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Abstract
We consider the measures of partisan symmetry proposed for practical use in the political science litera-

ture, as clarified and developed in Katz, King, and Rosenblatt (2020, American Political Science Review 114,

164–178). Elementary mathematical manipulation shows the symmetry metrics to have surprising prop-

erties that call their meaningfulness into question. To accompany the general analysis, we study mea-

sures of partisan symmetry with respect to recent voting patterns in Utah, Texas, and North Carolina,

flagging problems in each case. Taken together, these observations should raise major concerns about the

available techniques for quantitative scores of partisan symmetry—including the mean–median score, the

partisan bias score, and the more general “partisan symmetry standard”—with the decennial redistricting

underway.
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1 Introduction

In the political science literature, there is a long legacy of work on partisan gerrymandering, or the

act of drawing political boundary lines to secure extra seats for the party that controls the process.

One of the questions attracting the most attention has been to measure the degree of partisan

advantage secured by a particular choice of redistricting lines. But to counteract partisan gaming

requires a baseline notion of partisan fairness—extra seats compared to what baseline?—that has

proved elusive. The family of fairnessmetrics with perhaps the longest pedigree is called partisan
symmetry scores (Gerken et al. 2018; Grofman 1983; Grofman and Gaddie 2019; Grofman and King

2007; King and Browning 1987; King et al. 2005), which got a conceptual and empirical overview

and a timely renewed endorsement in Katz, King, and Rosenblatt (2020). The partisan symmetry

standard is premised on this intuitively appealing fairness notion: the share of representation

awarded to one party with its share of the vote should also be secured by the other party, if the

vote shares are exchanged. For instance, if Republicans achieve 40% of the seats with 30% of the

vote, then it would be deemed fair for the Democrats to also achieve 40%of the seats with 30% of

the vote.

At the heart of the symmetry ideal is a commitment to the principle that half of the votes should

secure half of the seats. There are several metrics in the symmetry family that derive their logic

from this core axiom. Themean–medianmetric is vote-denominated: it produces a signed number

that is often described as measuring how far short of half of the votes a party can fall while still

securing half of the seats. A similar metric, partisan bias, is seat-denominated. Given the same

input, it is said to measure how much more than half of the seats will be secured with half of the

votes. The ideal value of both of these scores is zero. These are two in a large family of partisan

metrics that can be described in terms of geometric symmetry of the “seats–votes curve.”
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The focus in the current work is to show that there are serious obstructions to the practical

implementation of symmetry standards. This is of pressing current interest at the time of writing:

we are in a period of intense public focus on redistricting reform and in the midst of a new round

of redistricting. In 2018 alone, voter referenda led four states to pass constitutional amendments

(CO, MI, MO, and OH), and another to write reforms into state law (UT) in anticipation of 2021

redistricting.1 In Utah, partisan symmetry was adopted as a criterion to be considered by the

new independent redistricting commission before plans would be approved.2 We sound a note of

caution here, showing that the versions of these scores that are realistically useable are eminently

gameable by partisan actors and do not have reliable interpretations. To be precise, in each state

we studied, themost extreme partisan outcomes for at least one political party are still achievable

with a clean bill of health from the full suite of partisan symmetry scores. Furthermore, the signed

scores (likemean–medianMMandpartisan bias PB)make frequent sign errors in termsof partisan

advantage.

Utah itself gives strong evidence of the interpretation problems: with respect to recent voting

patterns, a good symmetry score can only be achieved by a plan that secures a Republican

congressional sweep;what ismore, thepopular symmetry scoresdescribedabove flag all possible

plans with any Democratic representation as major Republican gerrymanders.

We argue that there is at present no workable framework tomake good on the idea of partisan

symmetry. Amanageable symmetry standard requires a swing assumption of some kind, because

its logic is built on voting counterfactuals (namely, table turning). But this puts the most tenuous

electionmodeling task, voteprediction, at the center of themethodology. And the symmetry fram-

ing requires that the metrics be insensitive to the fundamentally spatial nature of redistricting:

there are many ways, not one way, for a vote pattern to shift by a given amount.3,4

Themain contribution of the paper is a Characterization Theorem for partisan symmetry under

linear swing that clarifieswhat is actuallymeasured by the leading symmetry scores. Applying this

characterization, we demonstrate that realistic conditions can easily lead to “paradoxes” where

one party has an extreme advantage in seats but the other party is flagged as the beneficiary of

the gerrymander. We then use recent electoral data from three states to demonstrate the ease of

gaming symmetry scores and the prevalence of these paradoxical labelings.

1.1 Literature Review
1.1.1 Building the Seats–Votes Curve with Available Data. We consider an election in a state with k

districts and two major parties, Party A and Party B. A standard construction in political science

is the “seats–votes curve,” a plot representing the relationship of the vote share for Party A to

the seat share for the same party. Observed outcomes generate single points in V–S space—for

instance, (.3, .4) represents an election where Party A got 30% of the votes and 40% of the seats—

but various methods have been used to extend from a scatterplot to a curve, such as by fitting a

curve froma given class (linear or cubic, for instance) to observed data points.Wewill focus on the

1 At the time of writing, those measures stand in CO, MI, and OH. In Missouri, voters overwrote and partly erased the reform
in the subsequent vote in 2020. In Utah, the state legislature repealed parts of the reform.

2 From the voter initiative: “The Legislature and the Commission shall use judicial standards and the best available
data and scientific and statistical methods, including measures of partisan symmetry, to assess whether a proposed
redistricting plan abides by and conforms to the redistricting standards” that bar party favoritism. The legislature
later blocked this from taking effect. Compare Utah Code, Chapter 7 Title 20A, Chapter 19 Part 1, Para. 103,
https://le.utah.gov/xcode/Title20A/Chapter19/C20A-19\2018110620181201.pdf.

3 This is also the problem with axioms for partisan fairness metrics such as McGhee’s “efficiency principle,” which assumes
that more votes will lead to more seats, absent manipulation. In reality, the spatial distribution of a party’s votes, and not
just the number, controls the possibilities for representation.

4 In the end, our conclusion is that methods centered on varying districting lines rather than varying votes should be pre-
ferred in the studyof gerrymandering. This recommendation is consistentwithapracticeof perturbing recent votepatterns
to get a view of the robustness of a gerrymander. A robustness check or a trend projection can be a valuable element of a
redistricting analysis while playing a secondary rather than primary role.
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Figure 1. Red: The seats–votes curve γ generated by vote shares v = (.21, .51, .61, .85, .87) under uniform
partisan swing. This gives v = .61 as the average vote share across the districts. The jump points, where
an additional seat changes hands, are marked on the V-axis. The blue curve is the reflection of γ about the
center point�. Since MM is the horizontal displacement from� to a point on γ, this hypothetical election has
a perfect MM = 0 score, but it is not very symmetric overall, with PG = .112, seen as the area of the shaded
regionbetweenγ and its reflection. Because the step function jumpsatV = .5, it is not clear howPB is defined
in this case.

Figure 2. The seats–votes curve γ generated by the vote share vector v = (.221, .383, .417, .446, .719), which
was the observed outcome in the 2016 Congressional races in Oregon from the Republican point of view. This
gives amean ofv = 0.4372, and earned Republicans 1 seat out of 5. The blue curve is the reflection of γ about
the center, so it shows seats at each vote share from theDemocratic point of view. This could be regarded as a
situationwith reasonably good symmetry, since the red and blue curves are close. Its scores are PG = .05248,
MM = −.0202, and PB = −.1. The sign of the latter two scores is thought to indicate a Democratic advantage.

construction of seats–votes curves that is emphasized in Katz et al. (2020): linear uniform partisan

swing. Beginning with a single data point derived from a districting plan and a vote pattern, the

vote share is varied by a uniform shift, so that the district vote shares (v1, . . . ,vk ) will shift to

(v1 + t , . . . ,vk + t ). This generates a step function spanning from (0,0) to (1,1) in the V–S plot, with
a jump in seat share each time a district is pushed past 50% vote share for Party A. (See Figures 1

and 2 for examples.)

Linear uniform partisan swing is the leading method proposed for use in implementation.

Katz–King–Rosenblatt explicitly make it Assumption 3 in their symmetry survey—and use it

throughout the paper—noting that the curve-fitting alternative is more suited “for academic

study . . . than for practical use” in evaluation of plans. Katz et al. also mention Assumption 4, a

stochastic generalization of uniform swing, as a preferred alternative to linear swing “whenever

it makes a difference,” and cite Brunell (1999) and Jackman (1994) as examples that employ that

model. This would add many additional modeling decisions, so would be difficult to carry out

authoritatively in a practical setting. Nevertheless, we will identify some differences in shifting

to a stochastic swing approach in notes below. In short, neither including low levels of noise nor

employing a vote vector obtained by regression from several elections will compromise the main

findings here.

In any event, it is simple uniform partisan swing that is prevalent in practical applications.

Grofman noted in 1983 that linear swing is preferred in practice to more sophisticated models

(Grofman 1983, 14); it is touted as the standard technique in Garand and Parent (1991); and it
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has been invoked as recently as 2019 in expert reports and testimony (Mattingly 2019). Finally,

Missouri voters actually wrote linear uniform partisan swing into their state constitution in 2018,

requiring that an election index prepared by the state demographer be subjected to a swing of

t = −.05,−.04, . . . ,+.05 to test a plan’s responsiveness.5 Because the present analysis is designed

to address the prospects for implementation, we therefore focus on the linear swing model.

1.1.2 DerivingSymmetryScores fromtheSeats–VotesCurve. Givenaseats–votes curve,manysymmetry

scores have been proposed; here, we focus on the mean–median score MM, the partisan bias

score PB, and the partisan Gini score PG, which have all been considered for at least 35 years.

(Definitions are found in the next section.) Grofman’s 1983 survey paper (Grofman 1983) lays out

eight possible scores of asymmetry once a seats–votes curve has been set. His Measure 3 is vote-

denominated bias, which would equal MM under linear uniform partisan swing; similarly, his

Measure 4 corresponds to PB, and Measure 7 introduces PG.

Because thepartisanGini is definedas theareabetween the seats–votes curveand its reflection

over the center (shown in the shaded regions in Figures 1 and 2), it is easily seen to “control” all the

other possible symmetry scores: when PG = 0, its ideal value, all partisan symmetry metrics also

take their ideal values, including MM and PB. This agrees with Katz–King–Rosenblatt (Katz et al.
2020, Definition 1), where the coincidence of the curve and its reflection, i.e., PG = 0, is called the

“partisan symmetry standard.” In the current work, our Theorem 3 gives precise necessary and

sufficient conditions for the partisan symmetry standard to be satisfied.

The literature invoking MM and PB as measures of bias is too large to survey comprehensively.

We note that the interpretation of median-minus-mean as quantifying (signed) Party A advantage

is fairly standard in the journal literature, such as: “Themedian is 53 and themean is 55; thus, the

bias runs two points against Party A (i.e., 53−55 = −2)” (McDonald and Best 2015). The connection

to the seats–votes curve is also standard: MM “essentially slices the S/V graph horizontally at the

S = 50% level and obtains the deviation of the vote from 50%” (Nagle 2015, 351).6

We briefly note the impact of introducing stochasticity on the analysis below, and we note

that modifying the seats–votes curve γ by adding noising terms with mean zero will change the

precision of our findings but not the basic structure, replacing exact equalities in the Characteri-

zation Theoremwith approximate equalities. In particular, this does not impact the prevalence of

“paradoxes,” for two reasons. First, when the curve γ passes far from (V ,S )= (.5, .5), perturbations

to γwill notmove it past the center point,whichwould beneeded to change the sign ofMMandPB

(as explained below in Section 2). Second, the standard mean–median score is simply calculated

as the difference of themean vote share by district and themedian (Katz et al. 2020, 173), and thus
relies on no swing assumption at all! Abandoning linear swing therefore does not fix the problems

with the mean–median score, but only breaks its relationship to the seats–votes curve.

1.1.3 Applying Symmetry Scores in Practice. The current work is designed to evaluate the techniques

proposedby leadingpractitioners for practical use. Political scientists and their collaborators have

advanced these scores in amicus briefs spanning from LULAC v. Perry (2006) (King et al. 2005) to
Whitford v. Gill (2018) (Gerken et al. 2018) to Rucho v. Common Cause (2019) (Grofman and Gaddie

2019). The scores have been claimed to be “reliable and difficult tomanipulate,” and authors have

argued that while “Symmetry tests should deploy actual election outcomes” (as we do here), they

will nonetheless “measure opportunity,” i.e., give information about future performance (Gerken

et al. 2018, 17 and 24). That assertion is drawn from an amicus brief in the Whitford case explicitly

5 “[T]he electoral performance index shall be used to simulate elections in which the hypothetical statewide vote shifts by
1%–5% in favor of each party. The vote in each individual district shall be assumed to shift by the same amount as the
statewide vote.” Compare Missouri State Constitution, Article III Section 3.

6 There is even more work centered on PB (notably King and Browning (1987), but it is more rarely used in conjunction with
linear swing, since that assumption makes its values move in large jumps.
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proposing mean–median as a concrete choice of score for this task. As laid out earlier in the

influential LULAC brief,

“Models applying the symmetry standard are by their nature predictive, just as the legislators

themselves are predicting the potential impact of the map on partisan representation. The

symmetry standard and the resulting measures of partisan bias, however, do not require

forecasts of a particular voting outcome. Rather, by examining all the relevant data and the

potential seat divisions that would occur for particular vote divisions, it compares the poten-

tial scenarios and determines the partisan bias of a map, separating out other potentially

confounding factors. Importantly, those drawing the map have access to the same data used

to evaluate it, and no data is required other than what is in the public domain” (King et al.
2005, 11).

This paper takes up precisely this modeling task in the manner explicitly proposed by its

authors.

1.2 Premises and Caveats
1.2.1 What Is Partisan Gerrymandering?. To assess the success of partisan symmetry metrics at their

task of identifying partisan gerrymandering, we should be clear about first principles. First, we

agree on the definition from Katz et al. (2020): “Partisan gerrymanderers use their knowledge of

voter preferences and their ability to draw favorable redistricting plans to maximize their party’s

seat share.” That is, theexpress intentof apartisangerrymander is to secure for their party asmany

seats as possible under the constraints of voter geography and the other rules of redistricting.

This means that a (successful) gerrymander in favor of Party A is a districting plan that obtains

an extreme Party A seat share. In the public perception, that will usually be assessed by com-

paring the seat share to the vote share, undergirded by an intuition that equates fairness with

proportionality. But proportionality is not the neutral tendency of redistricting, and in some cases,

itmaybe literally impossible to secure (Duchin et al. 2019). For thebetter part of a century, political
scientists have investigated this neutral tendency by appealing to constructions like seats–votes

curves and cube laws. This literature has been severely limited by its inattention (with a few

notable exceptions) to spatial factors, i.e., to the geography of the vote distribution.7 A powerful

alternative has recently emerged through so-called ensemble methods: Markov chain algorithms

(for example) can now build samples of alternative districting plans, holding a vote distribution

fixed. Although wemake use of ensembles of alternative plans below, the crux of this paper does

not require the reader to commit to this or any particular choice of nongerrymandered baseline.

On any common view of the baseline, from proportionality to cube law to outlier analysis from an

ensemble, the standard definition of partisan gerrymandering entails views like these:

• Circa 2016, the voter preferences in North Carolina were fairly even between Democratic

and Republican candidates for statewide office. Both algorithmic techniques and human

mapmakers can easily draw plans ranging from 7 to 10 districts with a Republican majority

in the 13-member Congressional plan. In this context, a successful Republican gerrymander

would secure a 10R-3D outcome, or an evenmore extreme outcome if possible.

• In Utah, voting patterns in this period tend to favor Republican over Democratic candidates

by a roughly 70–30 split. This is tilted enough that a 4R-0D Congressional plan is in some

sense typical or expected, and need not be viewed as a gerrymander. However, it would be

an error to label a 3R-1D outcome as a Republican-favoring gerrymander.

We will treat these as premises in the treatment below.

7 The absence of vote geography in the bulk of redistricting research is noted, for instance, by Calvo and Rodden (2015),
Johnston (2002), and Rodden (2010).
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1.2.2 Ensembles, Not Estimators. In this paper, the algorithmically generated plans are not offered

as a statistical experiment and come with no probabilistic claims, but mainly provide existence
proofs to illustratehow readily gameablepartisan symmetry standardswill be for thoseengaged in

redistricting.8 Themethods also producemany thousands of examples of plans that are paradox-

ical in the sense developed in this paper, where signed partisan symmetry metrics identify the

wrong party as the gerrymanderers.

The algorithm used here (described in Section 4.1) builds a sample of plans that are plausible

by the lights of traditional districting principles: they are population-balanced, contiguous, and

relatively compact, using whole precincts as the building blocks. There are techniques to layer in

other criteria in addition to these in a state-specificway to set up amore thoroughoutlier analysis,

but that is not needed for this application (see, e.g., Becker et al. 2021; DeFord and Duchin 2019;

DeFord, Duchin, and Solomon 2020 ). Nothing here, or in the broader logic of ensemble analysis,

assumes that line drawers are random agents.

1.2.3 The Competitiveness Caveat. Writing after the LULAC v. Perry decision in 2007, Grofman and King

offer this key caveat: “[W]e are not proposing to apply this methodology in every situation, but

only inpotentially competitive jurisdictions,where the consequences of gerrymanderingmight be

especially onerous in thwarting thewill of themajority” (Grofman andKing 2007 ; their emphasis).

In the following paragraph, they suggest that “reasonably competitive” settings could be those

where each party receives 40%–60% of vote share. This is a sizeable limitation on the scope of

the symmetry approach: only about half of states have a recent U.S. Senate voting pattern in this

range, for example.9 Two of the three cases presented below (North Carolina and Texas) are in this

reasonably competitive zone; the third is Utah, where a partisan symmetry standard was recently

enacted in law. We could not find any record of political scientists speaking out against Utah’s

adoption of this measure while it was on the ballot in 2018.

The more recent Katz et al. (2020) mainly places its competitiveness caveat in Appendices

A and B,10 although it is obliquely referenced in Assumption 2, which requires that there is a

sufficiently large range of “possible values” for vote outcomes. Even there, the caveat is hedged:

“Although Assumption 2 is defined in terms of possible electoral outcomes, those that are exceed-

ingly unlikely, such as Washington DC voting overwhelming[ly] Republican, do not violate this

assumption but may generate model dependence in estimation.” On our reading, the authors do

not rule out the use of partisan symmetry metrics even on states with an extreme partisan lean.

In any case, the analysis presented here, which shows that the partisan symmetry standard

devolves to a simple numerical test, extends to competitive as well as uncompetitive situations.

2 A Mathematical Characterization of the Partisan Symmetry Standard

We begin with definitions and notations needed to state Theorem 3, which characterizes when

PG = 0 (the Partisan Symmetry Standard fromKatz et al. (2020)). We describe the vote outcome in

the election using an ordered tuple (i.e., a vector) whose coordinates record the Party A share of

the two-party vote in each of the k districts as follows: v = (v1, . . . ,vk ),where 0 ≤ v1 ≤ · · · ≤ vk ≤ 1.

Let the mean district vote share for Party A be denoted v = 1
k

∑
vi and the median district vote

share, vmed, be the median of the {vi }, which equals v(k+1)/2 if k is odd and 1
2 (vk /2 +v(k /2)+1) if k is

even because of the convention that coordinates are in nondecreasing order. We note thatv is not

necessarily the same as the statewide share for Party A except in the idealized scenario that the

districts have equal numbers of votes cast (i.e., equal turnout).

8 This is exactly the use of ensemble methods that is endorsed in Katz et al. (2020, 176) as productive and compelling: a
demonstration of possibility and impossibility.

9 See, for instance, https://github.com/gerrymandr/party-tilt.
10 The supplementary materials to Katz et al. (2020) can be found at this link: https://perma.cc/QZ7E-CU8D.
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The number of districts in which Party A has more votes than Party B in an election with vote

shares v is the seat outcome, #{i : vi >
1
2 }. This induces a seats–votes function γ = γv defined as

γ(v + t ) = #{i : vi + t > 1
2 }/k , which we can interpret as the share of districts won by Party A in the

counterfactual that an amount twas added to A’s observed vote share in every district. Varying t to
range over the one-parameter family of vote vectors (v1 + t , . . . ,vk + t ) is known as (linear) uniform
partisan swing. The curve γ, treated as a function [0,1] → [0,1], has been regarded asmeasuring

how a fixed districting plan would behave if the level of vote for Party A were to swing up or down.

Below,wewill refer to the functionand its graph interchangeably, andwewill call it the seats–votes
curve associated to the vote share vector v. We begin with several scores based on v and γ.

DEFINITION 1 (Partisan Symmetry Scores) The partisan Gini score PG(v) is the area between

the seats–votes curve γv and its reflection over the center point�= ( 12 ,
1
2 ).

PG(v) =

∫ 1

0

��γ(x )−γ(1−x )+1
�� dx .

Themean–median score is MM(v) = vmed−v . The partisan bias score is PB(v) = γ( 12 )−
1
2 .

These scores can all be related to the shape of the seats–votes curve γ (see Figures 1 and 2).

Partisan Gini measures the failure of γ to be symmetric about the center point � = ( 12 ,
1
2 ), in

the sense that it is always nonnegative, and it equals zero if and only if γ equals its reflection.

Mean–median score is thehorizontal displacement from� to apoint onγ,11 which iswhy it is votes-

denominated (vote share being the variable on the x-axis). Similarly, partisan bias is the vertical

displacement from� to a point on γ, and is therefore seats-denominated. (We note that ( 12 ,γ(
1
2 )) is

awell-definedpoint unless there is a jumpprecisely at 1
2 , which occurs if somevi = v on the nose—

this is shown in Figure 1 but should not happen with real-world data.) Below, we will focus on MM

instead of PB, but we note that MM > 0 =⇒ PB ≥ 0 because of the geometric interpretation: if γ

passes to the left of� and is nondecreasing, then it must pass through or above�.

We can see that the curve γ, and consequently the partisan Gini score, is exactly characterized

by the points atwhich Party A has added enough vote share to secure themajority in an additional

district. For the following analysis, it will be useful to characterize this curve in terms of the v data.

DEFINITION 2 (Gaps and Jumps) The gaps in a vote share vector v can bewritten in a gap vector

δ = (δ1,δ2, . . . ,δk−1) = (v2−v1, v3−v2, . . . , vk −vk−1).

The jump points for vote share vector v are the values of v + t such that some vi + t = 1
2 . We

have

t1 :=
1

2
−vk , t2 :=

1

2
−vk−1 , . . . , tk :=

1

2
−v1,

as the times corresponding to these jumps, so we can denote the jumps as ji =
1
2 +v −vk+1−i ,

and the jump vector as j = (j1, . . . , jk ).

By definition of γ, these jump points ji , marked in the figures, are exactly the x-axis locations
(i.e., the V values) at which γ jumps from (i −1)/k to i /k .12

11 To see this, plug in t = 1
2 −MM−v = 1

2 −vmed to deduce that (
1
2 −MM, 12 ) is on γ—note that this connection from arithmetic

to geometry is only exact when γ has been constructed with linear swing, which is the standing assumption in this paper.
12 Warning to the reader: if you try to draw your own examples to test some of these results, be aware that not just any step

function can be generated by a vote vector. The jump points must satisfy
∑
ji =

k
2 , which follows directly from summing

ji =
1
2 +v −vk+1−i .
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With this notation, we can rephrase and relate the various partisan symmetry scores. For

instance, the centermost rectangle(s) formed between γ and its reflection have height 2PB and

width 2MM, which lets us relate the scores. For small k, these relationships reduce to extremely

simple expressions: PG = 4
3 |MM| when k = 3, and PG = 2|MM| when k = 4 (proved in Appendix A).

For any number of districts, we obtain a clean characterization of precisely when vote shares

by district satisfy the Partisan Symmetry Standard (Katz et al. 2020, Definition 1).

THEOREM 3 (Partisan Symmetry Characterization) Given k districts with vote shares v, jump
vector j, and gap vector δ, the following are equivalent:

PG(v) = 0, (Partisan Symmetry Standard)

ji + jk+1−i −1 = 0 �i , (jumps)

1

2
(vi +vk+1−i ) = v �i , (mean vote)

1

2
(vi +vk+1−i ) = vmed �i , (median vote)

δi = δk−i �i . (gaps)

The proof is included in Appendix A. Note also that the theorem statement makes it clear that

PG = 0 =⇒ MM = 0 by comparing the third equality to the fourth, which fits with the earlier

observation that partisan Gini “controls” the other scores.

Theorem 3 asserts that the partisan symmetry standard under linear swing is nothing but the

requirement that the vote shares by district are distributed on the number line in a symmetric

way.13 In particular, this tells you at a glance that an election with vote shares (.37, .47, .57, .67) in

its districts rates as perfectly partisan-symmetric, while onewith vote shares (.37, .47, .57, .60) falls

short. This is illustrated in Figure 3.

3 Paradoxes with Signed Symmetry Scores

Recall that mean–median and partisan bias are signed scores that are supposed to identify which

party has an advantage and by what amount. A positive score is said to indicate an advantage for

Party A (the point-of-view party whose vote shares are reported in v). Let us say that a paradox
occurs when the score indicates an advantage for one party even though it has the fewest seats it

Figure3.Four electionoutcomes, shownas vote sharesbydistrict.On the left-hand side, thevi are symmetric
about their center, so all partisan symmetry scores are perfect. On the right-hand side, nonsymmetric
outcomes. The partisan symmetry standard can be eyeballed by a glance at the vote shares in the districts.

13 Consider replacing simple linear swing by the modeling approach frequently used in stochastic uniform partisan swing,
such as in the JudgeIt software package. In this case, rather than using a single election’s vote share by district, a
linear swing is applied to a different vote vector that is obtained by regression from several elections. In this case, the
Characterization Theorem still holds, applied to this inferred vote vector instead of the observed vote vector.
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can possibly earn with its vote share, say.14 In other words, a paradoxmeans that the scoremakes

a sign error with respect to the standard definition of partisan gerrymandering.

When there is an extremely skewed outcome (with a vote share for one party exceeding 75%),

we will show that paradoxes always occur, just as amatter of arithmetic. But even for less skewed

electionswith a vote share between 62.5% and 75% for the leading party—which frequently occur

in practice!—mundane realities of political geography can force these sign paradoxes.

To illustrate these observations, wewill beginwith the case of k = 4 districts, where the algebra

is simpler. The issues are not limited to small k, however: in the empirical section, we will find

paradoxes of this kind in k = 13 and k = 36 cases as well.

EXAMPLE 4 (Paradoxes Forced by Arithmetic) Supposewe have k = 4 districts and an extremely

skewed election in favor of Party A, achieving 75% < v < 87.5%.With equal turnout, Party B can

get at most one seat. However, every vote vector v achieving this outcome (one B seat) yields

MM ≥ v − 3
4 > 0. In particular, such districting plans all have positive MM and PB, paradoxically

indicating an advantage for Party A in every case where Party B gets representation.

The demonstration is simple arithmetic. Since 1
2 (v2 +v3) = vmed, we have

v =
1

4
(v1 +v2 +v3 +v4) =

v1 +v4
4

+
v2 +v3

4
=⇒ vmed−v = v −

v1 +v4
2
.

Since v1 ≤
1
2 (for B to win a seat) and v4 ≤ 1, we get MM = vmed−v ≥ v − 3

4 , as needed.

A stronger statement canbemade if one takespolitical geography intoaccount. Itwas shownby

Duchin–Gladkova–Henninger-Voss–Newman–Wheelen in a study of Massachusetts (Duchin et al.
2019) that, if the precincts are treated as atoms that are not to be split in redistricting, then several

recent elections have the property that no choice of district lines can create even one district

with Republican vote share over 1
2 . This is because Republican votes are distributed extremely

uniformly across the precincts of the state.While other states are not as uniformasMassachusetts,

it is still true that there is some upper bound Q on the vote share that is possible for each party in

any district. When this bound satisfies Q < 2v − 1
2 , even moderately skewed elections are forced

to exhibit paradoxical symmetry scores. As we will see below, having all vi < 2v − 1
2 ensures both

that one seat is the best outcome for Party B and that the median vote share is greater than the

mean.

EXAMPLE 5 (Paradoxes Forced by Geography) Suppose we have k = 4 districts and a skewed

election in favor of Party A, with 62.5% ≤ v < 75%. Suppose the geography of the election has

Party A support arranged uniformly enough that districts cannot exceed a share Q of A votes,

for some Q < 2v − 1
2 . Then, with equal turnout, Party B can get at most one seat. However,

every vote vector v achieving this outcome (oneB seat) has a positiveMMandPB, paradoxically

indicating an advantage for Party A in every case where Party B gets representation.

Proof. First, it is easy to see that Party B cannot achieve two seats: in that case, we would have

v1,v2 ≤
1
2 . Since we also have v3,v4 ≤ Q < 2v − 1

2 , we can average the vi to get the contradiction

v < v .

To see that MM > 0, we write

MM = vmed−v =
v2 +v3

2
−
v1 +v2 +v3 +v4

4
=
v1 +v2 +v3 +v4

4
−
v1 +v4

2
= v −

v1 +v4
2
.

Since v1 <
1
2 and v4 ≤ Q < 2v − 1

2 , we have MM > v −
2Q+1
4 > v −v = 0. �

14 In practical settings, it may be hard to calculate the absolute minimum that is possible, so this may refer to an extremely
low number of seats with respect to the known range of alternatives, as in the figures below.
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4 Investigations with Observed Vote Data

4.1 Methods
In this section, we illustrate the theoretical issues from above, using naturalistically observed

election data togetherwith aMarkov chain technique that produces large ensembles of districting

plans.15 In each case, we have run a recombination (“ReCom”) Markov chain for 100,000 steps—

long enough to comfortably achieve heuristic convergence benchmarks in all scores that we

measured—while enforcing population balance, contiguity, and compactness.16 Note that some

Markov chain methods count every attempted move as a step, even though most proposals

are rejected, so that each plan is counted with high multiplicity in the ensemble; in our setup,

the proposal itself includes the criteria, and repeats are rare. 100,000 steps produces upward of

99,600 distinct districting plans in each ensemble presented here.

We ran trials on multiple elections in our dataset, and all results are available for comparison

(VRDI 2020). Below,wehighlight themost recent available Senate race fromaPresidential election

year in each state, to match conditions across cases as closely as possible. The data bottleneck

is a precinct shapefile matching geography to voting patterns, which is surprisingly difficult to

obtain. A database of shapefiles is available at MGGG (2020). We use the statewide U.S. Senate

election rather than an endogenous Congressional voting pattern, because the latter is subject

to uncontested races and variable incumbency effects. For instance, Utah’s 2016 Congressional

race had all four seats contested, but a Republican vote in District 3 went for hard-right Jason

Chaffetz, while on the other side of the invisible line to District 4, the vote went to Mia Love, a

Black Republican who is outspoken on racial inequities. When the district lines are moved, it is

not clear (for example) that a Love voter stays Republican. The U.S. Senate race had a comparable

number of total votes cast to the Congressional race (1,115,608 vs. 1,114,144) and offers a consistent

choice of candidates around the state, making it better suited to methods that vary district lines.

4.2 Utah and the “Utah Paradox”
We begin with Utah, where the elections that were available in our dataset all come from 2016.17

Utah has only four congressional districts and has a heavily skewed partisan preference, with a

statewide Republican vote share of 71.55% in the 2016 Senate race.18 Although it is far from clear

that table turning between the parties is conceivable in the near future,19 Utahns nonetheless

recently enacted partisan symmetry consideration into state law.

Figure 4 showsoutcomes fromour 100,000-step ensemble. The vastmajority (94.266%)ofUtah

plans found in our ensemble have all four R seats, under the Senate 2016 vote pattern with the

remaining plans giving 3–1 splits. The chain found 5,734 plans with three Republican and one

Democratic seats, and we see that all of these have PG scores above 0.06. Below, we explore and

explain these bounds on seats and scores.

15 All data and code are public and freely available for inspection and replication in GitHub (VRDI 2018, 2020) and Dataverse
(DeFord et al. 2021).

16 The population balance imposed here is 1%deviation from ideal district size. Such plans are easily tuneable to one-person
deviation by refinement at the block level without significant impact to any other scores discussed here. Contiguity is
enforced by recording adjacency of precincts. Compactness, at levels comparable to those observed in humanmadeplans,
is an automatic consequence of the spanning-tree-based recombination step. For more information about the Markov
chain used here, see DeFord, Duchin, and Solomon (2019).

17 Out of GOV16, SEN16, and PRES16, none gives an especially pure partisanship signal, because the Democratic candidates
for Governor and Senatewere quite weak, while the partisanship in the Presidential racewas complicated by the presence
of a very strong third-party candidate in EvanMcMullin, giving that race an extremely different pattern. TheGovernor’s race
shows similar results to the Senate, as the reader can verify in VRDI (2020).

18 Recall that v is the average of the district vote shares, which will not generally equal the statewide share except under an
equal-turnout assumption.

19 The amount of linear partisan swing needed to reverse the partisan advantage should be viewed as unreasonably large
under these conditions. With respect to SEN16, fully 199 out of 2,123 precincts in the state have Republican vote share
that reaches zero under this amount of swing. This is one of the reasons (although not the only reason) that this style of
quantifying partisan advantage is poorly suited to Utah.
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Figure 4. Ensemble outputs for 100,000 Utah Congressional plans with respect to SEN16 votes. Republicans
received 71.55% of the two-way vote in this election, which is marked in the plots to show the corresponding
seat share. There are 5,734 plans in the ensemble in which Democrats get a seat; these are shown in blue
in the top row, but they are absent from the next two rows, because a D seat never occurs in plans with
good symmetry scores. The last row of the figure shows the MM and PG histograms restricted to the plans
with a D seat. The empirical data corroborate the prediction that good symmetry scores lock out Democratic
representation, and illustrate the “Utah paradox” that a Democratic-won seat always receives the label of a
Republican gerrymander.
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When looking at the full PG histogram, we see a large bulk of plans with nearly ideal PG scores,

all giving a Republican sweep (four out of four R seats). This is surprising enough to deserve a

name.

The Utah Paradox.

• Partisan symmetry scoresnear zeroare supposed to indicate fairness, andsignedsymmetry

scores are supposed to indicate which party is advantaged.

• There are many trillions of valid Congressional plans in Utah, and under reasonable geo-

graphical assumptions, every single one of them with PG close to zero is mathematically

guaranteed to yield a Republican sweep of the seats. In particular, even constraining

symmetry scores to better than the ensemble average (for any reasonably diverse neutral

ensemble of alternatives) would deterministically impose a partisan outcome: the one in

which Democrats are locked out of representation.

• Furthermore, the signed scores make a sign error: they report all plans with Democratic

representation to be significant pro-Republican gerrymanders.

Geographic Assumptions. The UT-SEN16 election has a statewide R share of .7155, so this is

roughly equal to the district mean v (or exactly equal in the equal-turnout case). If we can show

that the possible Republican share of a district is bounded above by any Q < .931, then the

arguments of the last section show that Democrats can secure at most one seat, and that every

plan with Democratic representation has the sign error MM > 0. We consider the assumption

that no district can exceed 93% Republican share to be very reasonable. Indeed, even a greedy

assemblage of the 608 precincts with the highest Republican share in that race (which is the

number needed to reach the ideal population of a Congressional district) only produces a district

with R share .888. And this is even without imposing a requirement that districts be contiguous,

which certainly limits the possibilities further and only strengthens the bound. As a further

indication, our Markov chain run of contiguous plans never encounters a district with Republican

share over .8595.

EXAMPLE 6 (The Utah Paradox, Empirical) The UT-SEN16 vote pattern can be divided into 4R-

0D seats or 3R-1D seats. However, even though MM, PB, and PG scores can all get arbitrarily

close to zero, there are no reasonably symmetric plans that secure a Democratic seat. In our

algorithmic search, every plan with nonzero Democratic representation has PG > .069, MM >

.034, and PB ≥ .25, which is in the worst half of scores observed for each of those scores. Thus,

even amild constraint on partisan symmetry has imposed an empirical Democratic lockout. As

predicted by the analytic paradox, all plans with D representation are reported as significant

R-favoring gerrymanders.

The basic idea here is extremely simple, and readers can try it for themselves. Choose any four

numbers from0 to 1whosemean is .7155. If one of them is at or below .5 (a Democratic-won seat),

you will find that the median of the four scores is greater than the mean, so the mean–median

score is positive. It is simply false that amedian higher than themean is a flag of advantage for the

point-of-view party.

As described in the introduction, Utah recently became the first state to encode partisan

symmetry as adistricting criterion in statute. Thismakes theUtahParadoxquite a strikingexample

of the worries raised by using partisan symmetry scores in practice.

4.3 Texas
Next, we turn to Texas, creating a chain of 100,000 steps to explore the ways to divide up the 2012

Senate vote distribution. With 36 Congressional districts, Texas has one of the highest k values of
any state (only California has more seats). The 2012 Senate race was won by a Republican with

∼ 58% of the vote. Figure 5 shows the partisan properties in the ensemble of plans, allowing us
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Figure 5. Ensemble outputs for Texas Congressional planswith respect to SEN12 votes. Republicans received
58.15%of the two-wayvote in this election,which ismarked in theplots to showthecorresponding seat share.
There are 1,646 plans in the ensemble that are seats outliers for one party or the other; these are shown in red
and blue in the top row, and their relative frequency can be observed in the next two rows, which focus on
plans with the best symmetry scores. The last row of the figure shows the MM and PG histograms restricted
to the 1,646 outlier plans flagged above. The scores are shown to be readily gamed: numerous extreme plans
are found with near-optimal symmetry scores. In this sample, most extreme Democratic-favoring plans are
labeled Republican gerrymanders by themean–median score, and some extreme Republican-favoring plans
are labeled Democratic gerrymanders.
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to compare extreme symmetry scores (an ostensible indicator of partisan unfairness) to extreme

seat shares (the explicit goal of partisan gerrymandering). We find no evidence of correlation or

any kind of correspondence.

Over 98% of the sampled plans give Republicans 22–27 seats out of 36, seen in gray in the

histogram. The red bars mark the outlying plans with the most Republican seats (28 or more R

seats), while the blue bars mark the most Democratic plans (21 or fewer R seats). We can then

study the histograms formed by the winnowed subsets of the ensemble with the best PG and MM

scores, which in each case fall in the top 6%. Note that these severely winnowed subsets not only

have a shape similar to the full ensemble (indicating a lack of correlation), but that there are still

many partisan outlier plans even with strict symmetry standards in place. Plans with the extreme

outcome of ≥28 R seats actually occur with higher frequency among the MM ≈ 0 plans than in the

full sample—more than twice as often, in fact. This shows rather emphatically that restricting to

“good” symmetry scores is no impediment to partisan gerrymandering.

For the reverse perspective, we consider how plans with extreme seat counts score on symme-

try. The last row in Figure 5 shows only the seat outliers: blue for plans with ≤ 21 and red for plans

with ≥ 28 Republican seats. A significant number of maximally D-favoring plans (which are also

close to vote proportionality) paradoxically register asmajor Republican gerrymanders under the

MMscore, outpacingbya significantmargin themost extremeR-favoringplans. Themean–median

score utterly fails at identifying partisan advantage even in an election regarded as “reasonably

competitive” by the proponents of partisan symmetry. In Texas, as in Utah, it is simply false that a

median higher than the mean is a flag of advantage for the point-of-view party.

In terms of the overall symmetry measured by PG, extreme plans for both parties can be

found with scores that are as good as nearly anything observed in the ensemble. So from this

perspective aswell, neither MMnor PG signals anythingwith respect to political outcomes. Even if

the proponents of symmetry standards never intended to constrain extreme seat imbalances, this

runs counter to the common expectations of anti-gerrymandering reforms in popular discourse,

in legal settings, and even in much of the political science literature.

4.4 North Carolina
Finally, wemove to a statewith amuch closer to even partisan split: North Carolina (k = 13 seats),

with respect to the 2016 Senate vote (∼53% Republican share). In this case, mean–median does

muchbetter than in Texas in termsof distinguishing the seat extremes: Figure 6 shows consistently

higher scores for the maps with the most Republican seat share than the ones with the most

Democratic outcomes. However, the extreme Republican maps still straddle the “ideal” score

of MM = 0, and both sides can still find very extreme plans whose PG scores report that their

symmetry is essentially as good as anything in the ensemble.

Overall, it is fair to say that partisan symmetry imposes no constraint on partisan gerrymander-

ing inNorthCarolina, at least forone side: thismethodeasilyproduceshundredsofmapswith 10–3

outcomes (whichwasclearly reported in theRuchocase tobe themostextremethat the legislature

thoughtwaspossible)while securingnearly perfect symmetry scores, and thegerrymanderer only

needs one. Indeed, the ensemble even finds highly partisan-symmetric maps that return an 11–2

outcome for this particular vote pattern. Four of these are shown in Figure 7.

To sum up, we give a recipe for how to hide your partisan gerrymander from detection by

symmetry scores, even in a 53–47 state. To begin, leverage differential turnout. A recent analysis

of 2014–2016 Congressional voting showed that several states have voter turnout that is 25% or

even 40% higher in the districts won by one party than the other (Veomett 2018). This can easily

push the average vote share in the districts two points higher than the statewide share. Now, give

your party a 55%majority inmany districts, and let the others be landslides, being sure to arrange
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Figure6.Ensemble outputs for North Carolina Congressional planswith respect to SEN16 votes. Republicans
received 53.02% of the two-way vote in this election, which ismarked in the plots to show the corresponding
seat share. There are 1,202 plans in the ensemble that are seats outliers for one party or the other; these are
shown in redandblue in the top row, and their relative frequency canbeobserved in thenext two rows,which
focus on plans with the best symmetry scores. The last row of the figure shows the MM and PG histograms
restricted to the 1,202 outlier plans flagged above. In this setting, symmetry can easily be gamed in favor of
Republicans, with thousands of 11–2 plans receiving near-perfect mean–median scores.

Daryl DeFord et al. � Political Analysis 319

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2021.49


Figure 7. Algorithmic methods are mainly used here for example generation. Each of these 13-district plans
comes out 11R–2D with respect to the SEN16 voting data, while having nearly perfect partisan symmetry.
These maps have PG scores of 0.0096, 0.0099, 0.0107, and 0.0115, respectively, all in the best 2% of the
ensemble. This figure also illustrates the diversity of districting plans achieved by this Markov chainmethod.

the vote shares symmetrically around 55%. This secures sterling symmetry scores and a windfall

of seats for your side without even risking any close contests.20

5 Conclusion

In this piece, we have characterized the partisan symmetry standard from Katz et al. (2020)
mathematically: it turns out to amount simply to a prescription for the arrangement of vote totals

across districts (Theorem 3, Partisan Symmetry Characterization).21 We follow this with examples

of realistic conditions under which the adoption of strict symmetry standards not only (a) fails to

prevent extreme partisan outcomes but even (b) can lock in unforeseen consequences on these

partisan outcomes. Finally, again under realistic conditions, signed partisan symmetry metrics

(c) can plainly mis-identify which party is advantaged by a plan.22

None of these findings gives a theoretical reason for rejecting partisan symmetry as a defini-

tion of fairness. A believer in symmetry-as-fairness can certainly coherently hold that symmetry

standards do not aim to constrain partisan outcomes, but merely to reinforce the legitimacy of

district-based democracy by reassuring the voting public that the tables can yet turn in the future.

This view casts aside, or holds irrelevant, the standard definition of a partisan gerrymander as a

plan designed to maximize the seats for a party. With this reasoning, we should not worry that

Democrats in Utah may for now be locked out of Congressional representation by the symmetry
standard itself ; this is still fair, because Democrats would enjoy a similar advantage of their own if

election patterns were to linearly swing by 40 percentage points in their favor.

For those who do want to constrain the most extreme partisan outcomes that line drawing

can secure, these investigations should serve as a strong caution regarding the use of partisan

20 For example, supposeParty Ahas 53%of the statewide vote in a 10-district state, and suppose the average turnout in A-won
districts is 80% that of B-won districts. Then, Party A can get a 7A–3B outcome with all safe seats by dividing up the votes
as v = (0.26,0.26,0.26,0.55,0.55,0.55,0.55,0.84,0.84,0.84), while acing every symmetry test.

21 One possible response is to try to preserve the partisan symmetry standard but abandon linear uniform partisan swing in
favor of a differentway of drawing seats–votes curves.We have discussed alternatives above in several places.We reiterate
that noising the seats–votes curve will only change the precision of the characterization. We also note that no change to
the swing assumption impacts the findings on the mean–median score, which is defined as the difference between the
mean district vote share and the median.

22 While this is beyond the scope of the current paper, there is also every reason to believe that partisan symmetry metrics
can (d) give answers that depend unpredictably on which vote pattern is used to assess them: endogenous (imputing
uncontested races) or exogenous? Senate race or attorney general? Most single-score indicators have this problem. This
may give us a reason to prefer modeling approaches that incorporate multiple races, but those approaches come with a
host of modeling decisions that make them impractical for real-world use.
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symmetry metrics, whether in the plan adoption stage or in plan evaluation after subsequent

elections have been conducted.

If symmetry metrics measured something that was obviously of inherent value in the healthy

functioning of representative democracy, then we might reasonably choose to live with the

consequences of the definition, no matter the partisan outcomes. However, the Characterization

Theorem shows that a putatively perfect symmetry score is nothing more and nothing less than

a requirement that the vote shares vi in the districts be arranged symmetrically on the number

line (see Figure 3). Someone who wishes to assert that partisan symmetry is really about some

principle—majority rule, responsiveness, equality of opportunity, etc.—wouldhave to explainwhy

that principle is captured by the simple arithmetic of vote share spacing. With this framing, it is

more difficult to argue that symmetry captures any essential ingredient of civic fairness.

Appendix A. Proof of Characterization Theorem

We briefly recall the needed notation from above: vote share vector v with ith coordinate vi ; gap

vector δ with δi = vi+1 −vi ; and jump vector j with ji =
1
2 +v −vk+1−i , where v is the mean of the

vi . These expressions define j, δ in terms of v; neither j nor δ completely determines v, because

they are invariant under translation of the entries of v, but one additional datum (such as v1 or v )

suffices, with j or δ, to fix the associated v. In this appendix, we begin by expressing PG in terms of

the jumps j, then giving equivalent conditions for PG = 0 in terms of j, δ, or v.

As outlined above, PG measures the area between the seats–votes curve γ and its reflection.

The shape of the region between those curves depends directly on the points j = (j1, j2, . . . , jk ),

since each ji is the x value of a vertical jump in the curve and the 1− ji are the values of the jumps

in the reflection. But looking at Figure 1 makes it clear that it is complicated to decompose the

integral into vertical rectangles in the style of a Riemann sum, because the {ji } and the {1− jk−i }

do not always alternate. Fortunately, it is always easy to decompose the picture into horizontal

rectangles (analogous to a Lebesgue integral), where it is now clear which red and blue corners to

pair as the seat share changes from i
k to i+1

k . The curve contains the points (ji ,
i−1
k ), (ji ,

i
k ) as well

as (jk+1−i ,
k−i
k ), (jk+1−i ,

k−i+1
k ). The rotated curve therefore contains the points (1− jk+1−i ,

i−1
k ) and

(1− jk+1−i ,
i
k ), whichmeans that the ith rectangle has height 1

k andwidth
��ji + jk+1−i −1

��. Summing

over these rectangles gives us the expression

PG =
1

k

k∑
i=1

��ji + jk+1−i −1
��.

Recall that the set of vote share vectors V is the cone in the vector space �k given by the

condition that thevi are innondecreasingorder in [0,1]. The j vector is simply thevvector reversed

and recentered at 1
2 rather than v . The only condition on the gap vector δ is that its entries are

nonnegative and sum to at most one. Putting these observations together, we may define the set

of achievable v, δ, j, respectively, as

V = {(v1, . . . ,vk ) : 0 ≤ v1 ≤ · · · ≤ vk ≤ 1} ,

D =
{
(δ1, . . . ,δk−1) : δi ≥ 0 �i ,

∑
δi ≤ 1

}
,

J =

{
(j1, . . . , jk ) : 0 ≤ j1 ≤ · · · ≤ jk ≤ 1,

∑
ji =

k

2

}
.

The condition on j is of interest, because it exactly identifies the possible seats–votes curves Γ =

{γv : v ∈ V}. (That is, not just any step function is realizable as a valid γ.)

Now, we can prove the Characterization Theorem.
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THEOREM 7. Given k districts with vote shares v, jump vector j, and gap vector δ, the following are
equivalent:

PG(v) = 0, (1)

ji + jk+1−i −1 = 0 �i , (2)

1

2
(vi +vk+1−i ) = v �i , (3)

1

2
(vi +vk+1−i ) = vmed �i , (4)

δi = δk−i �i . (5)

Proof. The condition that PG(v) = 0 has been rewritten in terms of j above, and converting back to

the vi , we get

1

k

k∑
i=1

|ji + jk+1−i −1| =
2

k

k∑
i=1

���vi +vk+1−i
2

−v
��� = 0,

which immediately gives (1) ⇐⇒ (2) ⇐⇒ (3), since a sumof nonnegative terms is zero if and only

if each term is zero. To see (3) ⇐⇒ (4), just consider i = 
 k2 � in (3) to obtain vmed = v ; in the other

direction, average both sides over i in (4) to obtainv = vmed. Finally, the symmetric gaps condition

(5) is clearly equivalent to the symmetry of the values of v about the center vmed, which is (4). �

Appendix B. Bounding Partisan Gini in Terms of Mean–Median

Recall that the mean–median score MM is a signed score that is supposed to identify which party

has a structural advantage, and by what amount. On the other hand, the partisan Gini PG is a

nonnegative score that simply quantifies the failure of symmetry, interpreted as a magnitude of

unfairness. We easily see that PG = 0 =⇒ MM = 0 by comparing (3) and (4) in Theorem 3. In this

appendix, we strengthen that to a bound from below that is sharp in low dimension.

Let us define discrep(i ) = vi+vk+1−i
2 −v , measuring the difference between the average of a pair

of vote shares from the average of all the vote shares. This gives

PG =
1

k

k∑
i=1

|2v −vi −vk+1−i | =
2

k

k∑
i=1

|discrep(i )|.

Note that discrep(
 k2 �) =MM, as observed above, and that
∑k

i=1discrep(i ) = 0 by definition ofv .

THEOREM 8. The partisan Gini score satisfies
⎧⎪⎨⎪⎩
PG ≥ 4

k |MM|, k odd,

PG ≥ 8
k |MM|, k even,

with equality when

k = 3,4.

Proof. First suppose k is odd, say k = 2m+1. Then, discrep(m) = vm −v =MM, so
∑

i�m discrep(i )=

−MM. We have

PG =
2

k

k∑
i=1

|discrep(i )| =
2

k

(
|discrep(m)|+

∑
i�m

|discrep(i )|

)
≥

2

k

(
|discrep(m)|+

��∑
i�m

discrep(i )
��)

=
2

k
(|MM|+ | −MM|) =

4

k
|MM|.

The argument for even k = 2m is very similar, except that discrep(m) = discrep(m + 1) =
vm+vm+1

2 − v = MM. So, now, those terms contribute 2|MM| to the sum, and the remaining terms
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contribute at least 2| − MM|, for a bound of PG ≥ 8
k |MM|. That completes the proof of the

inequalities.

For k = 3 or k = 4, the term
∑

i�m |discrep(i )| is just 2|discrep(1)|, making the inequality into an

equality. �

By a dimension count, it is easy to see that PG is not simply a function of MM for k ≥ 5. A direct

calculation confirms this, and shows that MM is not simply a function of PG either. Let

v = (.2, .3, .4, .5, .7), v′ = (.2, .31, .39, .5, .7), v" = (.19, .31, .4, .5, .7),

giving PG(v) = PG(v′) while MM(v) � MM(v′). On the other hand, MM(v) = MM(v") while PG(v) �
PG(v").
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