], since bn(t)≤ bn ,

f (t)‖yn+2 − yn+1‖C = ‖yn+2 − yn+1‖C ≤ (β + K τ 1−α)bn + λ
n+1.

If t ∈ (τ, T ], since bn(t)≤ e−1+t/τbn ,∫ t

0
bn(s) ds =

∫ τ

0
bn(s) ds +

∫ t

τ

bn(s) ds ≤ τe−1+t/τbn.
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Thus,

f (t)‖yn+2 − yn+1‖C = e1−t/τ
‖yn+2 − yn+1‖C ≤ (β + K τ 1−α)bn + λ

n+1.

Then, for t ∈ (0, T ],

f (t)‖yn+2 − yn+1‖C ≤ (β + K τ 1−α)bn + λ
n+1.

This implies
bn+1 ≤ (β + K τ 1−α)bn + λ

n+1
= λbn + λ

n+1.

So
bn+1 ≤ λ

n+1(b0 + n + 1) ∀n = 0, 1, 2, . . . .

It is easy to show limn→∞ bn = 0.
For any ε > 0, we choose a sufficiently large number N such that

λN (b0 + N )≤
ε(1− λ)

2
, λN

≤
ε(1− λ)2

4
.

Thus, for any positive integer k, we obtain

‖yN − yN+k‖1 ≤

k−1∑
i=0

bN+i ≤

k−1∑
i=0

λN+i (b0 + N + i)

<
λN (b0 + N )

1− λ
+ λN

k−1∑
i=0

iλi

<
λN (b0 + N )

1− λ
+

2λN

(1− λ)2
≤ ε.

This means that {yn} is a Cauchy sequence with respect to the norm ‖ · ‖1. Thus, {yn}

is a Cauchy sequence with respect to the norm ‖ · ‖C .
Let limn→∞ yn = y ∈ F . By virtue of B F being a closed set, we have y = Bu for

some u ∈ F . We claim that Bu ∈ Au. Indeed, condition (2.5) implies that

H(Au, Axn) ≤ β‖Bu(t)− yn(t)‖E +
K

tα

∫ t

0
‖Bu(s)− yn(s)‖E ds

≤ (β + K T 1−α)‖Bu − yn‖C .

Since yn ∈ Axn−1, we obtain

D(Au, yn+1)≤ H(Au, Axn)≤ (β + K T 1−α)‖Bu − yn‖C .

Thus, D(Au, y)= 0. This means Bu = y ∈ Au. Hence, A and B have a coincidence
point u. This completes the proof. 2
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Using the same technique as in Theorems 2.2 and 2.6, we obtain the following
multivalued coincidence point theorem.

THEOREM 2.7. For I = [η,∞) and η > 0, let F be a nonempty closed subset of
BC(I, E), A : F→ C B(F) a multivalued operator and B : F→ F is a single-valued
operator. If there exist α > 1, β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F and t ∈ I ,

H(Au, Av)≤ β‖Bu(t)− Bv(t)‖E +
K

tα

∫ t

η

‖Bu(s)− Bv(s)‖E ds.

If B F is closed subset of F and AF ⊂ B F, then A and B have a coincidence point.

Let B = I d|F in Theorem 2.6, we obtain a generalization of the multivalued
contraction principle established by Covitz in [1].

COROLLARY 2.8. Let F be a nonempty closed subset of C(I, E) and A : F
→ C B(F) a multivalued operator. If there exist α, β ∈ [0, 1), K ≥ 0 such that for
any u, v ∈ F and t ∈ I \ {0},

H(Au, Av)≤ β‖u(t)− v(t)‖E +
K

tα

∫ t

0
‖u(s)− v(s)‖E ds.

Then A has a fixed point.

3. Some applications

EXAMPLE 3.1. Consider the existence of solutions of the following differential
equations with distributed delay:[

x(t)−
∫ 0

−τ

k(s)x(t + s) ds

]′
= f

(
t,
∫ t

0
h(t, s)x(s) ds

)
, (3.1)

where t ∈ I = [0, T ] for T > 0, τ > 0, f ∈ C[I × Rn, Rn
], h ∈ C[�, Rn×n

],
�= {(t, s) ∈ I 2

| 0≤ s ≤ t ≤ T } and k ∈ C[I, Rn×n
] with

∫ 0
−τ
|k(s)| ds = k < 1.

x(t)= ϕ(t) for t ∈ [−τ, 0] and ϕ ∈ C[[−τ, 0], Rn
].

(F1) There exists a constant R such that, for any u, v ∈ Rn ,

| f (t, u)− f (t, v)| ≤ R|u − v|.

THEOREM 3.2. Suppose that (F1) holds, then (3.1) has a unique solution on I .

PROOF. We transfer the existence of solutions of (3.1) into a fixed point problem. Let
F = {u ∈ C[I, Rn

] | u(0)= ϕ(0)}, define A : F→ F by

Au(t) = ϕ(0)−
∫ 0

−τ

k(s)ϕ(s) ds +
∫ 0

−τ

k(s)u(t + s) ds

+

∫ t

0
f

(
s,
∫ s

0
h(s, r)u(r) dr

)
ds,
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where u(t)= ϕ(t) for t ∈ [−τ, 0]. Then (3.1) has the solution

S(t)=

{
u(t) if t ∈ I,

ϕ(t) if t ∈ [−τ, 0],

if and only if u(t) is the fixed point of A. Furthermore, by direct computation,

|Au(t)− Av(t)| ≤ k sup
s∈[−τ,0]

{|u(t + s)− v(t + s)|} + Rh
∫ t

0
|u(s)− v(s)| ds,

where h =max{|h(t, s)| : (t, s) ∈�}. Take α = 0, β = k and K = Rh, then
Theorem 2.3 shows that A has exactly one fixed point u in C[I, Rn

]. Thus, (3.1)
has a unique solution S(t). This completes the proof. 2

Next we consider an example presented by Lou in [5] to see that one of the
restrictions in [5] is not necessary.

EXAMPLE 3.3. Consider the integro-differential equation of mixed type:

x ′(t)= f (t, x, T x, Sx), t ∈ I = [0, 1], x(0)= x0, (3.2)

where f ∈ C[I × R1
× R1

× R1, R1
], x0 ∈ R1 and

T x(t)=
∫ t

0
k(t, s)x(s) ds, Sx(t)=

∫ 1

0
h(t, s)x(s) ds

with k ∈ C[�, R+], �= {(t, s) ∈ I 2
| 0≤ s ≤ t ≤ 1}, h ∈ C[I × I, R+].

First, we establish the existence of minimal and maximal solution of problem (3.2)
and list Lou’s conditions [5] as follows.

(H1) There exist p, q ∈ C[I, R1
], p(t)≤ q(t) (t ∈ I ) such that

p′ ≤ f (t, p, T p, Sp), p(0)≤ x0; q ′ ≥ f (t, q, T q, Sq), q(0)≥ x0.

(H2) There exist M > 0 and Q, R ≥ 0 such that

f (t, x, u, v)− f (t, x, u, v)≤−M(x − x)− R(u − u)− Q(v − v)

for t ∈ I , p(t)≤ x ≤ x ≤ q(t), T p(t)≤ u ≤ u ≤ T q(t) and Sp(t)≤ v ≤ v
≤ Sq(t).

THEOREM 3.4. Suppose that (H1) and (H2) hold. Then there exist monotone
sequences {pn}, {qn} ⊂ C1

[I, R1
] such that

p(t)= p0(t)≤ p1(t)≤ · · · ≤ pn(t)≤ · · · ≤ qn(t)≤ · · · ≤ q1(t)≤ q0(t)= q(t)

and pn(t)→ x∗(t), qn(t)→ x∗(t) as n→∞ uniformly in t ∈ I , x∗, x∗ ∈ C1
[I, R1

].
Moreover, x∗ and x∗ are the minimal and maximal solutions of (3.2) on the interval
[p, q], respectively.
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PROOF. Set U = {η ∈ C[I, R1
] | p ≤ η ≤ q}. For any η ∈U , consider the linear

equation

x ′(t)= σ(t)− Mx(t)− RT x(t)− QSx(t), x(0)= x0, (3.3)

where σ(t)= f (t, η(t), Tη(t), Sη(t))+ Mη(t)+ RTη(t)+ QSη(t). Then x
∈ C1
[I, R1

] is a solution of (3.3) if and only if x ∈ C[I, R1
] is a solution of

integral equation

x(t)= e−Mt
{

x0 +

∫ t

0
eMs(σ (s)− RT x(s)− QSx(s)) ds

}
≡ Ax(t).

Noting that both T and S are linear bounded operators, we see that, for any x ,
y ∈ C[I, R1

], by direct computation,

|Ax(t)− Ay(t)| =

∣∣∣∣∫ t

0
eM(s−t)

[RT (y(s)− x(s))+ QS(y(s)− x(s))] ds

∣∣∣∣
≤ K

∫ t

0
|x(s)− y(s)| ds.

Take α = β = 0 and K = R‖T ‖ + Q‖S‖, by Theorem 2.1, we conclude that A has a
unique fixed point in C[I, R1

], that is, (3.3) has exactly one solution in C1
[I, R1

].
Thus, for η(t)= p(t), then (3.3) has exactly one solution x p(t) in C1

[I, R1
], which

is the lower solution of (3.2). Set p1(t)= x p(t). By the comparison principle of
ordinary differential equations, we have p(t)≤ p1(t). Similarly, for η(t)= p1(t), we
obtain the unique solution p2(t) of (3.3) with p1(t)≤ p2(t). Continuing this process,
we obtain an increasing sequence {pn} ⊂ C1

[I, R1
] such that all pn(t) (n = 0, 1, . . .)

are the lower solutions of (3.2). Similarly, starting from q(t), we obtain a decreasing
sequence {qn} ⊂ C1

[I, R1
] such that all qn(t) (n = 0, 1, . . .) are the upper solutions

of (3.2). Then it is easy to obtain the conclusions of Theorem 3.4. This completes
the proof. 2

REMARK 3.5. In Theorem 3.4, we may remove the assumption

(Rk0 + Qh0)(e
M
− 1)≤ M, Qh0(e

M
− 1) < M,

which is necessary in [5], and k0 =max{k(t, s) | (t, s) ∈�}, h0 =max{h(t, s) |
(t, s) ∈ I 2

}. Thus, our new results are more effective than the previous results.
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