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Abstract

Let (R, m) be a commutative Noetherian local ring, let / be an ideal of R and let M and N be finitely
generated R-modules. Assume that pd(M) =d < oo, dim N = n < oo. First, we give the formula for the
attached primes of the top generalized local cohomology module HI‘H'" (M, N); later, we prove that if

At(HIT (M, N)) = At(HY™ (M, N)), then H{ ™" (M, N) = HY™ (M, N).
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1. Introduction

Throughout this paper, let (R, m) be a commutative Noetherian local ring, let I be a
proper ideal of R and let M and N be finitely generated R-modules. The generalized
local cohomology module

Hi(M, N) = lim Exth, (M/I"M, N)
neN
was introduced by Herzog [10] and studied further by Yassemi, Suzuki and so on.
There are several well-known properties concerning the generalized local cohomology
modules. Assume that pd(M) =d < oo, dim N =n < oo. It is well known that
Hi(M, N)=0,foralli >d +n.

Recall that for an R-module K, a prime ideal p of R is said to be an attached prime
of K, if p = Ann(K /L) for some submodule L of K (see [11]). The set of attached
primes of K is denoted by Att(K). If K is an Artinian R-module, then K admits a
reduced secondary representation K = K + - - - + K, such that K; is p;-secondary,
i=1,...,r,then Att(K) = {p1, ..., pr} is a finite set. Note that Att(K) = ¢ if and
only if K = 0. If dim M = n < oo, itis well known that H}' (M) is an Artinian module.
In [11], Macdonald and Sharp studied H} (M) and proved that

Att(H" (M)) = {p € Ass(M) | dim R/p = n}
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(the right-hand set is denoted by Assh(M)). Dibaei and Yassemi [6, Theorem A]
generalized this result to Att(H; (M)) ={p € Ass(M) | cd(/, R/p) = n}, where for
any R-module K, cd(I, K) =sup{i € Z | H}(K) #0}.

The object of this paper is the attached primes of the top generalized local
cohomology modules HI‘H" (M, N), and we give a formula for Att(HIdJr” (M, N)),
which generalizes [6, Theorem A].

Let E = Eg(R/m), the injective hull of R/m. Asin [14], we define a prime p to be
a coassociated prime of L if p is an associated prime of D(L), where D(-) is Matlis’
dual functor Hom(-, E).

It is well known that for any integer i, there is an exact sequence

H. (M) — H(M) — lim Ext, (m' /1", M). (1)
teN
By Hartshorne’s result (see [8]), we know that the right-hand side module in (1) is
zero, so there exists an exact sequence H{ (M) — H}(M) — 0. So one can deduce
that for two ideals / C J, there exists an exact sequence H} (M) — H} (M) — 0.

For any pair ideals I and J, if Att(H;H” (M, N)) = Att(H;H“" (M, N)), then we

prove that H;H" (M, N) = Hj”" (M, N), from which we can obtain the result of [7].

2. The formula for top generalized local cohomology modules

In this section, we give the formula for the attached primes of the top generalized
local cohomology module H;H" (M, N), and when (R, m) is a complete ring with

respect to m-adic topology, we give the formula for Coass(H;l'H‘ (M, N)).
The following lemma generalizes [13, Lemma 3.4].

LEMMA 2.1 [12, Lemma 2.8]. Let pd(M) =d < oo, L be an R-module and assume
thatn € Nand x1, .. ., x, is an I-filter regular sequence on L. Then

.....

The next result is important for the main results of this paper.

PROPOSITION 2.2. Assume that pd(M) =d < oo, dim N =n < oo. Then:
1) H;H'" (M, N)= Ext‘;e (M, H} (N)); in particular, H;H'" (M, N) is Artinian and

I -cofinite;
(i) At(H{ (M, N)) € Att(H} (N)).
PROOF. (i) Let x1, ..., x, be an I-filter regular sequence on N. Then

H{™ (M, N) = Hf (M, H . (N))
by Lemma 2.1. By [4, Exercise 7.1.7], H&l xn)(N) is Artinian. So by [13, Lemma

341 H (N)ZHP(H . (N))= HJ(N). Therefore,

(x150ee

H{™™(M, N)Z Hf (M, HY, . (N)) = H{ (M, H (N)) = Ext}(M, H}(N)).
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(ii) Suppose that p € Att(H;H” (M, N)), then
H™ (M, N)/pHIT™" (M, N) #0.

By (i), we have that

H{T™ (M, N)/pHI™ (M, N) = Extb (M, HI' (N)) ® (R/p).
Since Ext‘l‘; (M, —) is a right exact additive functor,

Extq(M. H} (N)) ® (R/p) = Extg(M, R) ® H'(N) ® (R/p)

= Extx(M, H} (N)/pH] (N)),

thus H}'(N)/pH!(N) # 0, hence p € Att(H!(N)).
THEOREM 2.3. Assume that pd(M) =d < oo, dim N =n < oo. Then

At(HIT (M, N)) = {p € Ass(N) | cd(I, M, R/p) =d + n},
where, for any R-module K,

cd(I, M, K) =sup{i € Z | Hi(M, K) #0}.
PROOF. We use induction on n. If n =0, then A(NV) < 00. So
Att(H)(N)) = Att(N) = {m} = Ass(N) = Supp(N),

thus, Att(H{(M, N)) € Att(HY(N)) = {m} = Ass(N) (where the containment
follows from Proposition 2.2(ii)).

() If HY(M,N)=0, then Aw(H{(M,N))=¢, cd(I,M,N)<d, thus
cd(I, M, R/m) < d by [1, Proposition 2].

(2) If HY(M, N) #0, then Att(H{ (M, N)) = {m} = Ass(N) and cd(/, M, N) =
d,thus cd(I, M, R/m) = d by [1, Proposition 2]. So the result has been proved in this
case.

Now let n>1 and the case n — 1 is settled. If HI‘H" (M, N)=0, then
cd(I, M, N) <d +n,so{p € Ass(N) | cd(I, M, R/p) =d +n} =0 by[l, Theorem
B]. Now let H;H" (M, N)#0, let L be the largest submodule of N with
cd(I, M, L) <d +n. By the short exact sequence 0 > L - N — N/L — 0 and
[1, Theorem A], we have cd(I, M, N) =cd(I, M, N/L). It is easy to prove that N/L
has no nonzero submodule K with cd(/, M, K) <cd(I, M, N), so

Ass(N/L) C{p € Supp(N/L) | cd({, M, R/p) =d + n}.
In addition, if p € Supp(N/L) and cd(I, M, R/p) =d + n, then

d+n=cd(,M,R/p) <d+dimR/p
<d+dmN/L<d+dimN =d +n.
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Therefore, p € min(Supp(N/L)) € Ass(N/L), and p € min(Supp(N)) C Ass(N),
therefore

Ass(N/L) = {p € Supp(N/L) | cd(I, M, R/p) =d + n}
C{peAss(N)|cd(I, M, R/p)=d +n}.

If peAss(N), and cd({, M, R/p)=d+n, then p ¢ Supp(L), otherwise,
cd(I, M, R/p) <cd(I, M, L) <d + nby[l, Theorem B]. So p € Supp(N /L), hence

{p € Supp(N/L) | cd(I, M, R/p) =d + n}
={p e Ass(N) |cd(I, M, R/p) =d + n}.
In the following exact sequence
HI (M, L) — HIYY (M, N) — HI"(M, N/L) — HE M, L,
since H1d+"(M, L) = H1d+"+1(M, L) =0, we have
HI (M, N) = HIT"(M, N/L).
Sincen =dim N/L,
{p€Ass(N/L)|cd(I, M, R/p) =d + n}
={p € Ass(N) | cd(I, M, R/p) =d + n},

we can assume that L =0, that is, N has no nonzero submodule L such that
cd(I, M, L) < d + n. Next we prove that Att(H;H"(M, N)) = Ass(N).
By Proposition 2.2(ii), we have that Att(HIdJr" (M, N)) C Att(H (N)) € Ass(N).
On the other hand, if p € Ass(N), then there is a p-primary submodule 7 of
N such that Ass(N/T) = {p}. We have cd({, M, N/T)>cd(I, M, R/p)=d +n
by [1, Theorem B], then cd(/, M, N/T)=d +n, H;H”(M, N/T)#0. By
Proposition 2.2(ii) we obtain

AWH{ ™ (M, N/T)) € At(H] (N/T)) € Ass(N/T) = {p}.

so {p}= Att(H;H” (M, N/T)). Considering the exact sequence H1d+”(M, N)
— H;H” (M, N/T)— 0, then we have {p} C Att(H;H”(M, N)), hence Ass(N)
- Att(HIdJ“” (M, N)). Now the proof is complete.

REMARK 2.4. Assuming pd(M) =d <oo,dim N =n < oo. If
p € At(H{ " (M, N)),

then
d4+n=cd(I,M,R/p)<d+dimR/p<d+dimN=d+n.

So dim R/p = n, and hence Att(H;H" (M, N)) C Assh(N).
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In [6, Theorem B], Dibaei and Yassemi proved the following result. Let L be
a nonzero module (not necessarily finite) such that dim R =dim L =n < oo. Then
Att(H} (L)) € {p € Ass(L) | cd(I, R/p) =n}.

Assuming that L is finitely generated, we can obtain [6, Theorem A] by
Theorem 2.3.

COROLLARY 2.5 [6, Theorem A]. Assume that L is finitely generated, dim L = n.
Then Att(Hj (L)) ={p € Ass(L) | cd({, R/p) =n}.

We know that for a ring R with dim R > 0, if H;ﬁm R(R) # 0, then it is not finitely
generated (see [4, Exercise 8.2.6]). As an application of Theorem 2.3, we have the
following proposition.

PROPOSITION 2.6. Assume that pd(M) =d <00, 0 <dim N =n < oo. If
HE (M, N) #0,
then it is not finitely generated.
PROOF. As HEF(M, N) # 0, so Att(HE" (M, N)) # ¢. We have
Att(Hgf”(M, N)) C Att(H(N)) S {p € Ass(N) | dim R/p = n}

by Proposition 2.2(ii). Since n >0, then Att(Hr‘f:r”(M , N)) 51 {m}.  Since
HA&F"(M, N) is Artinian, it follows that H4 (M, N) is not finitely generated by
[4, Corollary 7.2.12].

In [5, Lemma 3], Delfino and Marley showed that, if (R, m) is a complete
Noetherian local ring, I an ideal of R, M a finitely generated R-module of dimension
d, then Coass(HId(M)) ={peV(Ann(M)) |dim R/p =d, /I + p=m]}.

PROPOSITION 2.7. Let (R, m) be a complete ring with respect to the m-adic
topology, assume that pd(M) =d < oo, dim N =n < oco. Then

Coass(H;H"(M, N))C{peV(Ann(N)) |dmR/p=n, I+ p=m}.
PROOF. Since HI‘H" (M, N) is Artinian, then
At(H{T™ (M, N)) = Ass(D(H{ " (M, N)) = Coass(H ™ (M, N)).
In addition, when (R, m) is a complete ring with respect to the m-adic topology, we
can prove that if p € Ass(N) withcd(I, M, R/p) =d + n, then p € V(Ann(N)) with
dim R/p =n, and /I + p = m by [4, Theorem 8.2.1]. So
Coass(HI[”"(M, N))C{peV(Ann(N)) |dimR/p=n,+/I + p=m}

by Theorem 2.3.
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PROPOSITION 2.8._ Assume that pd(M)=d <oo, 1 <dim N =n < oco. Then
H1d+”_1 (M, N)/I’HIHH”_1 (M, N) of finite length for any i € N.

PROOF. We have that H1d+” (M, N)= Hldi+” (M, N) for all i e N, so it is enough
to prove the result for i = 1. By Proposition 2.2(i), HI‘H" (M, N) is Artinian and
I-cofinite. In addition, we know that H;(M, N) =0 for all i >d +n. By the
same proof as in [2, Theorem 3.3], we get that H;H"_l(M, N)/IHI‘H”_l(M, N) is
Artinian and /-cofinite, so

HE =N M, NY/THE N (M, N) ZHom(R/I, HE™ = (M, N)/THI T~ (M, N))
is finitely generated, thus H;H” LM, Ny/I H;Hn ~1(M, N) has finite length.

EXAMPLE 2.9 [2, Example 3.6]. In Proposition 2.8, if t < pd(M) 4+ dim N — 1, then
it can be seen that H;(M, N)/IHI’(M, N) is not necessarily of finite length. To
see this, let R =k[[X, ..., X4ll, [ = (X1, X»), L = (X3, Xy) and I =1; N I,
M = N = R, where k is a field. Then H}(M, N)= H}(R) for all i >0. By the
Mayer—Vietoris exact sequence we obtain that HIZ(R) = H12, (R) & HIZZ(R). Now
consider the following isomorphisms

H}(R)/IH}(R) = (H[ (R)/IH} (R)) ® (HL,(R)/IHF,(R))
= H} (R/I) & H,(R/1).

By the Hartshorne-Lichtenbaum vanishing theorem, H121 (R/I)#0. Therefore,
cd(I;, R/I) =2, and so by [9, Remark 2.5], H121 (R/I) is not finitely generated.
Consequently, HIZ(R) /1 HIZ(R) is not finitely generated.

3. Top generalized local cohomology modules

In [7, Theorem 1.6], Dibaei and Yssemi show that for any pair of ideals [
and J, dim N = n, if Att(H}(N)) = Att(H(N)), then H/(N) = H}(N). In this
section, we show that, if Att(Hy ™ (M, N)) = Att(H9™" (M, N)), then H{ ™" (M, N)
= HY™(M, N).

LEMMA 3.1. Assume that pd(M)=d < oo, dim N =n < oo, H1d+"(M, N) #0.
Then there exists a homomorphic image G of N such that:

(1) dimG=n;

(2) G has no nonzero submodule of dimension less than n;

3) Ass(G)={peAss(N)|cd(I, M, R/p)=d + n};

@) H{™M,G)=HIT(M, N);

(5)  Ass(G) = Att(H ™ (M, G)).

https://doi.org/10.1017/5S0004972708000993 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000993

[7] Attached primes of the cohomology modules 65

PROOF. By Remark 2.4, Att(HIdJr”(M, N)) C Assh(N). Therefore, there is
a submodule L of N such that Ass(L) = Ass(N)\ Att(H;H" (M, N)) and
Ass(N/L) =Att(HId+"(M, N)) by [3, p. 263, Proposition 4]. Considering the
exact sequence H;H" (M, L) — H;H"(M, N) — Hld"’" (M, N/L)— 0, we claim
that H{™ (M, L)=0. Otherwise, there is p € Att(H¢ (M, L)) such that
cd(I, M, R/p) =d + n. Since p € Ass(L) by Theorem 2.3, then p € Ass(N), and
hence p eAtt(HIdJ“" (M, N)) by Theorem 2.3, which is a contradiction. Thus,
HI‘I+”(M, N) = HI‘I+”(M, N/L). Set G=N/L. Then (1), (3), (4), (5) are clear.
If G has a nonzero submodule K with dim K <n, then dim R/p <n for some
p € Ass(N /L), which is contradiction by Remark 2.4. O

PROPOSITION 3.2. Assume that (R, m) is a complete Noetherian local ring,
pd(M) =d < 0o, dim N =n < co. Then Att(H{T"(M, N)) € Att(HI™ (M, N)) if
and only ifH;H" (M, N) - HI[H" (M, N) — 0 is an exact sequence.

PROOF. The sufficient part is clear. For the necessary part, there exists a
submodule L of N with Ass(L) = Ass(N)\ Att(H;H"(M, N)) and Ass(N/L) =
Att(H{™ (M, N)) by [3, p. 263, Proposition 4]. We see that H{*" (M, L) = 0 by the
proof of Lemma 3.1. Hence, we have H;H" (M, N) = H;H" (M, N/L). Note that for
any p € Ass(N/L) withcd(J, M, R/p) =d + n, then p € Ass(N), H}(R/p) # 0, so
J + pis m-primary by [4, Theorem 8.2.1]. This induces J + Ann(N /L) is m-primary
and, hence,

H{Y" (M, N/L) = HJ Ay, (M, N/L) = HiF (M, N/L).
On the other hand, considering the exact sequence
HI™ (M, L) — HIYY (M, N) — HI"(M, N/L) — 0,

if HIdJ“" (M, L) #0, then there exists p € Att(H;H" (M, L)). Then we have p €
Ass(L) and cd(/, M, R/p) =d + n by Theorem 2.3. As p € Ass(N), then p €
Att(H{T™ (M, N)), thus p € Att(HY™ (M, N)), which contradicts with p € Ass(L).

Therefore, H;H”(M, L) =0 and, hence, H;H" (M, N)= H;H" (M,N/L). Since
there exists an exact sequence

H(N/L)— H}(N/L)— 0, H{*"(M,N/L)=Ext4(M, H}(N/L))

and
HIt" (M, N/L) = Ext&(M, H'(N/L))

by Proposition 2.2(i), then H}H” (M, N) —> HIdJr" (M, N)—0 is an exact
sequence. a
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THEOREM 3.3. Assume that pd(M) =d < oo, dim N =n < oo. If
At(H{T (M, N)) = At(HIT (M, N)),
then H{ ™" (M, N) = H}™" (M, N).
PROOF. Since HI‘H'" (M, N) and H;H” (M, N) are Artinian, then
d4+n, 35 xr ~ d+n d+n, 35 xr ~ d+n

so we can assume that R is complete. We take L to be a submodule of N such
that Ass(N/L) = Att(H{ t" (M, N)), Ass(L) = Ass(N)\ Att(H} ™" (M, N)). By the
following two exact sequences

H{™ (M, L) — HIT"(M, N) - H™ (M, N/L) — 0,

HY™ (M, L) — HY™" (M, N) — HY™ (M, N/L) — 0.

As in the proof of Proposition 3.2, we obtain
H{™ (M, N) = HE™ (M, N/L) = H9T™™ (M, N).

In general, there exists an epimorphism H[ (M) — Hj (M), where dim M =n.
Next, in a particular case, we obtain that anJr”(M, N)= HIdJr"(M, N), where
pd(M) =d <oo,dim N =n < oco. O

PROPOSITION 3.4. Assume that pd(M)=d <oo, dim N =n <oo such that
Ass(N) = Att(H! ™ (M, N)). Then H ™" (M, N) = HEH" (M, N).
PROOF. From
Ass(N) = Att(H ™ (M, N)) € Assh(N) C Ass(N),

we have

Att(HIdJr”(M, N)) = Assh(N) = Att(H(N)) 2 Att(H,ff”(M, N))
by Theorem 2.3. On the other hand, since there exists an exact sequence
HI(N)— HJ(N) — 0, then Ext4(M, H(N))— Ext4(M, H}(N)) — 0 is an
exact sequence, hence H“ff”(M ,N)—> HI‘H”(M ,N) —> 0 is an exact sequence

by Proposition 2.2(i).  Therefore, Att(HA (M, N)) 2 Att(HI[H" (M, N)), so
HI (M, N) = HE' (M, N) by Theorem 3.3. O
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