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Abstract

By a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the
field Q(e,,) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix
representation over its ring Z[¢,,] of integers? In the present paper it is shown that this holds true provided
it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem
for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that
the answer is at least affirmative when the exponent is replaced by the order, and provides for a general
qualitative result.
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20C34.
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1. Introduction

Let G be a finite group with exponent m = exp(G), and let &,, = ¢**'/™. CIiff, Ritter
and Weiss [1] proved that if G is solvable every irreducible character of G can be
realized over Z|¢,]. Their proof is based on Dade’s extension theorem [5] for groups
with normal extra special p-subgroups (which is rather deep for p = 2). In this note
we propose an alternate approach and investigate the realization problem for arbitrary
finite groups.

The following observation on integral representations will be crucial; it eventually
allows the reduction either to extra special groups (G solvable) or to quasisimple
groups. Let firstly R be any Dedekind domain.
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THEOREM 1. Suppose G is a normal subgroup of some (finite) group H and
p . G — GL,(R) is a representation with absolutely irreducible character x. Assume
p is H-stable and x can be extended to an R-valued character x' of H. Then there
is a unique representation p' © H — GL;(R) extending p and affording x'.

As usual, an RG-module U is called H-stable provided all conjugates satisfy
U" = U (h € H). So p is H-stable if there are T}, € GL,(R) such that p(h~'gh) =
T, p(g)T, for all g € G. This is a necessary condition for p to be extendable to H.

In order to apply Theorem 1 to our problem, arguing by induction, one has to find
stable integral representations affording some given invariant irreducible (complex)
character y € Irr(G). In general this might fail, even for principal domains whose
quotient field is a splitting field for x (for example, see [17, 19]). Fortunately this
difficuity disappears in the presence of suitable roots of unity. Let n = (m, |G|/d) be
the greatest common divisor of m = exp(G) and |G|/d where d = x (1) is the degree
of x. Let R = Z[¢,] be the ring of integers in K = Q(e,).

THEOREM 2. Whenever G is a normal subgroup of some group H and x € Irr(G)
is H-invariant, there is a representation group for x over K with regard to H. In
particular, there exists an H-stable RG-lattice U such that K @ U affords x.

It is known that K is a splitting field for x [18, Thm. 8]. This interesting addendum
to Brauer’s celebrated theorem is based on the fact, due to Feit, that the conductor,
f(x), of the field Q(x) of character values is a divisor of n = n()y). and on certain
properties of the Schur index. The existence of a representation group for x over K
enables us to apply the Fong reductions (Clifford theory). So combining Theorems
1 and 2 we may infer that it suffices to solve the problem in case G is a quasisimple
group (cf. the proposition in Section 5). In the case that G is solvable, the reduction
(to extra special groups) even works for slightly smaller rings of algebraic integers
yielding an improvement of the result of Cliff, Ritter and Weiss (see Theorem 3).

Note that the module U in Theorem 2 need not be R-free. Since the representation
theory of the quasisimple groups (in contrast to the extra special groups) is not yet
in a shape to benefit from it directly, one is urged to proceed in a different way. We
investigate the Steinitz class [U] of U more closely. This is an element of the class
group Cl, of K. The idea is to search for (cyclotomic) extension fields L such that
[U] becomes trivial or, more generally, a dth power in Cl,. Then we indeed will have
realizability of x over the ring of integers of L.

In fact, the explicit version of Iwasawa theory on class groups of cyclotomic fields
obtained in [11] yields the following qualitative resuit.

THEOREM 3" Given any group H operating on G and leaving x invariant there is
an integer n’ > n, which is divisible only by primes dividing |G| and is independent
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of H, such that there is an H-stable representation over Z[¢, ] affording x.

Of course, in Theorem 3’ we would like to specify n’ = n or n’ = m. There is
some evidence that one can take at least n’ = |G|. This is substantiated by appropriate
behaviour of class groups (and the very choice of n = n(x) dividing |G|/d). We
checked this for various (quasisimple) groups G, including all sporadic simple groups
and their covering groups (using work of Feit [6, 7], the ATLAS [2], and GAP [9]).
In order to confirm the choice n’ = |G| in general we would require more precise
information on class groups in cyclotomic Iwasawa towers at low levels.

2. Proof of Theorem 1

Let K be the quotient field of R. Uniqueness of p’ (affording x') is straightforward;
forif T € GL,(K) satisfies T ' p(g)T = p(g) for all g € G, then T is a scalar matrix
by Schur’s lemma. Note that x is assumed to be absolutely irreducible.

In order to prove existence of p’, let V be a K H-module affording x'. By a basic
property of Schur indices, such a module V exists since x’is K-valued and x = (x')¢
is realizable over K (use Frobenius reciprocity). By hypothesis there is an H-stable
R-free RG-lattice U € V affording x. Fix an element 2 € H and consider the
K -automorphism H: v > vh of the (right) K H-module V (v € V).

By assumptionU and Uh = U h are isomorphic RG-lattices. Since V;; is absolutely
irreducible and K ®z U = V, this forces Uh = Uc for some ¢ € K* by Schur’s
lemma. Moreover, A = {f € Endg(V) : Uf C U} is amaximal R-order, isomorphic
to My (R), in Endg (V) [3, (26.25)]. We infer that h= cf = fcforsome f € A. We
must have Uf = U for this f. Let ¢ denote the order of 4 in H. Then Bt = fict
is the identity on V' and consequently U = U W =U f'c = Uc'. Tt follows that ¢’
and ¢ are integral over R. Since R is integrally closed (in K), we see that ¢’ and
¢~ belong to R. Hence ¢ and ¢! belong to R. Thus c is a unit in R (¢ € R*) and
so Uh = Uc = U. We have established that U carries the structure of an R H -lattice
(within V'), which proves the theorem.

REMARK. By basic Clifford theory one can associate with p (being H-stable) a
cohomology class w € H*(H /G, R*) which vanishes if and only if p can be extended
to a representation of H over R. Since by assumption x, the character atforded by
p, can be extended to a K-valued character of H, its Clifford obstruction wgu(x) is
trivial (cf. [4, Prop. 1.5] or [20, Lemma 0]). This obstruction is the natural image of
w in H*(H /G, K*). The long exact cohomology sequence yields the exact sequence

Hom(H/G,K*/R*) - H*(H/G, R*) - H:(H/G, K*).

In order to show that w vanishes it suffices to check that the Hom-group on the left is
trivial. Now observe that K*/R* is torsion-free since R is integrally closed.
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3. Proof of Theorem 2

Recall that n = (m, |G|/d) is the greatest common divisor of m = exp(G) and
|G|/d where d = x (1) is the degree of the H-stable character y € Irr(G). Recall
also that K = Q(e,) is a splitting field for y [18, Thm. 8]. Let w = wgx(x) be the
Clifford obstruction to y with regard to H (and K). We have to show that there is
a cocycle of finite order representing this cohomology class (see [20] for a detailed
discussion of the concept of representation groups).

There is a finite field extension L 2 K such that the corresponding statement
holds for the image w;y(x) of @ in HX(H/G, L*). (One may take for instance
L = Q(e,) [20].) Choose L such that the degree [L : K] is as small as possible. Let
C—H-—H /G be a representation group for x over L for some group C of roots
of umty in L (so the cohomology class of the central extension maps onto w; g ( X))
Let H = HA H be the fibre- -product of Hand H amalgamating H/G. Regarding H
as a subgroup of the direct product H x H, we have a group extension

CxG—H=HAH — H/G,

and we may view y as a character of Ker(ﬁ —- H ) = 1 x G. By the very construction
there is an L-character (that is, realizable over L) ¥ of H extending y viewed this
way.

We are going to show that L = K. It is enough to find L, H such that C € K*
and K(X) = K. For let then A be the unique linear constituent of X¢.,. This may be
viewed as a K -character of C. Letw, = wg (). Then X¢..c = A® x is anirreducible
K -character of C x G with trivial Clifford obstruction w, - w in H*(H/G, K*) (cf.
(4, Prop. 3.6]). Therefore = w;' (= w,-1) can be represented by a cocycle of finite
order [20, Lemma 4].

By restriction to Sylow subgroups we may assume that P = H/G is a p-group
for some prime p. Then also C may be taken of p-power order. By [20, Prop. 2] we
may assume that p is a divisor of |G| and that K (2 Q(x) ) contains the pth roots of
unity (for otherwise w vanishes).

CASE 1. pisodd

Here we may choose L as a subfield of the field obtained from K by adjoining the
gth roots of unity for all primes ¢ = 1 (mod p) which divide |G| (cf. {4, Thm. 6.5]
and [20, Prop. 2]). Then C € K*. On the other hand, K = Q(¢,) contains the gth
roots of unity for all (odd) primes g # p dividing |G| unless x is of g-defect 0 (and
hence g-rational). If y is of g-defect O for such a prime ¢ # p, so is ¥, because both
C and P are p-groups. We conclude that K(¥) = K and L = K.

https://doi.org/10.1017/51446788700000288 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000288

[5] An extension theorem for integral representations 5

CASE2. p=2

If m = exp(G) is not divisible by 4 or K contains the 4th roots of unity, the result
follows exactly as before. Otherwise x is of 2-defect O or 1, by definition of K. It is
shown in [21] that there is, then, a 2-rational representation group for y, that is, L may
be chosen as a subfield of Q(¢,) for some odd integer « dividing |G| (so that |C| = 2).
From [18, Thm. 3] it follows (by induction on | P|) that [K ()) : K] is a 2-power. But
by construction K contains the gth roots of unity for all odd prime divisors ¢ of |H|
unless X is of g-defect 0. Consequently K (¥) = K and hence L = K again.

As for the additional statement in Theorem 2, observe that ¥ can be written in K.
Thus there is an R H-lattice U such that K Rz U affords % [3, (23.7)]. This U admits
a projective representation of the quotient group H = H /(C x 1) whose factor set
depends only on cosets (mod G) and has its values in C. Restricting this projective
representation to G yields an H-stable RG-lattice U as desired.

REMARK. There is an H-stable RG-lattice U such that K ®x U affords x just
because x can be written in K and w = wgy(x) can be represented by a cocycle
having its values in R* = Z[¢,]* (see [17, Lemma 1]; a similar statement, attributed to
A. Frohlich, can be found in [19]). We may then view w as an elementof H>(H /G, R*).

4. Solvable groups

In this section we assume that G is solvable. Here we have a quite strong result
improving that of Cliff, Ritter and Weiss [1]. We define the Solomon number s = s(x)
of x € Irr(G), having degree d = x (1), by

[1p. if d is odd or x is of 2-defect O or 1, or
s(x) = G has abelian Sylow 2-subgroups,
41 p otherwise,

where the product is taken over all odd primes p dividing |G|/d for which p — 1
divides d or x is not p-rational. We call the ring S() of algebraic integers in the field
K = Q(x)(&,) the Solomon ring of x this is motivated by work of Solomon [23] (cf.
[19] for a similar notion).

It is conjectured that the quotient field K of S(x) is always a splitting field for y.
However, we can establish this only when G is solvable. Observe that K € Q(g,)
(with n = n(x) as above) and that K € Q(ey) if d is odd, where f = f(x) is the
conductor of Q(x).
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THEOREM 3. Suppose H is an operator group of the solvable group G leaving
x € Irr(G) invariant. Then there is an H-stable representation p : G — GL,(S)
affording x where S = S(x) is the Solomon ring of x.

PROOE. Without loss we may assume that G is a normal subgroup of the (finite)
group H. Put s = s(x) and let K be the quotient field of S. We argue by induction
assuming that G is a (solvable) counterexample of minimal order; the structure of the
group H will play no role.

By the choice of G we know that y is faithful; note that Ker(x) is normal in H as
x is H-stable. Also, G is not cyclic. We proceed in several steps.

STEP 1: Forevery H-invariant subgroup N of G there is a faithful ¢ € Irr(N) such
that the restriction xy = e Trgyx)(§), where ¢ [K(¢) : K] is a divisor of |G/N|.

In this step we use the first Fong reduction (Clifford’s theorem). Let & € Irr(N) be
a constituent of yy, and let T, T, be the inertia groups of ¢ in G and H, respectively.
Then T = G N Ty and H = GT, (by a Frattini argument). Define

ﬁ) = {h € H :¢" and ¢ are Galois conjugate over K },

andlet T = G N T"o. By a standard argument 7', T; are normal subgroups of T, To,
respectively, and

To/To ~ Gal(K (¢)/K) ~T/T.

Letd € Irr(T) be the homogeneous (or Wedderbum) component of y with respect
to £, and let 8 = 67 be the induced character of T Then K (0) = K and X = g°.
Moreover, 0 is Tp- stable as y is H-stable, whence g is To stable (as TO =T. TO) We
next check thats(9) is a divisor of s = s(x). Letd = 9(1) SO that d=d- |G : TI If

4| s(@) then 4 | s. Assume there is an odd prime p dividing s(9) but not s. Then p
divides |G|/d = |T| /d Thus x is p-rational and p — 1 does not d1v1de d. It follows
that K C Q(e,) for some integer » prime to p, and from K = K (0) we infer that @ is
p-rational as well. But then p — 1 must divide d and hence d, a contradiction.

Assume T # G. Then, by induction, there is a T})—stable representation g5 of T
over S affording 6. But then p = 5° is an H-stable representation of G as required.
Thus T = G and xn has the stated properties; ¢ is faithful as y is faithful and Galois
conjugate characters have the same kernel. Finally, it is known that the ramification
index e = (xw, ¢) is adivisor of [T/N|.

As a consequence of Step 1, every abelian H-invariant subgroup of G is cyclic. In
particular, G is not abelian. We now fix a minimal non-abelian H -invariant subgroup
E of G. Let E/Z be a chief factor of H. Since G is solvable, E/Z is an elementary
abelian p-group for some prime p and Z is cyclic (by the choice of E).
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STEP 2: Either E is an extra special p-group of exponent p > 2 and K = K (¢,)
orp=2exp(E) =4and K = K (&4).

Assume E is not a p-group. Let g # p be a prime dividing |Z| and N the
subgroup of Z of order q. Then N is not central in E, by minimality of E (and the
Schur-Zassenhaus theorem). Let £ € Irr(N) be a constituent of yy and T = Cg(N)
its inertia group, which is H-invariant. Then T N E = Z and, in view of Step 1,
G/T ~ Gal(K (¢,)/K). Thus K(g,) # K and, by definition of the Solomon field, ¢
does notdivide s = s(x). Clearly g is odd. Since N is a normal subgroup of G of order
q, x is not of g-defect 0 and so ¢ divides |G|/d. As g does not divide s, by definition
of the Solomon number, x is g-rational. It follows that |G/ T| = [K(g,) : K] =g —1
is a divisor of d, because y is induced from some character of T. However, this forces
qls.

This contradiction shows that E is indeed a p-group. It follows from Step I (with
N = E) that x is not of p-defect 0 nor 1. (Alternately use that O,(G) is contained in
the defect groups of every p-block of G.) Considering the subgroup of order p in Z,
we obtain that p|s and hence ¢, € K. In case p = 2, even 4|s, and therefore &, € K.
This implies that every H-invariant subgroup of E of order p (respectively 4 in case
p = 2)is central in G (even in H as y is H-stable).

Since every proper H-invariant subgroup of E is cyclic, P. Hall’s characterization
of the p-groups of symplectic type applies [15, II1.13.10]. This yields that E = Q,(E)
is an extra special p-group of exponent p > 2 or p = 2 and E is either extra special
or the central product of an extra special 2-group with a cyclic group of order 4. (In
case H is solvable the latter could be excluded.)

STEP 3: G = E (with E as in Step 2).

Assume the contrary, and let £ € Irr(E) be a constituent of y. Let m = exp(E)
and Ky = Q(s,,). Ky is a splitting field for ¢ (Brauer), and we know from Step 2 that
Ko € K. In view of Step 1, ¢ is G-stable; it is even H-stable as x is H-invariant.

Now we apply the second Fong reduction and consider the distinguished repres-
entation group H(¢) of ¢ with regard to H (in the sense of [20]). This is the unique,
up to equivalence, central extension C — H({) — H/E where C = ( ) and where
the cohomology class maps onto wg,,($). As above we denote by H=H ({ A H
the fibre-product amalgamating H/E. By construction there is a K-character é’ of H
which extends ¢ viewed as a character of 1 x E. Fix this character.

H contains G = G(¢)A G (constructed similarly) as a normal subgroup. By
basic Clifford theory there is a unique character x’ of G having 1 x E in its kernel
such that ¥ = Eg - x' as a character of G (having C x 1 in its kernel). One knows
that x and its Clifford (or Fong) correspondent x’ € Irr(G(¢)) have the same Schur
index over K, and that Ky(x') = Ko(x). (There is a Morita equivalence between
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corresponding irreducible modules over K|, yielding isomorphic endomorphism rings.)
In particular, Ko(x') € K = K(x). Since E(l) = ¢(1) is a p-power (dividing |E|)
and x'(1) = d/¢(1), wereadily see that S(x') € S = S(x). As x andEa are H-stable
so is x’ (by uniqueness).

Observe that |G(¢)| < |G|. There is thus an S-free SG-lattice U’ affording x’
which is stable under H. A similar statement holds for ¢ (as |E} < |G]); application
of Theorem 1 then yields that there is an S-free § H-module U affording E But now
U= (75 ®s U’ is an S-free SG-lattice which affords x and is H-stable.

STEP 4: Completion of the proof.

In the notation used above (w1th G=Ex=¢, K KO, S = Z[e,,,]) there is a
K H-module V affording ¥ = C Choose any full § H Mattice U - V and let U be its
restriction to 1 x G. Regarding U as an SG-lattice it is H-stable, and K ®g U affords
x- This U need not be S-free. However, using that G = E is an M-group, there is
also an S-free SG-lattice W affording y. Without loss we may assume that U C W
(in the K -vector space V).

Now we proceed as in [1, Lemma 1.5], studying the order ideal of W/ U. Using that
W /IW is an irreducible (S/7)G-module for any maximal ideal I of S not dividing
p and that 1 = S(1 — g,,) 1is the unique prime ideal in S over p, we find an ideal J
of § such that U'= J~'U is still contained in W but every S-composition factor of
W/U"is isomorphic to S/ (= F,). By the Invariant Factor Theorem for lattices over
Dedekind rings, U’ and W have the same Steinitz class. Hence U' is S-free likewise.
Clearly U’, which is in the genus of U, is H-stable and affords y, as desired.

5. Genus and Steinitz classes

We would like to prove Theorem 3 for arbitrary G, at least when the Solomon ring
S(x) of the character x is replaced by Z[e,;]. Heading for this goal, we take in the
sequel again K = Q(¢,) as base field, where as usual n = (m, [{G|/d) is the greatest
common divisor of m = exp(G) and |G|/d (with d = x(1)). Let R = Z[¢,] be the
ring of integers of K.

PROPOSITION. Assume there is an H-stable representation p : G -> GL4(R)
affording x whenever G is quasisimple and H is an operator group of G stabilizing
Xx- Then the same holds true in general.

PROOF. Let G be an (arbitrary) normal subgroup of some finite group H stabilizing
X- We argue by induction. By Theorem 3 we may assume that G is not solvable.
For any ( H-invariant) normal subgroup N of G and any irreducible constituent ¢ of
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X~ by Clifford’s theorem (and known properties of the ramification index) |N|/Z (1)
is a divisor of |G|/ x(1). Clearly exp(N) divides exp(G); a similar statement holds
for representation groups with regard to G [20]. Hence, by virtue of Theorem 2, both
Fong reductions work (see Steps 1 and 3 of the proof of Theorem 3).

Let now E be a minimal non-abelian H-invariant subgroup of G and let¢ € Irr(E)
be a constituent of xg. Combining the Fong reductions and Theorem 1, we are at once
reduced to the situation where ¢ = xg is faithful and the center Z = Z(FE) is cyclic
and central in H. If E were solvable or |E| < |G|, the result would follow from
Theorem 3 or by induction, on the basis of Theorem 1. (Use the uniqueness statement
in Theorem 1 in order to get an invariant integral representation affording x.) Thus
we may assume that G = E is perfect. It follows that G/Z is the direct product of
the distinct H-conjugates of some non-abelian simple group G,/ Z.

Let xo € Irr(Gy) denote the irreducible constituent of x;,. By hypothesis there
is an R-free RGy-lattice U, which affords x, and is stable under the inertia group
To = Ny(Gy) of xoin H. Let {hy,--- , h,} be aright transversal to T, in H. Then
X = X" ® - ® xo'. Consequently U = Uy" @ --- ®& Uy is an R-free and
H-stable RG-lattice affording x. We are done.

Fix a group H operating on G and leaving y invariant. By Theorem 2 there exists
an H-stable RG-lattice such that K ® U affords x. The problem is that U need not
be R-free. We denote by [U] its Steinitz class in the class group Clg (cf. Steinitz’
theorem in [3, (4.13)]). U is R-free if and only if [U] = 1.

LEMMA. Let U be an H-stable RG-lattice such that K ®g U affords x.

(a) Every RG-lattice V in the genus of U is H-stable. In fact, V = J - U for
some unique (non-zero, fractional) ideal J of K, up to R-isomorphism, and then
[V] = [J)[U] where [ J] is the ideal class of J.

(b) If L/K is a finite field extension such that (U] becomes a dth power in Cl,
there exists an H-stable representation of G affording x over the ring of integers of L.

PROOF. Recall that d = x(1). Statement (a) is immediate from [3, (31.18) and
(31.26)]. Note that J - U is in the genus of U for any ideal J of K. Thus (b) follows
from (a).

CONIECTURE. Let p be any prime and k > 1 an integer. Suppose F is an abelian
number field containing the p*th but not the p**'th roots of unity, and let L = F (g,-1).
Then the natural homomorphism Clg — Cly maps every element of Cly onto a pth
power in Cl;.

This conjecture is confirmed in many instances (see [8, 10, 24]) and is valid in
cyclotomic Z,-extensions of abelian number fields at all sufficiently high levels (as
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follows from [11]). It holds true if F occurs in the cyclotomic Z,-extension of a field
K (containing the pth roots of unity for odd p and the 4th otherwise) for which the
Iwasawa invariant satisfies A, (k) < p.

Recall that n -d is adivisor of |G|. If x is not of p-defect O for all primes p dividing
|G| and the conjecture holds (for all such p), we get (stable) realizability of xy over
the ring Z[¢,g] by the lemma. In case x is of p-defect O for some p dividing |G|
additional arguments are necessary to obtain this result. By the proposition it suffices
to consider characters of defect 0 of quasisimple groups. Note that most simple groups
admit such characters [27].

PROOF OF THEOREM 3'. Let U be as in Theorem 2. Replacing U by a lattice in the
same genus, if necessary, we may assume that its Steinitz class [U] has order divisible
only by primes dividing d = x (1) (see the above lemma).

Let p be any prime dividing d. Let {K,} denote the cyclotomic Z,-extension of
K and A, the Sylow p-subgroup of Clk,. Since K is an abelian number field, by
the theorem of Ferrero-Washington the cyclotomic Iwasawa invariant u,(K) equals
0 (cf. [26, Thm. 7.15 and Prop. 13.24]). Thus it follows from the theorem in [11]
that for all sufficiently large r the elements in A, become pth powers in A, ,,. (Indeed
the image of A, therein is just the subgroup of all pth powers in A,.,.) Hence we
find r = r, such that the p-part of [U] is a dth power in A, . Denote by K (p) the
corresponding field K.

The compositum L of the K (p), p varying over the primes dividing d, has the
property that [U] becomes a dth power in its class group. According to the lemma
we obtain an H -stable representation over the ring of integers of L affording x. The
construction of L (from K) does not rely on the operator group H. Furthermore,
L C Q(e, ) for some integer n’ divisible only by primes dividing |G|. This completes
the proof of Theorem 3.

6. Some examples

We are going to substantiate that Theorem 3" holds for n” = |G|. By the proposition
it suffices to study the situation where G = G’ is quasisimple and y € Irr(G) is faithful
and H-stable, and where Z = Z(G) is cyclic and central in H. Observe that Z is
part of the Schur multiplier M(G) of the simple group G = G/Z. Without loss we
may assume that H 2 G acts faithfully on G so that H/G is a subgroup of the group
Out(G) of outer automorphisms of G. If H/G is cyclic (or, more generally, has trivial
multiplier), y can be extended to H. By virtue of the classification of the finite simple
groups both M(G) and Out(G) are known.
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Example 1 (Sporadic Groups). Let G be a sporadic simple group. Then Out(G)
has order 1 or 2; in the latter case it inverts the elements in M(G) which is cyclic of
order r, say. There exists then an ‘envelope’ r.G .2 and the isoclinic group r.G .2i (see
the ATLAS [2]). As for class numbers of cyclotomic fields we refer to [26].

In what follows we discuss in detail the cases where the Schur index of the faithful
x € Irr(G) is not trivial (and hence 2), using work of Feit [6, 7]. Then Q(yx) is at
most of degree 2 over the rationals and I1(y), the set of rational places (including
o0) where the local Schur index is non-trivial, consists of at most 2 elements. The
remaining cases where the Schur index is trivial are settled by ad hoc considerations
(see the table below). The numbering of the characters refers always to the ATLAS

[2].

CASE 1. G = G. Then for all characters under consideration (with non-trivial
Schur index) Q(x) = @, and I(x) = {2, 3}, {2, 5}, {00, 3} or {00, 5} (Table A in
[6]). It follows that ¥ can be written in QW73), Q(\/TO), Q/=3) respectively
Q(+/-5). Here only the field Q(+/—5) has nontrivial class number, and in this case
Q(ey) is a splitting field with class number 1.

If H = Aut(G) is distinct from G (index 2), both extensions x' € Irr(H) of x
have Schur index 1. Only the following groups H occur: J,.2, J3.2 where Q(x') =
Q(V6), Suz.2 where Q(x) = Q(+/10), and M°L.2 [7). In the last case (G = M°L
with xy = xi, respectively x;; being of degree 3.520 respectively 4.752) we have
Q(x) = Q. For y = x;; we have I1(x) = {oo, 5} and Q(x') = Q(v/—5), otherwise
M(x) = {00, 3}and Q(x') = Q(+/—3). Then Q(&x) respectively Q(g,4) are splitting
fields for x’ with class number 1. In each case there is an representation of H affording
x' over some ‘small’ ring of cyclotomic integers, which gives what we want.

CASE2. G =2.G. Either Q(x) = Qand IN(x) = {00, p}forp € {2,3,5,7, 11},
or M(x) = {oo} and Q(x) = Qk) for k € {2,3,5, 13,29} (Table C in [6]). In
the first case x can be written in Q(e,,) for p # 2 and in Q(+/—2) otherwise, which
all have class number 1. In the latter case Q(g;) for k # 2, and Q(eg) otherwise, are
splitting fields for x. Except for Q(ex) these fields have class number 1.

In this exceptional case, G = 2.Ru and x = xa9 resp. xso, where each is of degree
8.192 with Q(x) = Q(+/29). Let then F (O Q(x)) be the subfield of Q(&,9) which
is of degree 4 over the rationals. Since I1(x) = {oo} and F is not real, x can be
realized over F. Since Gal(F/Q) is a 2-group and 29 is the unique finite prime which
ramifies in F, the class number of F is odd [26, Thm. 10.4]. The image of the class
group Clf in Clg,,, is trivial since Q(e29) has class number 8.

Let us now investigate invariance. Suppose H # G (and x is H-stable). Then
both extensions x' € Irr(H) of x have Schur index 2 with IT(x') = {oo}. With
one exception this happens only when Q(x) = Q, with Q(x') = QWk) for k €
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{2,3,5,7,10, 11, 14, 15} (see [7]). The exception is H = 2.H S.2i where there are
the characters x = x4 respectively x4 of G = 2.HS with degree 2.520 such that

Q(x) = Q(/5). Here Q(x") = QG/ (5~ V/5)/2), and for instance Q(eq) is a
splitting field for x’ with class number 1.

CASE3. G = r.G with r > 2. Here all faithful y € Irr(G) have Schur index 1
except for G = 4.M,, which admits two Galois conjugate characters x = x3 of
degree 176 with Q(x) = Q(+/—1) and I1(x) = {5} (Table B in [6]). But then once
again Q(gy) is a splitting field with class number 1. Since Z = Z(4.M,) is not
central in 4.M,.2 nor in 4.M>,.2i, the characters are not stable in these groups. We
are done.

In the table below we list only those faithful irreducible characters x of G with
trivial Schur index where x (1) is not prime to the greatest common divisor of the
class number &, of Q(x) and the class number h/(,, of its conductor (cyclotomic)
field. Also, real characters are left out since the class number hf+( 0 of the maximal real
subfield of Q(ey,,) is trivial in any instances occurring. The greatest common divisor
of x(1), h, and Ay, is always a power of some prime p € {2,3,5,7}. The p-part
of x(1) is denoted by x(1),. The column on the very right (where n'(x) is liéted)
describes splitting rings Z[e, ] of cyclotomic integers; n’ = n’(x) need not be the best
(smallest) possible choice. At any rate, it is always a divisor of |{G|. Invariance is
easily confirmed.

With one exception all fields Q(x) remaining are quadratic or biquadratic. The
exception is G = 3.0’N, x = xsi where Q(x) is of degree 6 over the rationals.
Using the notation of the ATLAS, Q(cs) is written for the cubic subfield of Q(g)),
so that Q(y) = Q(+/=3, c19) here. The cyclotomic Iwasawa invariant A, = A; of
this field is 0 whereas 1 ,(Q(x)) = 1 otherwise.

The class numbers (and class groups) of Q(x) are taken from Hasse [13] (and [14]).
For the computation of n'(x) we use various results on cyclotomic Z,-extensions from
Washington [26]. In addition, we use arguments from Greenberg [12] and results by
Ferrero [8], Gold [10] and Kida [16].

Example 2 (Some Alternating Groups). All irreducible characters of G = A,
(k > 5) have Schur index 1. If x € Irr(Ay) is invariant under S;, it can be realized
over Z by known properties of the symmetric groups. Otherwise Q(x ) can be any real
quadratic number field. Some characters y of 2.A; have Schur index 2, with IT(y)
being arbitrary large (see Turull [25]).

We only describe briefly the situation for the proper covering groups G of A;,
k = 5. 6, 7, and their faithful characters with non-trivial Schur index (and hence index
2). If G = 2.As and x € Irr(G) is its basic spin character, then Q(x) = Q(\/g) and
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G x  x(1), Q) FOO hy  hpyo n'(x)
6.5uz xi» 22 QW=3,V13) 39 2 2 2¢.3.13
3.0'N x5 3* Q-3 c1) 57 3 3 32.19
3.0'N xss 3 QGK/-3,/-31) 93 3 3>.5.151 3%.31
3.Fin X7 2 QW-3,/13) 39 2 2 2%.3.13
6.Fin, x1020 2° QGW=3.,4/13) 39 2 2 27.3.13
2.Co, X 3 Q/—23) 23 3 3 32.23
2.Co x5 2° QGW/—14) 56 22 2 22.7
2.Co; xi 2° Q(+v/—-39) 39 22 2 24.3.13
3.Fy. X6 3° QW-3,vV/-23)69 3 3.23 34.23
3.F. xis 3°  QW-3,v29 87 3 3.23 3'6.29
B xau 3¢ Q/—47) 47 5 5-139 59.11-47
B X5 3 Q(v/-23) 23 3 3 32.23
B xss 3% QW31 31 3 3 313.31
B Xs2 3 Q(v/-23) 23 3 32.23
2.B xme 5° QW —-47) 47 5 5-139 56.11-47
2.B o 3¢ QW-3D) 31 3 3 393.31
M s 3° Q=31 31 3 3 319.31
M X 7° QK/—T1) 71 7 77-79241 76 .71
M Xas 2 Q(v/-39) 39 22 2 22.3.13
M xs3 5° QG/=47) 47 5 5.138 5°.11-47
M xn 3% QW=87) 87 2.32°.3 319.29
M xu 5° Q(/—47) 47 5 5.139 5°.11-47
M s 22 QG/—14) 56 22 2 2%.7
M Xs3 3 Q(v/-23) 23 3 3 32.23
M Xso 2 Q(+/—95) 95 20 22.13-19-109 2°.5-19
M xios 3¢ QG/-3D 31 3 3 319.31
M xir 3 Q=31 31 3 3 319.31
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x can be realized over Q(es) [25, Thm. 5.6]. This x is not stable under 2%.Ss. The
other characters have similar properties.

All faithful characters of 6.A¢ and 3.A¢ have Schur index 1 and their fields of
character values have class number 1 (Schur [22]). Some faithful characters of
2.A¢ = SL»(9) have Schur index 2 (Feit [6]); they are easily handled. All faithful
characters x of 6.A; and 3.A; have Schur index 1 and their fields of character values
have class number 1 (Schur). Some faithful characters of 2.4, have Schur index 2
(Turull [25]), but they are easily handled.

REMARK. Possibly one can handle the alternating groups and their covering groups
by constructing representations in some natural way. A similar statement may be
appropriate for the groups of Lie type. We investigated some groups of Lie type of
low rank. All the examples computed so far indicate that Theorem 3’ should hold for
n’ = |G|. In order to establish this we would require detailed information on the class
groups in the Iwasawa towers at lower levels, in the spirit of the conjecture formulated
in Section 5, as well as a better understanding of the integral representation theory of
the characters of defect O (for the quasisimple groups).
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