
Can. J. Math.Vol. 43 (2), 1991 pp. 265-296 

A 3-DIMENSIONAL NON-ABELIAN 
COHOMOLOGY OF GROUPS WITH APPLICATIONS TO 

HOMOTOPY CLASSIFICATION OF CONTINUOUS MAPS 

MANUEL BULLEJOS AND ANTONIO M. CEGARRA 

Introduction. The general problem of what should be a non-abelian cohomology, 
what is it supposed to do, and what should be the coefficients, form a set of interest­
ing questions which has been around for a long time. In the particular setting of groups, 
a comprehensible and well motivated cohomology theory has been so far stated in di­
mensions < 2, the coefficients for H2 being crossed modules. The main effort to define 
an appropriate ihfl3 for groups has been done by Dedecker [16] and Van Deuren [40]; 
they studied the obstruction to lifting non-abelian 2-cocycles and concluded with first 
approach for H3, which requires "super crossed groups" as coefficients. However, as 
Dedecker said "some polishing work remains necessary" for his cohomology. In fact, it 
is a very complicated theory and it is not clear that his cohomology has the properties 
one hopes a non-abelian cohomology should have; even more, it is not clear how this 
cohomology solves the obstruction problems (by extending Dedecker's 6-term exact se­
quence associated to a short exact sequence of crossed modules to a 9-term sequence). 
At first sight, the coefficients for Dedecker's 3-cohomology are not very much related to 
other gadgets coming from Geometry, Topology or Algebra; although the system defin­
ing a super crossed group is close to that defining a crossed square (in the sense of [23]), 
neither of these two concepts include the other one. 

In this paper we introduce a new 3-dimensional cohomology for groups, in terms of 
systems much easier and comprehensible. The coefficients we use are reduced 2-crossed 
modules in the sense of Conduché [13] (or equivalently crossed modules with a "braid­
ing" structure [6]) and they came into this theory through a problem on homotopy types. 
The fact that reduced 2-crossed modules are algebraic models for simply-connected 
3-types and that our 3-cocycles correspond to pointed continuous maps from aspheri-
cal CW-complexes to simply-connected spaces with trivial homotopy groups at dimen­
sions > 4 make possible a classification theorem using our H3 (Propositions 4.3 and 4.4), 
which is one of the expected properties a non-abelian cohomology should have. On the 
other hand, by using our 0-fl3 we will be able to give a natural measure of the deviation 
from right exactness of the functor H2, by extending Dedecker's 6-term exact sequence 
to a 9-term one. So H3 certainly solves the obstruction problems to lifting 3-cocycles. 
Two other expected properties that our D-03 has make us think that this is a right choice 
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266 M. BULLEJOS AND A. M. CEGARRA 

for a 3-dimensional cohomology: firstly that H3 is a non-abelian monadic cohomology 
(i.e. H3 can be calculated by using free simplicial resolution—Proposition 1.5—) and 
secondly that H3 classifies certain non-abelian 2-fold extensions (Proposition 3.1). 

Finally note that any presentation of a non-abelian cohomology at higher dimension 
is tedious and involves complicated formulas to describe cocycles and cohomologies. 
There are several motivated ways to present these formulas at dimension 3. Among them, 
we have chosen that which goes through simplicial group theory and so we conclude 
with a description of IH13(G, £), which comes from a non-homogeneous parametrization 
of the set of loop homotopy classes of simplicial group morphisms, from a free simpli­
cial resolution of the group G to the canonical simplicial group associated (according 
to Conduché [13]) to the reduced 2-crossed module *£. To obtain this parametrization is 
the main objective of Section 1 ; moreover, this way allows us to give quick arguments 
(based on homotopy theory) to obtain several results in the following sections. Section 
2 is mainly devoted to study long exact sequences involving H1, / < 3. In Section 3 we 
describe a group theoretic interpretation of the cohomology sets D-D3 and in Section 4 we 
give a topological interpretation of these sets. Finally Section 5 is devoted to compare 
our 3-cohomology with others already stated. 

In this paper we use additive notation for groups. 

1. 3-Dimensional non-abelian functors H3. In this section we are going to intro­
duce a three dimensional non-abelian cohomology theory for groups by using appropriate 
notions of cohomology classes of non-abelian 3-cocycles. These notions will be disen­
tangled from the simplicial group theory by stating a homotopy representability theorem 
analogous to those established for both Eilenberg-Mac Lane cohomology as well as 
Dedecker non-abelian cohomology. 

In the abelian case, since Eilenberg-Mac Lane cohomology is a cotriple cohomology 
[1], Duskin's homotopy representability theorem [18] gives, for any group G and any 
abelian group A, natural isomorphisms 

(1) Hn+l(G,A)^[F.,K(A,n)] 

where [F., K(A, n)] is the set of loop homotopy classes of simplicial group morphisms 
from a free resolution F. of G to the Eilenberg-Mac Lane complex K(A, n). Recall that 
any two free simplicial resolutions of G are loop homotopically equivalent [29]. 

There is a similar theorem in the non-abelian case for Dedecker's cohomology of 
a group G with coefficients in a crossed module *£, H2(G, *£) [16]. This theorem uses 
the equivalence between the category of crossed modules and the full subcategory of 
simplicial groups whose objects have trivial Moore complex at dimensions > 2, see [9] 
or [32], in such a way that if we write _?(*£) for the simplicial group associated (by this 
equivalence) to the crossed module £, there is a natural bijection 

(2) H 2 ( G , £ ) ^ [ F . , .?(£)], 
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A 3-DIMENSIONAL NON-ABELIAN COHOMOLOGY 267 

see [19] or [12]. This bijection is a generalization of (1) for the case n = 1, since any 
abelian group A can be considered as a crossed module (A = (A —• 0)) and J(A) = 
K(A, 1). 

Let us now note that the simplicial group K(A, 2) is strongly related to J(A), in the 
sense that there are natural isomorphisms of simplicial groups 

K(A9 2) ^ WJ(A) and QK(A, 2) ^ J (A), 

where W is the Eilenberg-Mac Lane classifying functor and Q is the loop complex functor 
(see for example [14] for a description of these functors). Then the isomorphism (1), for 
n = 2, can be expressed as 

H3(G,A)^ [F.,WJ(A)l 

Given then a crossed module £, if WJ7(£) were canonically a simplicial group such that 
ÇIWJCE) — JCE)—as simplicial group—it would be natural to think that an adequate 
notion of H 3(G, *£) will arise from an appropriate parametrization, in a non-homogeneous 
sense, of the set [F., WJCE)] in terms of cohomology classes of 3-cocycles. 

Unfortunately, in general there is not a canonical group structure on the simplicial set 
WJCE) which makes Q.WJCE) isomorphic to J/(£) as simplicial groups; in fact, WJCE) 
may not admit any (canonical or not) group structure in such conditions (for example 
take *E a crossed module such that Flo(j/(*E)) is non-abelian). Let us next analyze this 
question in detail (see Proposition 1.1 for a conclusion). 

First recall that a crossed module T, is a group homomorphism p:L —• M together 
with a group action of M on L, satisfying: 
XML p(mx) = m + p(x) - m, 
XM2. p(x)y = x + y-x, 
for all x, y G L and m G M. A crossed module morphism c/> : *£ —» *£' is a commutative 
diagram of group homomorphisms 

L - ^ M 

J> I*0 

which satisfies 
^1(

m
JC) =^o(m) <^(;t), for all x E L and m e M 

(i.e. (j>\ is a morphism of M-groups, where Z/ is an M-group via (j>o). The corresponding 
category of crossed modules will be denoted by X!M. 

A simplicial group G. will be represented by a diagram 

Sn-l 

so 

G.= — -Gn : Gn-\ - - -G\—iGo, m 
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268 M. BULLEJOS AND A. M. CEGARRA 

in which the face and degeneracy morphisms (dt and st respectively) satisfy the usual 
simplicial identities. Frequently we will not draw the degeneracy operators in the picture 
of a simplicial group. The Moore complex, of a simplicial group G., is the group complex 

G.= - "Gn —n-+ Gn-\ ...G\ — • Go 

where G0 = G0, Gn = rio<i<«-i Ker(d,-) Ç Gn and 6n is the restriction of dn for all 
n>\. 

Simpl Gp will denote the category of simplicial groups and group simplicial mor­
phisms, and Simpl Gp(G., H. ) (or just (G., / / . )) will be the set of group simplicial mor­
phisms from a simplicial group G. to another H.. 

Let Simpl ! Gp be the full subcategory of Simpl Gp whose objects are those simplicial 
groups G. whose Moore complexes are of length one, i.e., Gn = 0, n > 2. Then, as we 
said before, the category Simplx Gp is equivalent to the category of crossed modules, 
X9A. An explicit description of this equivalence is given by the functors 

3 
Simpl! Gp tz; X<M, 

where 1A£(G. ) is the crossed module given by the group homomorphism S\ : G\ —» Go, 
together with the action of Go on G i : 

mx = so(m) + x — so(m). 

Then J/ takes a crossed module £ = (L —-> M) to the simplicial group 

J/(£) = cosk2(A2 3 L M M=xM) 

(see [18] for a general definition of the functor cosk in categories of simplicial objects 
over a category with finite limits), where L x Mis the semidirect product group, A2 

is the subgroup of the direct product (L M M)2 whose elements are of the form \ = 
((JC, m), (JC7, m)), and the face and degeneracy operators are: 

do(x, m) — m, d\(x, m) = p(x) + m, so(m) = (0, m), 

for all JC GL and m G M, and 

do(x) = (x,rn), Mx) = (x/,m)9 d2(\) = (J -x,p{x) + m) 

so(x, m) = ((x, m), (x, m)), s\(x, m) = ((0, m), (JC, m)), 

for all x = {(x, m), (JC7, m)) G A2 and (JC, m) e L X M. 
In [ 13], Conduché shows that the full subcategory of Simpl Gp whose objects are those 

simplicial groups with trivial Moore complexes at dimensions > 3 is equivalent to the 
category of 2-crossed modules, where a 2-crossed module is a truncated group complex 
L—+M—>N together with certain operators. He also proves that this equivalence gives, 
by restriction, an equivalence between the full subcategory of Simpl Gp whose object 
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have trivial Moore complexes at dimensions other than one and two, denoted here by 
Simpl2 Gp, and the category of 2-crossed modules with trivial righthand side groups (i.e. 
N = 0). Such 2-crossed modules are called here reduced. Conduché observes that a 
reduced 2-crossed module is just a crossed module £ = (L—> M) together with a map 
{—,—}:MxA/^L satisfying the identities: 
R2XM1) p{m,m'} =m + m/ —m — m', 
R2XM2) { p{x), m} = x - mx, 
R2XM3) {m,p(jc)} = mx - x, 
R2XM4) {m,m' + m"} = {m,m'} + m '{m,m"}, 
R2XM5) {m + m',rn"} =m{m',m"} + {m,m"}. 

Elementary examples of reduced 2-crossed modules are: 
-) Any group epimorphism p : L —» M, with central kernel, by taking {p(£),p(l')} 

= [i,n 
-) The cannonical morphism p: G ® G —• G, p(g 0 g') = [g,g'], from the non-

abelian tensor product of a group G with itself, with 

U Y } =£&#'. 

-) The zero morphism 0: L —• M between any two abelian groups, together with 
any biadditive map M x M —• L. 

A morphism of reduced 2-crossed modules is a morphism of crossed modules which 
is compatible with the corresponding maps {—,—}• The corresponding category of re­
duced 2-crossed modules is denoted here by 2 — X!MTe^ 

An equivalence between Simpl2 Gp and the category of reduced 2-crossed modules 
is given by the functor which takes a simplicial group G. G Simpl2 Gp to the reduced 
2-crossed module 

m2(G.) = G2^Gl 

with action of Gi on G2 
m£ =si(m) + £ -si(m)9 

and map {—,—}: Gi x G\ —* G2 given by 

{ m, m'} = s\(m + m' — m) + so(m) — s\(m) — so(m). 

A quasi-inverse for fA£ takes a reduced 2-crossed module *E = (L —+ M) to the 
simplicial group 

J72(£) = cosk3(A3 3 (L x M) x M 3 M =t 0, ); 

where L x Mis the semidirect product group, according to the given action of M on L, 
(L x M) x M is the semidirect product group with respect to the action of Mon L x M: 

m ( £ , m r ) - (I -{m,m'},m + mf - m), 
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and A3 is the subgroup of the direct product ((L M M) x Af) whose elements are of the 
form 

X = ((t,m,m),(t,m",m'),(t",m" -m,m + m')). 

The face and degeneracy operators are: 

do(l,ra,rri) = m, d\(£,m,m) — m + rn', d2(l,m,ra') = p(£ ) + ra, 

5"o(m) = (0,0, ra), si(ra) = (0, ra, 0), 

di : A3 —-> (L x Af) x Af are the projections for 1 = 0,1,2, 

d 3 (x )= (l" + m"-ml -l',p(t')+m"-m-p(l),p(l) + m), 

s0(t, m9 rri) = ((l,m,m\(l,m,rri),(0,0,m + rrij), 

si(e,m,rri) = ((0,0,m ),(i,m,mf),(i,m,m )), 

s2(l,m,rri)= ((0,mf,0),(0,m + m,0),(l,m,mf)). 

The following square, in which U is the functor which forgets the bracket operation 
{—,—}, is clearly commutative 

5 
Simp^G/7 t Z , XM 

*L 
a] ]u 

Simpl2 Gp *ZI> 2 - XfWred. 
%, 

PROPOSITION 1.1. Let *E = (L —• Af ) be a crossed module. To give a group structure 
on the simplicial set Tt̂ J/CE), such that Çl'WJCE) is isomorphic to J(<E) as a simpli-
cial group, is equivalent to give a reduced 2-crossed module structure in *E; i.e., a map 
{ - , - } : Af x M —> L satisfying the identities R2XM1),..., R2XM5). 

PROOF. First observe that if G. is a reduced simplicial group (in the sense that Go = 
0), then G. is isomorphic as simplicial set to WQ.(G. ) . An isomorphism is given by the 
maps 

W£l(G.)n —^ Gn 

(gn-Ugn-2, • • • , go) •—• gn-1 + S0gn-2 + SQgn-3 + • • • + $~lgo, 

n>0. Then to give a group structure in WJCE), with ÇIWJCE) = J(T), is equivalent 
to find a reduced simplicial group G. with £2(G. ) = J CE); since such condition forces 
G. to be in Simpl2 Gp, by the commutativity of the above square. This is equivalent to 
finding a reduced 2-crossed module whose underlying crossed module is *E. 

Consequently we will consider reduced 2-crossed modules, £ = (L —• Af, { —, —} ), 
as appropriate coefficients for a non-abelian cohomology theory of groups, W(G, *£), 
i < 3, where for i < 2, Ul(G, *£) is just Dedecker's non-abelian cohomology of the 
group G with coefficients in the underlying crossed module of £ . 

https://doi.org/10.4153/CJM-1991-015-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-015-7


A 3-DIMENSIONAL NON-ABELIAN COHOMOLOGY 271 

As we suggested before, in order to define the sets H3(G, *£) we need a 
non-homogeneous parametrization of the sets [F. ,J72C£)] of loop homotopy classes of 
simplicial group morphisms (see [28]) from a free simplicial resolution F. of G to _72C£) 
(note that _72(£) is just WJCE) with the canonical group structure induced by the reduced 
2-crossed module structure of £). 

Let us recall that a simplicial group F. is called free if Fn is a free group with a given 
basis and the bases are stable under all degeneracy operators (i.e. for every pair of inte­
gers (/, n) with 0 < / < n and every generator x G Fn the element si(x) is a generator of 
Fn+\). For any group G, a free simplicial resolution of G is a free simplicial group F. such 
that Ho(F. ) = G and ri;(F. ) = 0, for all i > 1. A free resolution of G is for example 
F. = G(K(G, 1)), Kan's construction of the loop free simplicial group associated to the 
Eilenberg-Mac Lane complex K(G, 1) [28], and also the standard resolution of G, G. (G), 
corresponding to the cotriple associated to the adjunction Gp^ Set [1]. Recall also that 
any truncated free simplicial resolution of G can be extended to a free simplicial reso­
lution and that, by the comparison theorem [29], any two free resolution of G are loop 
homotopically equivalent. 

In order to give a parametrization of the sets [F., J72 (*£)], let us start by studying the 
elements in (F., _72CE)), the set of simplicial group morphisms from F. to JCE). Recall 
that 

J72(£) = cosk3(A3 3 ( L x M ) x M 3 M = t 0 ) . 

Therefore a group simplicial morphism/. from F. to _72(£) is determined by its truncation 
at level three (f?>,h,f\ ,/o = 0), but note that also/3 is determined by/2, 

h(x) = ( f 2 * W , M ( 4 M W ) e A3. 

So to give a simplicial morphism/. in (F., J72C£)) is equivalent to give a truncated 
simplicial morphism 

F2 3 Fi =r F0 

•£ 1 fi[ ifo=0 

(Lx M)x M 3 M =3 0 

such that: 

d3(f2do(y\f2di(y)J2d2(y)) = fid^iy) 

for all y G F3. Now, if we denote 

D{ = Kerfo: F, - • F,_i) = Im(6/+1 : F/+1 -> F,), / > 1, 

this last condition is equivalent to y2<$3(F3) = 0 and also to/2(Z)2) — 0. On the other 
hand, since the sequence 

0 —» D2 —* F2 —• A2 —* 0 
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is exact, where A2 denotes the simplicial kernel of F\ =4 Fo, we deduce a natural bijection 
between (F . , J/CE)) and the set of truncated simplicial group morphisms (f^f\Jo = 0) 
of the form 

A2 3 F\ =3 F 0 

(Lx M)x M 3 M =t 0 

We use now that the elements of F\ and D 2 can be expressed, in a unique way, as sums 
a+so(w)andz+s\(a)+so(af)+s\So(w), respectively, with a, d e F i , z G £>i andw G F 0 . 
So if we denote by f 2 and f 1 the morphisms induced, between the Moore complexes, by 
f2 and/i respectively, i.e. the compositions 

f 2 : D i ^ A 2 ^ ( L x M ) M M ^ L and \X\FX<-+F\^ M, 

respectively, the simplicial identities allow us to recover/2
7 and/i from/2 and/i by the 

formulas: 

^ ( z +Ji(a) +Jo(a/) + 'Si-so(w)) = (f2(z), fi(fl), W ) ) and 

/ i (a + 5o(w)) = fi(û). 

Moreover a pair of group morphisms (f2, f 1) comes from a simplicial morphism as 
above, if and only if it satisfies the following conditions: 

a) fi(jo(w) + a - J o ( w ) ) = fi(fl), 
b) f2(a + z - t f ) = t l (û )f2(z), 

c) f2fa + a / - a - ( ^ i ^ + fl'-^iC^))) = {fi(a),fi(a)} and 

d) pf2(z)=/i(z),_ 
for all z G Di, Û, d G Fi and w G F0. We use that in A2 

(z + ^i(a) + s0(dj) + (z7 + si(fc) + s0(&
7)) = / + si(c) + s0(c') 

where ï' = z + a+ (sy8\{d) + z7 - so^iO')) + \{s^\{d) + b — s0è\(d)) + d — b — d \ 

c = a + d + b — d and d = a7 + //. 
Let us specialise the above results to the free resolution F. of G, obtained by extending 

the truncated resolution F\ =3 Fo —» G, where Fo is the free group with base { r]x : x G 
G } , 770 = 0, F\ — Fi

l * Fo the free product of Fo and the free group F j , with base 
{iiXy : JC, y G G } , and relations /i^o = 0 = /io,*, for each x G G; the morphism 
p : Fo —» G is given by p ( ^ ) = JC and the face and degeneracy operators by: 

dobixy) = 0, d0(r]x) = r)x, di(iiXfy) = r\x + j]y - Tix+y, 

d\(rjx) = r]x and so(rjx) = rjx. 

In this case, the group F\ — Ker(do* F\ —> Fo) is just the free Fo-group with base the 
set G* x G*, where G* = G — { 0 } , and the action is given by 

a = SQ(W) + a — SQ(W), for all w G Fo and a G F\. 
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If we write K — Ker(/?: F0 —» G), K is the free subgroup of F0, with generators the 
elements rjx + T^ — r /^ = b\([iXy) G Fo, JC,J G G, and then Dj is free with base 

{ s(k) + WHJW - s{w + r]x + T]y- r]x+y) - s(k) G Fx : k G K\ w G Fj, *, y G G*}, 

where s:K—+F\ is the group homomorphism defined by 

which is a section of the morphism F\ —» ̂ , induced by <$i. 
Then a morphism f i : Fi —• M satisfying the above condition a) is equivalent to a 

normalized map (/? : G x G —• M ( (̂  (x, v) = fi (/i^)). In the same way, to give a morphism 
f2: F>i —• L satisfying condition b) is equivalent to give the image of the elements of the 
form 

W^y - S(W +T]x+riy- T]X+y ~ W) . 

But, for all w, w' G Fo and k, k! G K, we have: 

f 2 (W+ s(k) — s(w + w' + k — w — wj) 

= f2(H /^) - J(M/ + k - w')) + h(ws(w' + k-w'j-s(w + w+ k-w - wj) 

and also 

h(ws(k + k') -s(w + k + k' - wj) 

= h{ws(k) -s(w + k- wj) + Us(w+k-w)hCs(kf) -s(w + k'- wj). 

Then f 2 is determined by the image of the elements of the form 

rx,y,z = ^iiyj - s(r]x + T)y + riz- f]y+z - r]xjy x, y,z G G, 

and so to give f2 satisfying b) is equivalent to give a normalized map/: G x G x G -^ 
L(f(x,y,z) = h(Twj). 

Conditions c) and d) of f 2 and f 1 for basic elements give: 

pf(x9y,z) = ph(rx,y,z) = phÇ'Vy* - s(r)x + % + 77, - 77^ - rjxj) 

= f 1 C>y,z - S(lx + % + lz - ly+z ~ Ixj) 

= UCxV>yx) ~ U(Hx,y + P<x+y,z ~ P<x,y+z) 

= U(Vy,z) + f l(Vx,y+z) - f lO*+)>,z) ~ f I ( M X J ) , 

that is 

(CCI) pf(x,y,zj = ip(y,zj + (f(x,y + zj-(p(x + y,zj - <p(x,y), x,y,z G G, 

and, taking a = \ix,y and a' = Vx+yfiZtt in c), we have 

hfaxj + ̂ / x ^ - Pxj + ^+Vz,f) = { <p(x,y), <p(z, 0 } , 
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if we now express /x^ + ̂ Hzj ~ ^x,y +
 Vx+r}y Vz,t m terms of the basic elements in D\, we 

have 

Px,y + x+y ftzj ~ \^x,y + x y^z,t = \^x,y + T*+)\z,f ~~ Mx,y) — T*,}^ 

+ ( %liy,z ~~ Tx,y+z,t ~ x^y,z) 

+ V *(liy>z + /xy+2^ ~~ My^+f) + T*,;y,z+f — x(My,z + My+z,r — Mj,z+r)J 

or equivalently 

{ </>(*,y), <p(z,0} = *(x°°/(* + y,z,t) -f{x,y,z) - ^z)fix,y + z,t) 
+ v(y,z)+<p(y+z,t)-v(y,z+t)f(^yz + f) _ / ( ^ ^ ^ 

what is also equivalent to 

{<p(x,y),<p(z,t)} = *(x>y)f(x + y,zj) -f(x,y,z) - ^z)f(x,y +zj)+ 

-f(y,zj) + *™f{x,y,z + t), 

for all jc,y,z9t G G*. So a pair of group morphisms (f2, f i) satisfying a), b), c) and d) is 
equivalent to a pair of normalized maps (f,ip) satisfying CCI) and CC2). 

We then give the following definition: 

DEFINITION. Given a group G and a reduced 2-crossed module *E = (L —» M), a 
(normalized) 3-cocycle of G with coefficients in *£ is a pair of (normalized) maps (f:Gx 
G x G—>L,(p:Gx G—+M) satisfying the above cocycle conditions 

(CCI) pf(x,y,z) = <p(y,z) + (f(x,y + z) - <p(x + y,z) - (f(x,y), 

(CC2) {<p(x9y),<p(z,t)} =^y)f(x + y,zj)-f(x^z) 

-v^fix, y + zj) + -f(y, z, t) +*{u) fix, y, z + 0, 

forallx,y,z,f G G*. 
We will write Z^(G, *£) for the set of normalized 3-cocycles of G with coefficients in 

£. Then there is a natural bijection 

(F. ,A(£)) = Z£(G,£). 

The following proposition gives the necessary and sufficient conditions that two 3-
cocycles in Z^(G, £) have to satisfy to correspond, by the above bijection, to loop no­
motopic simplicial morphisms (note that, for any free simplicial group F., to be loop 
homotopic in Simpl Gp\F.,_7C£)) is an equivalence relation). 

PROPOSITION 1.2. Let G be a group and *£ = (L —• M) a reduced 2-crossed module. 
Then two 3-cocycles (f,<p) and (g, ifr ) in Z^(G, *£) determine loop homotopic simplicial 
morphisms in (F.,Ji*E)j if and only if there exist (normalized) maps À : G —> M and 
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T:G x G —> L, satisfying: 

(CHI) tl>(x,y) = pr(x,y) + \(x) + \(y)-\(x + y) + <p(x,y), 

(CH2) g(x,y,z) = ^z)r(x,y + z)-{\(xlij(y,z)} + X(x)r(y,z) 

- { <p(y,z),\(x) + \(y) + \(z)-\(y + z)} 

- ^z){ <p(x,y + z),\(x) + \(y) + \(z)-\(x + y + z)} + / (* ,* z) 

+ ^y){ if(x + y,z),X(x) + \(y) + A(z) - X(x + y + z)} 

+ {<p(x,y),\(x) + My)-\Qc + y)} -T(x,y)-^y)T(x+ y,z\ 

for allx,y,z G G*. 

PROOF. Let us suppose given simplicial morphisms / . and g. from F. to J2CE), 
which correspond to 3-cocycles (/*,</?) and (g, xj; ),respectively, by the above bijection 
Z^r(G, E)— ( F . ,_7(£))- Let us also suppose that/, and g. are group simplicial mor­
phisms determined, as above, by the pairs of morphisms (f2, f 1) and ($2,9i) respectively 
(thenf2(TW) =/(* , v,z), 0 2 ^ ^ ) = g(x,y,z), U(v>x,y) = ^ (X^andgK/ /^) = ^(*.30, 
for allx,y,z G G). 

Since faCE) is a 3-coskeleton, a loop homotopy /z. :/.—• g. is equivalent to its trun­
cation at level two 

A3 3 (Lx M)x M 3 M =t 0 

To simplify, let us write h instead of h® and let x/, 1 = 0,1, be the composition maps 

X,-: Fi <-+ Fi -À (L x M) x M -^ L. 

The triple (xo> Xi» ^) determines completely the loop homotopy h.. In fact, since any 
element of F\ can be expressed, in a unique way, as a + so(w), with a € F\ and w € Fo» 
we have: 

hl(a + s0(wj) = hl
0(a) + s\h(w) 

= (xo(*), -pxo(a) + Wi(£i), f Kfl)) + (0, h(w\ 0) 

= (xo(fl) " -fix«a»*i«»{ f l ( f l ), h(w)}, -PXo(a) + WKfl) + f ^ 

+ /Î(W) - f i(a), f i(û)) e(Lx M)x M 

and 
/z}(tf+ £oO)) = /i}(a) + j0A(w) 

= (xi(fl),-pXi(fl) + fli(a)»0) + (0,0,/i(w)) 

- (xi(a),-pXi(«) + fii(a).A(w)) G (L M M) M M, 
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and analogously for /ÎQ, h] and h\. On the other hand, the conditions for a triple (xo> Xi >h) 
to come from a loop homotopy are the following: 

i) h is a group homomorphism, 

ii) Xo(0) = 0 = x i ( 0 ) , 
iii) X(a + af) = «'<*> - {f i^MKfl 7 )} +^ (a)+f l (a)xo(« ,) + Xo(«), 
iv) xi(« + «,) = 9l(fl)Xi(«,) + Xi(«X 
v) XO(WÛ) = A(w^ , (^"w){fi(a)'A(w)} +h{w)Xo(a\ 

vi) xi(wfl) = -{A(w),fii(fl)} +*(w)xi(a), 
vii) gi(a) = p(xi(a)-Xo(a)) + Wi(a) + fi(a), 

viii) Q2(Z) = XiU) - Xo(z) + h(z), 
for all w G Fo, a, a' G F\ and G £>i. 

Since Fo is free with base {r]x : x G G*}, to give the morphism h is equivalent to 
give a map A : G —• M; A(JC) = ^(r^). On the other hand, Fi is a free Fo-group with 
base the set {p,Xy : x,y G G*}, then by the identities ii),... ,vi), to know xo and xi 
is equivalent to know xo(Vx,y) and X\(^x,y) for all x,y G G*. Moreover, if (xo>Xi>^) 
satisfies the identities i) , . . . , viii) so does the triple (x0> Xi » )̂> where 

Xo(V>x,y) = 0 and xî(M^) = Xi(M*j) ~ Xo(M*,y) 

for all x,y G G*. Therefore (x0> Xi»^) determines another loop homotopy In!. from/, to 

£•• 
Consequently,/, and g. are loop homotopic if and only if there exist normalized maps 

A : G —• M and r : G x G - > L such that the triple (xo> Xi> )̂> defined, using i),... ,vi), 
by: fife) — ^W.XO(MJCJ) — 0 and XICMJCJ) — F(x,y), satisfies also vii) and viii) (note 
that xo is not necessarily the constant map to zero). 

Finally, (xo>Xi>^) satisfies the identities vii) and viii) if and only if these identities 
are satisfied for the elements of the form a = p,Xiy and z = rXtyiZ. But for such elements 
vii) and viii) reduce to CHI and CH2 respectively. 

This last proposition suggests that we make the following : 

DEFINITION. Let G be a group and let £ = (L -^ M, { - , - } ) be a reduced 2-
crossed module. Two 3-cocycles (/, ip) and (g, 0 ) in Z^(G, E) are called cohomologous 
if there exist normalized maps A : G —• M and r : G x G —> L satisfying conditions CHI 
and CH2 in Proposition 1.2. We will say that the pair (T, A ) is a cohomology from (/, ip) 
to (g, -0 ) and we will write (T, A ):(/",(/>) —• (g, 0 )• 

We define the 3rd non-abelian cohomology (pointed) set of G with coefficients in 
*E, H3(G, *£), as the quotient set of Z^(G, *£) by the relation of being cohomologous, 
pointed by the class of the zero cocycle (0,0). 

A fundamental property of this cohomology is 

PROPOSITION 1.3. (Homotopy representability theorem for HI3). For any group G 
and any reduced 2-crossed module *£ there is a natural bijection 

H3(G,<E)^[F.,J72(<E)], 
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where F. is an arbitrary free simplicial resolution of the group G. 

Note that H 3(—, —) is a bifunctor, with the natural definition on morphisms. In the fol­
lowing section we will show some nice properties of this cohomology functor H3(—, —). 
We end this section by showing how this cohomology is related to the classical Eilenberg-
Mac Lane cohomology. 

Let us observe that the category of abelian groups can be seen as a full and coreflexive 
subcategory of the category of reduced 2-crossed modules, by the functors which take an 
abelian group A to the reduced 2-crossed module A = (A —• 0) and a reduced 2-crossed 
module £ = (L —> M, {—,—}) to the abelian group / / i(£) = Ker(p) respectively. Then 
the elements in Z#(G,A) are just (normalized) maps/: G x G x G —• A, satisfying: 

f{x + y9 z91) -f(x, y, z) -fix, y + z,t) -f(y, z, t) +/(*, y,z + t) = 0, 

i.e. Eilenberg-Mac Lane 3-cocycles of G with coefficients in A. Moreover two elements 
/ and g in Z^(G, A) are cohomologous if and only if there exists a map T:G x G —• A 
satisfying: 

g(x, y9 z) = fix, y, z) - F(x, v) + T(x, y + z) - T(x + y, z) + T(y, z). 

Consequently U3iG,A) = //3(G, A), the usual Eilenberg-Mac Lane cohomology group. 
We have then: 

PROPOSITION 1.4. The restriction of the functor M 3 (G, —) to the category of abelian 
groups is just the usual functor //3(G, —) of Eilenberg-Mac Lane cohomology. 

2. The nine term exact sequence for non-abelian cohomology of groups. 
Dedecker shows in [16] how a surjective morphism of crossed modules 

£ X <B 

L X L" 

1, k 
M -& M" 

(i.e. a morphism O with </>o and </>i epimorphisms) gives rise, for any group homomor-
phism 9 : G —• M, to a cohomology exact sequence 
(3) 

* — ZJ(G, 30 — Z* (G, E) — Z ^ ( G , 0) — M2(G, 3Q — M2(G, E) — H2(G, <B), 

where Ĉ = (Ker(^i) —• Af) is the crossed module kernel of O and exactness means that 
the sets in this sequence are endowed with structures (which include sets of distinguished 
elements) which make it possible to answer the following two questions: 

When is an element in one set in the image of the preceding arrow? 
When do two elements in one set have the same image through the next arrow? 
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In this section, we will give a solution to the problem of measuring the deviation 
from right exactness of the functor H2(G, —), by extending the above sequence (3) to 
a nine term exact sequence in which the last three terms will be 3-dimensional non-
abelian cohomology sets, as they where defined in Section 1. Since our non-abelian 3-
cohomology requires reduced 2-crossed modules as coefficients, we need such additional 
structure in the crossed modules *£ and $ and also that O: *E —-> *B is a reduced 2-crossed 
module morphism. 

To establish this nine term sequence, we are going to use not only the crossed module 
kernel 2£ but also what we call the crossed module fiber J, of O, which is defined as 
J = (Ker(</>i) —» Ker(</>o)), where Ker((/>0) acts on Ker(</>i) by restriction of the action 
of M on L. So if we write H = Ker(c/>i) and M' — Ker((/>o), we will consider the diagram 

M=[=M -%> M" 

associated to a surjective morphism O of reduced 2-crossed modules. Note that the fiber 
crossed module ¥ inherits the 2-crossed module structure of *£, since the structure map 
{—,—}: M xM —» L induces by restriction a map {—,—}: M ' xM' —* L', so J —> *£ —> 
S is a sequence of reduced 2-crossed modules (nevertheless the map { - , - } : M x M - > 
L does not induce a reduced 2-crossed module structure in the kernel JQ. 

REMARK. The category of crossed modules is equivalent to that of internal group-
oids in Groups [9]. By this equivalence, a surjective morphism of crossed modules O 
corresponds to a fibration of groupoids which is surjective on objects, the kernel 9£ and 
the fiber f correspond to the groupoids the kernel and fiber at zero of the fibration re­
spectively ( cf. [5] and [24] ). This is a reason for calling f the fiber crossed module of 

We then have 

PROPOSITION 2.1. Let O be a surjective morphism of reduced 2-crossed modules, 
with kernel Ĉ and fiber f as above 

Then for any group homomorphism 6.G—+ M there exists a cohomology sequence 

* -» Z\(G, 90 — Z\(G, <E) -> Zio9(G, <B) - H2(G, <K) 

— H2(G, £ ) ^ H2(G, #) h H3(G, J ) i M3(G, £ ) ^ H3(G, #), 
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which extends Dedecker's six term exact sequence and moreover it has the following 
properties: 

i) H2(G, £) and H2(G, % have canonical group structures and O*: H2(G, £) —> 
IH2(G, $) is a group homomorphism 

ii) Im(0*) = «-1{O} and 

S*(ar) = «*(/?)*•/? =®*(/x) + a, 

for some/x G H2(G,£). 
iii) The group M2(G, #) acts canonically on the set M3(G, J ) , 
iv) Im(£*) = CU°} a n d 

/*(7) = /*(i/) <^i/ = a 7 , 

for some a £(H]2(G,#). 
v) Im(i#) = ^ - 1 { 0 } 

Before attacking the proof of this Proposition 2.1. let us draw attention to particular 
cases: 

A) Any epimorphism of abelian groups O: A —-> A" can be seen as a surjective mor-
phism of reduced 2-crossed modules (by the identification A = (A —• 0, { —, —} = 0)). 
In this case the crossed modules fiber and kernel are both identified with the abelian group 
A! — Ker(O) and then, using Proposition 1.4, the sequence in Proposition 2.1 gives just 
the first nine terms of the usual sequence in group cohomology 

0 - • Hom(G, A') -+ Hom(G, A) -> Hom(G, A") -+ //2(G, A1) -» H2(G,A) 

- • //2(G, A") -> #3(G, A') -> //3(G, A) -> #3(G, A"). 

B) When in Proposition 2.1 O: *E —• $ corresponds (as morphism of crossed mod­
ules) to a quotient map ofgroupoids in the sense of Higgins [24] (through the equivalence 
between the categories of crossed modules and internal groupoids in Groups), or equiva­
lent^, when O satisfies the condition M' = p(Lf) (cf. [17] or [40]), then the canonical in­
clusion of the center of the kernel crossed module 9£, A' = Ker(Z/ —• M) = Ker(p)Pi Z/, 
into the fiber crossed module J is a weak equivalence, in the sense that the induced sim-
plicial group morphism 

K(A\2) = MA')->Mf) 

is a weak equivalence, and therefore there are natural bijections 

H\G,A) * H3(G,A) *? [F.J2(A)mF.J2(F)] ~ ^{G^\ 

for any free simplicial resolution F. of G (to prove ( 1 ) take for example F. = Otitic, 1 )), 
the group loop complex associated to K(G, 1), and then using the adjunction G(—) h 
W(-) we have 

[F.,MA')] = [K(G, 1), WMA')] and [F., ACT)] = [K(G, 1), WA( J ) ] , 
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where square bracket in the right hand side terms denote homotopy classes of simplicial 
maps; but W!h(A!) ̂ -> WfoOF) is a homotopy equivalence—since it is a weak homo­
topy equivalence and both complexes satisfy the Kan extension condition. Therefore the 
cohomology sequence in Proposition 2.1 gives in this case the sequence 

* -> Z\(G, 90 — 4(G, <L) -+ Zio9(G, % -> M2(G, %) — H2(G, £) 

—• H2(G, #) —• //3(G,A') —• H3(G, £) -> H3(G, #). 

So the abelian term H3(G,A') can be used to give a measure to the obstruction of the 
image of H2(G, £) —• H2(G, #). This particular result was already found by F. Kamber 
in an unpublished paper (see [15]). Nevertheless note that, as was observed by Dedecker, 
the composition 

H2(G, «) -> //3(G, A') -> H3(G,A) 

is not zero and so H3(G,A) can not be used to extend the sequence. 
The rest of this section is essentially devoted to prove the statements in Proposition 

2.1. We first give a proof using arguments of algebraic homotopy theory, which really ex­
plain the nature of the announced cohomology sequence. Finally we give a constructive 
and conceptual proof, in terms of cocycles, of this fundamental result in the paper. 

Let us recall that Simplicial sets, SimplSet, and Simplicial groups are examples of 
simplicial homotopy categories in the sense of Quillen [37]. Thus for simplicial sets L. 
and K. we have the function complex simplicial set L.K whose component set YIQ(L.K ) 
is just the set of homotopy classes of simplicial maps from K. to L.; analogously for 
simplicial groups G. and H. we have the linear function complex simplicial set G.H whose 
component set IIoCG.̂  ) is the set [H., G. ] of loop homotopy classes of simplicial group 
morphisms from H. to G.. The following lemma will be very useful. 

LEMMA 2.2. For any simplicial group G. and any reduced simplicial set K. there is 
a natural isomorphism of simplicial sets 

QG(K.) ^ ^ G ^ 

PROOF. Essentially this isomorphism is a consequence of Kan's loop group func­
tor G(—) being left adjoint to Eilenberg-Mac Lane's classifying functor W(—). For any 
simplicial set T. the set of simplicial maps from T. to G.G<"K) is canonically bijective 
with the set of simplicial maps / . : G(K. ) x T.-> G. which are linear in the sense that 
f(x + y, v) = f(x, v) +/(y, v). Then considering the natural group structure in G.K there 
are natural bijections 

SimplSet(r., G.G{K) ) ^ Simpl Gp(G(K. ), GT ) ^ SimplSet(A\, W(GT )) ^ 

(using that W preserves limits and then function spaces [37,11,1.11]) 

^ SimplSet(Ar., W(G. )T) ^ SimplSet(r., W(G. f). 
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PROPOSITION 2.3. Let N. <—• G. —» Q. be a short exact sequence of simplicial groups 
and let F. be a free simplicial group. Then there is a sequence of sets of loop homotopy 
classes 

which is an exact sequence of groups and pointed sets in the usual sense, and moreover: 

i) The group [F., Q(Q. )] acts on [F., N. ] and 

/*(<*) = /*(«')*» a = xa\ for some X E [F.,Q(Q.)]. 

ii) 6*(\) = 6*(\')&p*(u;) + \ = \', for some u G[F.,ft(G.)]. 

PROOF. Let us first observe that the map G.F —* Q.F, induced by p. between the 
linear function spaces, is a Kan fibration. In fact, since F. is free, if K. — W(F. ) the 
canonical map G(K. ) —• F. is a loop homotopy equivalence and therefore it is enough 
to observe that G.G<"K) —• Q.G^K) is a Kan fibration; now by Lemma 2.2 this is equivalent 
to see that W(G. )K —* W(Q. )K is a Kan fibration, but since p. : G. —• Q. is surjective 
the simplicial map W(G. )K —• W(Q. )K is a Kan fibration and therefore, by [36, 7.8], 
W(G. )K -» W(Q. )K is also a Kan fibration. 

Consequently we have a fiber sequence of simplicial sets 

N.F->G.F-+Q.F, 

with based point the zero simplicial morphism, this induces a long exact sequence of 
groups and pointed sets 

>nl(N
F)^nl(G

F)^nl(Q
F)^n0(N

F)^n0(G
F)-^iio(QF) 

which moreover satisfies the conditions analogous to i) and ii) (see [5] for example). 
Finally, note that for arbitrary simplicial groups H. and P. and any integer / > 0 

Yli(Hp ) ^ n0(a /(//. /> )) = ( since Q preserves limits) 

As a direct consequence we have 

FIRST PROOF OF PROPOSITION 2.1. It is immediate to observe that the sequence of 
simplicial groups 

A(7)^AC£)-».fce8) 
is short exact; therefore, for any simplicial free resolution F. of the group G, by the above 
Proposition 2.3, we have an exact sequence of pointed sets 

[F., aum ^ [F., QMQ)] ^ [F., XT)] -^ [F., Mm ^ IF., A(B)] 

whose terms can be identified, using the isomorphism £2J72CE) = J7(*E) (Proposition 
1.1) and the homotopy representability theorems of Section 1, with cohomology sets as 
follows: 
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[F.,Q72(£)] -^ [F.^Mm - ^ [F.JiiJ)} -^ [F., ACE)] - ^ [F., M®)] 

HI HI Il II II 
[F.Jim - ^ [F,J7(£)] - ^ IF.Ji(T)] - ^ [F.,ACE)] - ^ [F. .ACS)] 

HI HI HI HI HI 
H2(G,£) - ^ H2(G,0) - ^ H3(G,!F) - ^ H3(G,£) - ^ H3(G,#). 

Thus by comparing this sequence with Dedecker's one, we get a sequence whose exact­
ness properties are just those stated in Proposition 2.1. 

Now we are going to translate into the cohomology situation the above homotopical 
arguments. 

If £ = (L —* M) is a crossed module enriched with an additional structure of reduced 
2-crossed module, given by a map { —, —} : M x M —• L, we have seen how Dedeck-
er cohomology H2(G, *£) has a group structure via the natural bijection H2(G, *£) = 
[F., £2 J72 (*£)]. The first question is: how is this group structure described in terms of co-
cycles? 

In order to answer this question let us take, as free simplicial resolution of G, the loop 
group complex F. = G(A^(G, 1)) of the Eilenberg-Mac Lane complex K{G, 1). Then 

H2(G, £) ^ [G(ÂT(G,1)),J(£)] = n0(A(£)C(* (G,1) )) 

So we only have to translate the canonical group structure of (j/2C£)*(G,1)) to H2(G, *£). 
We start by recalling how the set Z 2(G, *E) of Dedecker's 2-cocycles is bijective to 

(_7(<E)^)o = SimplSet(tf(G, 1), A(E)). 

Recall that a Dedecker 2-cocycle of G with coefficients in £ is a pair of maps (f: G x G —* 
L,(p\G—+ M) satisfying: 

CCI. <?(*) +<?O0 = p/(*, ?) + ¥>(* +)0, 
CC2. *<*>/(* z) +/(*, y + z) = /(*, y) +/(* + * z), 

for all x,y,z G G. Then a 2-cocycle (/", (/?) corresponds to the simplicial map/. : K(G, 1) 
—• j/C£) which is uniquely determined by the truncated simplicial map 

G 3 G =4 1 

1 / 2 l / ] 1° 
(L x M) x M 3 M =* 1 

where/i = </? and/2 (x, y) = (/(^j) , <̂ (x+;y)—<̂ 0>), (̂  (y)). Therefore we have, according 
to the group structure of ^ ( E ) (see pg. 6): 

PROPOSITION 2.4. Let T = (L —> M, {—,—}) fo? a reduced 2-crossed module and 
let G be a group. Then H2(G, £ ) /uzs a canonical group structure which is given by 

[(f,<p)] + [(g,il>)]=[(f*g,<p*xl>], 
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where square bracket means cohomology class and 

((p *if; )(x) — ip(x) + \j) (x) and 

if * g)(x,y) = - ^ } { <p(y),t/>(x)} +/(*,?) +*(x+y) g(x,y), 

for all x,y G G. 

The next step consists in describing, in cohomology terms, the action of the group 
H2(G, *£) on the set IH3(G, !f), when J c—• £ —H *B is a sequence as in Proposition 
2.1. In particular, this action will describe the connecting map H2(G, *E) —» IHI3(G, #). 
In the first proof of Proposition 2.1 this action is induced from the canonical action of 
ni(j72(#)) on Ih(M!F)F) which is induced by the fiber sequence of simplicial maps 

U?)F -> A ( £ ) F ^ A(«) and it is given by 

m\f\ = [dx(h)l 

for any/ G (A(J F ) ) 0 and A G (jW'Sf), with 4,(A) = 0 - dx{h), where Â G (M'E))l 

is chosen (using that O* is a Kan fibration) such that do(h) — f and O/J = /Ï. 
Now let F. be the free simplicial group resolution of G used in page 272 of this paper. 

Then we have a canonical equivalence of functors 

{M-f)o = (F.,M-J) = Z£(G,-), 

through which elements in (_?2(—)F)j» i-e. homotopies between simplicial morphisms, 
correspond to cohomologies between 3-cocycles (according to the results in Section 1). 
In particular an element h G (j/2(^)F)1 corresponds to a cohomology between zero and 
itself, i.e. (see Proposition 1.2) a pair of maps À : G —-> M" and T: G x G —> L satisfying: 
CHI) 0 = pr(x,y) + \(x) + \(y)-\(x + y), 

CH2) o = r(jc, y + z) + A w r ( j , z) + rot, y) - r(x + v, Z). 
Then it is plain to see that the isomorphism H2(G, <B) = n1(j/2(^)F) (note that 

n i C M ^ f ) = n0(^J/2(«)F) ~ n0(_7(£)F) *? [F.,J7(£)] ^ H2(G,£)) is given by 
[(A ¥0] l—> [(~/> V3)]» where (/, v?) G Z^(G, #) denotes here a normalized Dedecker 
2-cocycle. 

Using then the above observation, we have: 

PROPOSITION 2.5. In the hypothesis of Proposition 2.1, the action ofU2(G, *B) on 
U3(G,!F) is as follows: 

Let (f'\ if") G Z2(G, $) be a 2-cocycle and (g, V0 G Z3(G, J) a 3-cocycle. Then, 
there are maps \:G—>M and r : G x G - > L satisfying </>oA = y?" and <f>\T = —f" and 

[cr^)1[te,^)] = [(^^ ,)L 

where: 
\jjf(x,y) = pr(jc,.y) + A(x) + A(j) — À (JC + j) + -0 (JC, j ) and 

* W > z ) ^ ' ^ r ( ^ + z ) - { A ( 4 f ( y , z ) } + A w r ( j ,z ) 

+*(*, y, z) - r(jc, j ) - ^ r(jc + v, z). 
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In particular the connecting map <5„: H2(G, % —> H3(G, J) is 

W ' V ' ) ] = [ ( / , v , ) l[(0,o)]. 

Now we give a brief proof in terms of cocycles of the exactness of the cohomology 
sequence 

SECOND PROOF OF PROPOSITION 2.1. We already have given the group structures of 
H2(G, £) and H2(G, (8), the action of H2(G, <B) on IH3(G, ̂ F) and the connecting map 6*. 
Let us then see the exactness properties: 

EXACTNESS AT H2(G, $). Let (f, <p) G Z2(G, E) be a 2-cocycle of G with coefficients 
in £. Then 

M > * [ ( / » ] = [ * ^ ) ] [ ( 0 , 0 ) ] = [(g'^')l 

where 
$\x,y) = -pf{x,y) + <p(*) + <p(y) - <p(x + y) = 0 

(since (/", Lp) satisfies CCI) and 

g'(jt, y, z) = -f(x, y + z)- «x)f(y, z) +/(*, y) +/(* + y, z) - 0, 

since (/", </?) satisfies CC2. Therefore 5*0* = 0. 
Conversely, let if", <p") G Z 2(G, #) be a 2-cocycle and let A : G -> M and T: G x G —> 

L be two maps satisfying 0OA = <p" and ^ r = - / " . Then 6*[(/", v?")] = [(g', V')L 
where 

il>'(x>y) = pHXy) + A(JC) + A(y) - A(JC + y) and 

g'(jt,y, z) = ^ ' ^ ( J C , y + z) - { A (*), V'(y, z)} +A{x) T(y, z) 

- r ( x , y ) - ^ / ( ^ } r ( j c + y,z). 

If 6* [(/*", <p")] = 0, there must exist maps A': G —• M' and r ' i G x G - ^ L ' which give 
a cohomology (A', V): (g\^f) —* (0,0). On the other hand we can consider (g',i)') as 
a cocycle with coefficients on *£ (via the inclusion F̂ ^-» *E) and the pair (r, A ) as a 
cohomology from (0,0) to (g7, t/7')- Then by composing 

(oV™VvV™(o,o) 
we have a cohomology (F , A') o (r, A ) = (f, X ): (0,0) —• (0,0) by the formulas 

X (x) = A '(JC) + A (JC) and 

f(jc,y) = F(jc,y) +̂ 'W+A'(y)-A'(x+y) r ( jc?>;) -*'<*>{ A (JC), A'(y)} 
.A'W+ACxHA'OO-A'U) ( | A ( j c ) + A ^ _X(x + y ) _ x /(JC + ^ + A (JC + y)y 

+ {-A(;t + y),A(*+y)}). 

This cohomology gives a cocycle (—f,X) G Z2(G,(B) which clearly satisfies 
0*[(-f, À )] - [(f, <*>")]. Therefore we have Im(<P*) = 6~\0). 

Moreover given a,(3 G M2(G, #), 6*(a) = 6*(J3) if and only if a0 =P 0(orequiva-
lently (a~^0 = 0), and so there exists /i G IH12(G, £) such that -a + f3 = <&*(/x). 
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EXACTNESS AT H3(G, 7)\ It is clear that for any a G H2(G, <B) and 7 G H3(G, J ) , 

/*(a7) - i*(7), 

in particular i*8* = 0. On the other hand, given 7 = [(g, V0J a nd ^ = [(g', V>')1two ele­
ments in M3(G, fF), if /*(7) = i*(v) there exists a cohomology (r, A): (g, $) —• (#', t/;'). 
Then (</>iT, </>0A) is a cohomology from the zero 3-cocycle on *B to itself and taking 
a = [(-0r,(^0A)] G H2(G, <B) we have a 7 = v. 

EXACTNESS AT M3(G, £). The composition 4>*i* is clearly the constant zero map. 
Conversely, suppose 7 = [(g, V7)] £ H3(G, £) an element which is taking by O* to 
zero, then there exists a cohomology (T", A"): (g, V0 —* (0,0). Consider A:T —+ M 
and r : G x G —» L two maps satisfying c/>oA = A" and <j)\T — T"\ then, by using 
the identities CH 1 and CH 2, there is a unique 3-cocycle (g\ipf) in Z 3(G, *£) such that 
(r, A ): (g, -0 ) —> (g7, ^ ') is a cohomology. Moreover the cocycle (g', ̂  ') also represents 
7 and it factors through the fiber jF (since <j>\gf = 0 and ôV*' = 0). 

Let us now specialise the general sequence in Proposition 2.1. 
Given a pair of groups (A, L), with A Ç L a central subgroup, the quotient group Lj A 

acts by conjugation on L and the map 

{ - , - } : {L/A) x(L/ A) ^L;{lJf} = [£,*'] 

give a canonical reduced 2-crossed module structure in (L —» L/A), let us denote the 
above reduced 2-crossed module by the pair (A, L). On the other hand, if (A', L') is another 
pair of group in the same conditions than (A, L), any epimorphism of groups p: L —» L" 
such that p(A) Ç A" induces a surjective morphism of reduced 2-crossed modules 

(A,L) -+> (A",L") 

L -4> L" 

1 1 
L/A -A> L'Y A" 

whose kernel and fibre crossed modules are 

%=(L'^ L/A) and 7 = (L' — / T V ) / A ) 

respectively, where L' = Ker(/?). Then, specialising the sequence in Proposition 2.1 we 
obtain an exact sequence 

* -* HomGp(G,L/) —• HomG/7(G,L) —• HomG/?(G, L/L') 

^M2(G,^C)->IH12(G,(A,L)) 

—• IH2(G,(A",L")) -> IH3(G, J ) 

-+ H3(G, (A,L)) - > HI3(G, (A", L")), 

where HomG/?(—, —) denotes the hom-group functor. 
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But the inclusions (A, A) <̂-> (A, L) and (A", A") c—• (A", L") induce weak equivalences 
of simplicial groups when the functors J and J/2 are applied. Therefore they induce natural 
isomorphisms 

H''(G,(A,L)) ^ H''(G,A) ^ / / ^ A ) and 

H'(G,(A",L")) ^ H''(G,A") ^ H\G,A!'), 

for / = 2,3, and then the above sequence can be written 

* ->HomG/,(G,L') -+ HomG/?(G,L) -+ HomG/?(G,L/L') - • IH12(G, 30 

-+//2(G,A) -+ H\G,A") -> M3(G, jT) -+ #3(G,A) -> //(G3, A"). 

An interesting special case of this last sequence appears when A = Z(L), A" = Z(L") 
(the centers of L and L" respectively) and p is any epimorphism of groups. In this case 

(A,L)=(L-»Int (L)) , 

(A^,L , /)=(L / /-Hlnt(L' r)), 

3C = (Ll -> Int(L)) and 

J = ( L , - > p - 1 ( Z ( L / / ) ) / Z ( L ) ) . 

Consequently, associated to an epimorphism of groups /?: L —H L" with kernel L' and 
the zero morphism from G to Int(L), we have a 9-term exact sequence of pointed sets 

* - • HomG/7(G,L') -* HomG/,(G,L) -> HomG/7(G, L/L') 

-> H2(G, 30 -* H2(G,Z(LJ) - • H2(G,Z(L")) 

—• H3(G, J ) - * H3(GyZ(L)) -> / / 3 ( G , Z ( L " ) ) . 

Note that H3(G, J ) is also an abelian group; the reason is that (H3(G, ̂ F) = [F., J/2(Dl 
and 3i{7) is an infinite-loop simplicial group, since F̂ is a stable crossed module in 
the sense of Conduché [13]. It is not difficult to see that the above sequence is an exact 
sequence of abelian groups at the last five terms. 

3. H3 and 2-dimensional non-abelian torsors and extensions. The simplicial 
group J/2(£), associated to a reduced 2-crossed module T, = (L —-» M, { —, —} ), is a 
2-hypergroupoid in Glenn's sense [22]. Now, since for any group G there is a natural 
isomorphism 

H3(G,£)^[G.(G),J72('E)L 

where G.(G) is the standard cotriple resolution of G, we have that H3(—, — ) = 
Hg(—,3i(—)) is a particular case of the cohomology with coefficients in a 2-hyper­
groupoid, which was studied in [11]. In that paper it was shown how the cohomology set 
HQ(G, J2CE)) classifies 2-torsors (in Glenn's sense) under G over the 2-hypergroupoid 
_72CE). Such torsors correspond, in this case, to diagrams of truncated simplicial groups 

A2 =5 E\ =• EQ —•* G 

(4) [a2 }«, I 
( L M M ) M M 3 M =î 0 
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where A2 and G are the simplicial kernel and the coequalizer, respectively, of the pair 
of morphisms E\ =3 EQ , and a2 restricts to an isomorphism between the corresponding 
groups in the Moore complexes. We can then say that the Moore complex of the above 
diagram is of the form 

E:L d , E - ^ F ^ G 

(5) || j„ 

L -ï-> M 

with F — EQ, E = Ker(^o- E\ —» Fo), a the restriction of ct\ and the top row an exact 
sequence of groups. In this last diagram (5), E is an F-group, with action 

xy = s0(x) + y - s0(x), 

S is an F-group morphism, where F is considered as an F-group by conjugation, and 
moreover a satisfies the following conditions: 

El) a(xy) = a(y), 
E2) {a(y),a(z)} = y + z-y-è(y) z, 

for all x G F and y, z G E (we have identified L with its image in F). Conversely, a 
diagram as in (5), with F an F-group, S an F-group morphism and satisfying El) and 
E2) determines, up to isomorphism, a 2-torsor as in (4), with Fo = F, E\ = E x F, do 
and di : E\ —> FQ given by: 

d0(y,x) = x, 

d\(y,x) = 6\(y) + x, 

so'.Eo —> Fi by so(*) = (0,JC), a\:E\ —-> M by ai(v,Jc) = criOO and «2-^2 —> (F x 
M) x M by a2(xo,JCi,X2) = fe — sô o-Xo + *o — x\,a\X\ — a\xo,a\Xo). 

So we define a 2-extension of the reduced 2-crossed module *£ by the group G as 
a commutative diagram as in (5) with the top row exact, F an F-group, S an F-group 
morphism and a a group morphism satisfying El and E2. We have then: 

PROPOSITION 3.1. For any group G and any reduced 2-crossed module *£ the coho-
mology set H3(G, *E) classifies 2-extensions ofT.by G. 

PROOF. The proof of this proposition is an immediate consequence of [ 12, Theorem 
2.18]. Nevertheless we give here a brief description of the correspondence between 2-
extensions and cocycles. 

Suppose F is a 2-extension of £ by G and consider, for any x G G, an element u(x) G F 
such thatp(u(xj) = x(ju(0) = O). The element w(jt)+«(j) — u(x+y) isinKer(p) = Im(£), 
for all x,y G G, and therefore there exists v(*, y) G E such that 

5 (V(JC, v)) = w(x) + w(j) — u(x + y) 

with v(0, x) = 0 = V(JC, 0). Then, for any jc,_y, z G G, the element 

/(*, y, z) = MW v(y, z) + v(x, y + z)-v(x + y, z) - v(x, y) 
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is in Ker(£) = L, and so we have a map f:G x G x G —+ L which, together with 

(f'.Gx G —> M defined by y>(x,y) = a (v(x, v)), form a cocycle in Z^(G, £). Note that 

this cocycle (f,(p) corresponds by the bijection 

Z^(G,E)^SimplGp(F. ,A(E)) 

to the simplicial morphism obtained from the composition 

F3 3 F\ =3 Fo —H G 

1/2 J/ ' J/0 II 
A2 3 £ x F = 3 F ^ G 

(Lx M)x M ^ M = t 0 

where fo(rjx) = u(x) and f\(pXjy) = (v(jc,y),0). Since two liftings of the 1G, to F., are 

homotopic, the class of (f, <p) in H3(G, *E) does not depend of the choice of the maps u 

and v. 

Conversely, given a cocycle (f,<p)E Z^(G, £ ) , its class in H3(G, *E) can be realized 

in the above sense by the extension 

L ^ Lx K - ^ F0 -^ G 

Il 1 « 
L -£-> M 

where Fo is the free group based on { rjx : x E G } , 770 = 0, the morphism /? is determined 

by p(r]x) = x, K is the kernel of/? (therefore Â  is free with base the elements r]x+r]y—rix+y 

of Fo), L x K is the semidirect product group, where K acts on L via the group morphism 

6 : K —• M : 0 (7/* + ^ - 77x+>;) = </?(*, 3>), 

and the morphism a:L x K —> M is given by a ( £ , /:) = p(l) + 6(k). Finally, to describe 

the action of FQ on L x K, note that there is a unique map (3 : FQ X K —> L satisfying: 

i) i8 (tyc, r]y + r]z- j]y+z) = / ( * , y, z), 
ii) /3(CU) = 0 = /3(w,0), 

iii) /J(w + w,k) = /3(w',it) + /3(w, w' + k - w'), 

iv) (3(w,k + k') = (3 (w, k) +w~k+w p (w, ik7), 

for all x,y,z E G, w, w' G Fo and k,k! € K. This map /? also satisfies: 

pP(w,k) = 6(k)-6(w + k-w). 

Then, the action of Fo on L x AT is given by 

w(£,k) = (l + /3(w,fc), w + k-w). 

Note that for any abelian group A, the concept of 2-extension of the reduced 2-crossed 

module A —> 0 by the group G is just the classical concept of 2-fold extension of A by G 

and so the above Proposition 3.1 gives just the well known interpretation of / /3(G, A) in 

terms of 2-fold extensions [21], [33], [25], [26] or [27]. 
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4. Non-abelian cohomology and homotopy classification of continuous maps. 
In this section all spaces are pointed and path connected CW-complexes. 

Given spaces X and F, a fundamental problem in homotopy theory is to find algebraic 
methods for classifying the set [X, Y] of homotopy classes of continuous maps from X to 
F. Eilenberg-Mac Lane cohomology gives an apropriate solution for aspherical spaces X 
and spaces Y with a unique non-tri vial homotopy group, at dimension > 2; in this case 
if n = 111 (X) is the fundamental group of X and A = Tln(Y) is the unique non-trivial 
homotopy group of F, n > 2, Eilenberg-Mac Lane's classification theorem states the 
existence of a natural isomorphism 

[X,Y]^Hn(U,A). 

The main goal of this section is to show how this theorem can be generalized for n = 2 
and n — 3, by using the non-abelian cohomology groups Un, to spaces y with Ili(F) = 0 
for all / ^ n, n — 1. 

The fact (proved by Mac Lane-Whitehead in [35]) that crossed modules are adequate 
algebraic models for the homotopy types of spaces Y with H\(Y) = 0, for all i ^ 2,1, 
makes our classification theorem easy for n=2. Recall that the classifying space B(fE) 
of a crossed module £ = (L —* M) is defined as the classifying space of the associated 
simplicial group _?(£), i.e. B{(E) = I Wlji^Ey) I the geometric realization of the simplicial 
set W(j7C£)) (see [32] or [35]); this space is a pointed and path connected CW-complex 
whose homotopy invariants are determined by *£ (for example I"IiZ?(!£) — 0, for / > 
3, n2B(<E) = Ker(p) and YlxB(<E) = Coker(p)). On the other hand, any space Y has 
associated a fundamental crossed module 

<E(Y)= (n2(Y,Skl(Y))-^Tll(Skl(Y))y 

where Sk^F) is the one dimensional skeleton of F, p is the boundary map and the ac­
tion of 111 (Sk^F)) on n 2(F, Sk^F)) is the standard one, in such a way that F has the 
homotopy type of BTXY) if and only if I%(F) = 0 for all i ^ 1,2. This fact is essentially 
given in [35]. 

A space F is said of the homotopy type of a crossed module £ if it is homotopically 
equivalent to #(£). 

PROPOSITION 4.1 (CLASSIFICATION THEOREM). Let X be an aspherical space with 
fundamental group Y\ and let Y be a space with the homotopy type of a crossed module 
T,. Then there is a natural bijection 

[X,F]^IHI2(n,'£). 

PROOF. The proof is an immediate consequence of the homotopy representation the­
orem for Dedecker IH12 since 

IHl2(n, £) = [G(K(YI, 1)), _7C£)] ^ SimplSet[£(n, 1), WJ7(£)] 

^ [ | K ( n , l ) | , £ 0 £ ) ] ^ [ X , F ] . 

https://doi.org/10.4153/CJM-1991-015-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-015-7


290 M. BULLEJOS AND A. M. CEGARRA 

(An alternative proof can be deduced from results in [7] and [8]). 
To extend the above Proposition 4.1 to n — 3 we first have to obtain adequate algebraic 

models for the homotopy types of spaces F with I1/(F) = 0, / ^ 3,2. In fact we are going 
to prove that reduced 2-crossed modules can be used as such models. 

If £ = (L —• M,{—,—}) is a reduced 2-crossed module, its classifying space 
B2(

<E) is defined as the classifying space of the simplicial group J72C£), i.e. #2C£) = 

I W(_!/2(*£))[; this space is a pointed and path connected CW-complex with trivial homo­
topy groups at dimensions other than 2 and 3 (moreover n2(#2CE)) = Coker(p) and 

n3(fl2(£)) = K e r ^ ) ) ' 
A space F is said to be of the homotopy type of a reduced 2-crossed module *E if it is 

homotopically equivalent to #2CE). 

PROPOSITION 4.2. A space Y has the homotopy type of a reduced 2-crossed module 
if and only ifnt(Y) = 0, i ^ 3,2. 

PROOF. Let F be a space with n,-(F) = 0, i ^ 3,2. To find a reduced 2-crossed 
module, ^ ( F ) , whose classifying space is homotopically equivalent to Y, let us consid­
er the simplicial group G. = GS*(Y) (i.e. Kan's simplicial group of the reduced singu­
lar complex of F). This simplicial group has IT^G. ) = Yli+i(Y) for all / > 0, and the 
canonical morphism Y —> \W(G.)\ is a homotopy equivalence. Let K. be the largest 
simplicial subgroup of G. whose 2-simplices are in £3(03). Then K. has Ko = 0 = K\, 
K2 = è3(G3) Ç G2, and inductively Kn+\ = {x e G : dt(x) £ Kn, 0 < / < n + 1}, for 
n > 2. Since ^3(63) is a normal subgroup of G2, we have that K. is a normal simplicial 
subgroup of G.. Moreover the Moore complex of K. is 

>Gn^Gn^-^- .'G3-+è3(G3) - + 0 ^ 0 . 

Then the quotient simplicial group G./K. has Moore complex 

• 0 -* 0 - • • • • 0 -> G2/HG3) ^Gx^ G0, 

and therefore the projection G. —•»• G. / K. is a weak equivalence. Consequently, Y is 
homotopy equivalent to | W(G. / K. )|. 

Consider now P.(Y) the simplicial subgroup of G. / /f. whose simplices have all their 
0-faces equal to zero, i.e. P0(Y) = 0 and Pn+\(Y) = {x e Gn+l/ Kn+l : dt(x) G Pn(Y)}, 
for n > 0. Its Moore complex is 

• 0 -> 0 -> • • -0 - • G2/S3(G3) - • KertfO - • 0, 

so P. (F) is an object in Simpl2 Gp and 

^ ( F ) = 9&{P.(YJ) = (G2/<53(G3)~>Ker(^1)) 

is a reduced 2-crossed module (with 3i^a^Y) = P-(Y)). Moreover the inclusion P. (F) 
c—> G. / K. is a weak equivalence and therefore F is homotopy equivalent to | WP. (F)| = 
£2£2(F). 
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Note that the construction of T(Y) (the fundamental reduced 2-crossed module of Y) 
is functorial. Thus Ti{—) is a functor from the category of spaces to the category of 
reduced 2-crossed modules. 

The homology groups Hi, i — 0,1, of a reduced 2-crossed module T = (L —* M) 
are defined to be the homology groups of its underlying crossed module (i.e. HQ(T) = 
Coker(p) and H\(T) = Ker(p)). A morphism of reduced 2-crossed modules is called a 
weak equivalence if it is a weak equivalence as a morphism of crossed modules (i.e. it 
induces isomorphisms between the homology groups). Clearly weak equivalences corre­
spond to weak equivalences by the above functors Ta and B2 and so the above Proposition 
4.2. can be rewritten as follows: 

PROPOSITION 4.3. The functors Ta and $2 induce an equivalence between the homo-
topy category of pointed and connected CW-complexes with trivial homotopy groups at 
dimensions other than 2 and 3 and the homotopy category of reduced 2-crossed modules 
( i.e. the corresponding category of fractions where all weak equivalences have being 
inverted). 

PROPOSITION 4.4 (CLASSIFICATION THEOREM). Let X be an aspherical space with 
fundamental group II and let Y be a space with the homotopy type of a reduced 2-crossed 
module T. Then there is a natural bijection 

[X,Y] ^ H 3 ( n , £ ) . 

PROOF. Using the homotopy representation theorem for M3 (Proposition 1.3) we 
have 

IHI3(n, T) ^ [G(K(U, 1)), J72C£)] ~ SimplSet[^(n, 1), WJ2(T)} 

^[\K(YIA)[B2(T)}^[X,Y]. 

5. M3 and other 3-dimensional cohomologies for groups. As we said at the end 
of Section 1, our cohomology M3 coincides with the classical Eilenberg-Mac Lane co-
homology when the coefficients are abelian groups. In this section, we are going to see 
how this cohomology fl-D3 is related to other two already established cohomology theo­
ries: Dedecker thick cohomology H3 whose coefficients are super crossed groups, [17], 
and Ulbrich's cohomology with coefficients in Picard categories, [39]. 

Let us start with Ulbrich cohomology 9i3. 

Frôhlich and Wall, see [20], defined a cohomology with coefficients in graded cat­
egories. Later on Ulbrich, [39], specialized this cohomology to Picard categories and 
obtained interesting applications of it. Let us see now that our cohomology H3(G, T), 
under certain restrictions on the coefficients T, coincides with Ulbrich's cohomology 
at dimension three of G with coefficients in a Picard category with a trivial G-module 
structure. 
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The first step is then to find appropriate conditions on the reduced 2-crossed module *E 
to be able to associate to it a symmetric Picard category. These conditions were pointed 
out by Conduché [13], and they reduce to the following condition on the map {—,—}: 

{ m\ m} = —{ m, m}, for all m, m' G M. 

A reduced 2-crossed module *E, in which the map { —, —} verifies the above identity 
is called a stable crossed module. Let then *E = (L —-»• M) be a stable crossed module. By 
the equivalence between the category of crossed modules and the category of internal 
categories in Groups, [9], the crossed module *E has associated an internal category in 
Groups -#(*£), whose groups of objects and arrows are M and L x M respectively, the 
source and target of an arrow (I, ni) are m and p(l)+m respectively, and the composition 
is given by 

(l,m)o(l\p(l) + m) = (t + l, m)\ 

this category -#(*£) has then a coherent group structure in Ulbrich's sense, with all coher­
ent isomorphism identities. Moreover the map { —, —} induces coherent isomorphisms 
for commutativity, by taking, cm^ — ({m,m!},m' + m). So -#(*£) is a symmetric Pi-
card category and the correspondence *£ t—» -#(*£) is functorial. Considering then -#(£) 
with the trivial G-module structure we will see here that there is a natural bijection 
H3(G, E) = # 3 ( G , # ( £ ) ) , where H denotes Ulbrich's cohomology. 

Let us now specialize Ulbrich's definition of 9{3 to the symmetric Picard category 
with trivial G-module structure J^CE): 

The abelian group i#3(G, .#(£)) is defined as the quotient group Z3(G,-#(£))/ 

B3 (G, j?(£)), where Z3 (G, j l (£)) is the group of connected components (isomorphism 

classes) of the Picard category Z?{G, -#(£)). This category has as objects "3-cocycles", 

i.e. pairs (Px,y, &x,y,z) where Pxy,x,y G G, is a family of objects of -#(£), that is a family 

of elements of M, and aXjyjZ is a family of morphisms in -#(£) of the form o-x,y,z'- Py,z + 

Px,y+Z —• Px,y + Px+y,zi s u c n m a t the following diagram 
( 6 )

 M 
I d +o,jC,y,z+r C + I d 

*z,f "*" *y,z+t + *x,y+z+t * * z,f + * x j + ^x+j,z+f * * x,y + * z,r + *x+y,z+t 

I ^,Z , ,+Id | Id +(TX+yz,t 

Id <rrV7+Id 

^ y,z + Py+z,t + Px,y+z+t * Py,z "*" Px,y+z + *x+y+z,* * *jc,y + Px+y,z + Pz+y+zJ 

is commutative for all jc,y,z, G G. An arrow i/:(P,a) —• (Q,T) in Z3(G, J^CE)) is a 
family of arrows i/xy. Pxy —•» (2^, making the diagram 

*y,z + *x,y+z —^ *x,y + *x+y,z 

Vy,z+Vx,y+z 1 | ^ 4 * « 

£/y,z + £A,;y+z 
Tx,v,z 

£/x,;y + y^+y,z 

commutative, for all Jt, .y, z G G. 
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Any family (À*), x G G, of objects in .#(£), defines a 3-cocycle by taking the pair 
(A* + Xy — Xx+y, Xx,y,z)> x,y,z E G, where \x,y,z *s the morphism in .#(£) given by \x,y,z = 
({ Ay + Az — A-y+z, A*}, Xx + Ay + Az — Xx+y+z). The classes in Z3 (G, -#(*£)) of such cocycles 
form the subgroup B3 (G, # (£ ) ) . 

Now, given a cocycle (P*j» fl"*,^), the arrows aXtytZ are elements in L x M necessarily 
in the form (f(x,y9z),Px,y + Px+y,z)> since its target is Py+Z + P*,^. Moreover the source 

z is Py+Z + Px,y+z and therefore we have 

P/(X, J , Z) + PXfy + P ^ = P ^ + PXy+Z. 

On the other hand, the commutativity of the above diagram (6) is equivalent to the 
identity 

'*/(*, y, z + 0 + { P,,„ P,,, } +'x*/(* + y, z, t) 

= f(y, z, t) +Py'zf(x, y + z,t) +/(*, y, z) 

or equivalently 

{Px,y,Pz,t} = Px>yf(x + y,zj) -f(x,y,z) -y*f(x,y + z,t) 

-f(y9z,t)+uf(x9y,z + t). 

Therefore the correspondence (Px,y,&x,y,z) l—+ (A^)» where <p(x9y) — Px,y, gives a 
natural bijection between the set of objects of Z3(G, -#(*£)) and Z3(G, *£). Also it is 
easy to see that a morphism i/:(P,a) —> (<2,r) is equivalent to a map r : G x G ^ L 
verifying: 

g(x,y,z) = ^ r ^ +r,,z + / (* ,* z) - r,,y -*<*•"> Tx+y,z, 

where (g, i/>) corresponds by the above bijection to (Q,r). So we have a Picard category 
(whose group structure is denoted by +) isomorphic to Z3(G, -#(*£)) and whose objects 
are the elements of Z3(G, £). Moreover, the elements of Z?3(G,-#(*£)) correspond to 
isomorphism classes of the cocycles A = (VA,/A) in Z3(G, £) determined by maps 
A : G —• L, by 

<PA(*,)0 = Aj + Â  -\x+ymdf\(x9y9z) = { Â  + Az - Xy+Z,Xx}. 

and the cocycle A + (/*,(/?) is isomorphic to (g, i/; ), where 

V>(x,y)=X(x) + X(y) - X(x + y) + <p(x,y), 

g(x,y,z) = -{\(x)9il>(y,z)} -{<p(y,z),\(x) + \(y) + \(z)-\(y + z)} 

- ^ {<p(x, y + zl X (x) + A (y) + A (z) - X (x + y + z)} +/(*, y, z) 

+^ ( ^ ) {^(x + y,z),A(x) + A(v) + A(z)-A(x + y + z)} 

+ { (^(x,y), A(x) + A(v) - X(x + y)}. 

So two 3-cocycles (f,(f) and (g, I/J) correspond to 3-cocycles in Z?(p, -#(£)) which 
gives the same classes in ftf3 (G, -#(£)) if and only if there exists a map A : G —> M such 
that A +(f,ip) and (g, t/0 are isomorphic, i.e. if and only if there are maps A : G —• M 
and T: G x G —> L in such a way that T gives an arrow from (g,i/j)toX +(f,(f) and this 
is equivalent to the conditions CHI and CH2. Thus we have: 
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PROPOSITION 5.1. For any group G and any stable crossed module *£, there is a 
natural bijection 

H1*(G, # ( £ ) ) = H3(G,<E). 

Now let us compare with Dedecker cohomology HI3. 
The coefficients for H3 are called super crossed groups. A super crossed group A 

consists of a commutative diagram of group homomorphisms 

H JL. A 

4 \ p [ 
E —> n 

9 

where A Ç n is a normal subgroup, together with actions of n on H and E and a map 
A: E —-> Sl(A,H), from £ to the set Sl(A,H) of inverse crossed homomorphisms from 
A to H (i.e. maps d: A —• H satisfying d(X + A') =A d(A') + d(A), note that n acts on 

(xd)(\) = x(d(-x + \ + x)) 

for any x G n , A G A and J € Sl(A, //)), such that: 

1. ( / / A n ) a n d ( E - > n ) are crossed modules and the pair of homomorphisms 
(&, In) is a crossed module morphism. 

2. A is an equivariant map and the following diagram commutes 

H J U E 

*\ 1* 
S\KH) 

where d(h)(X ) = h-x h,\ G A and A G //. 
3. For any A G A and e G £, p (A(é?)(A )) = [A, 0 (e)]. 

These coefficients arose when Dedecker, [17], tried to give a constructive definition 
of non-abelian cohomology at dimension 3, with the main propose of extending his 6-
terms exact sequence and so give a measure of the obstructions to lifting 2-cocycles. This 
layout led Dedecker to the above systems whose only motivation is that they probably 
work. 

Given a reduced 2-crossed module *E= (L —> M, {—,—}), the diagram 

L -> M 

i \ II 
M = M 

together with the action of M on L and the map 

A: M -> S1 (M, L); x H-* A(x):M -+ L 

y*-*{y>x} 
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is a super crossed group A(£). It is not difficult to observe that with an appropriate 
definition of super crossed group morphism A (—) defines a functor from the category 
2-XtMred to the corresponding category of super crossed groups (note that not all super 
crossed group with 9 = In, A = n and p = p' = k is equal to A (£), for some reduced 
2-crossed module *£). 

We are not going to write here a complete description of a Dedecker's 3-cocycle, just 
let us say that a Dedecker's 3-cocycle of a group G with coefficients in the super crossed 
module A (*£) consists of a 5-tuple of maps (&, À, </>, Â , 77) 

k:GxGxG-^L, 

X : G x G -> M, 

<£ : G -+ M, 

K:Gx G-^51(M,L)and 

77:GxG-+M, 

satisfying certain delicate formulas (see [17, 3.20.1 to 3.20.VI] ). Now given a 3-cocycle 
(f, ip) of G with coefficients in the reduced 2-crossed module *£, it is straightforward to 
observe that the 5-tuple (/", —<p,0,K, (f) gives a Dedecker's 3-cocycle of G with coef­
ficients in A(£), where ^f(jt,y)(m) = {m,rç(jt,y)}. This correspondence determines a 
well defined map 

H3(G,£)->IHI3(C7,A(£)) 

which relates our 3-cohomology with Dedecker's one. It is not clear whether this map is 
injective or surjective. 
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