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Abstract

We consider a compound renewal (Sparre Andersen) risk process with interclaim times
that have a Kn distribution (i.e. the Laplace transform of their density function is a
ratio of two polynomials of degree at most n ∈ N). The Laplace transform of the
expected discounted penalty function at ruin is derived. This leads to a generalization of
the defective renewal equations given by Willmot (1999) and Gerber and Shiu (2005).
Finally, explicit results are given for rationally distributed claim severities.
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1. Introduction

Much of the literature on ruin theory is concentrated on the classical risk model, in which
claims occur as a Poisson process. Andersen (1957) let claims occur according to a more general
renewal process and derived an integral equation for the corresponding ruin probability. Since
then, random walks and queueing theory have provided a more general framework, which has
led to explicit results in the case where interclaim times or claim severities have distributions
related to the Erlang and phase-type, or more general, Kn distributions, whose Laplace–Stieltjes
transform is the ratio of a polynomial of degree k < n to a polynomial of degree n (see Willmot
(1999)).

Li and Garrido (2004) considered a risk process with interclaim times being independent and
identically Erlang(n) distributed, for n ∈ N

+ = {1, 2, . . . }. It extends the classical risk model
and the Erlang(2) model of Dickson (1998b), Dickson and Hipp (1998), (2001), and Cheng
and Tang (2003). Gerber and Shiu (2003), (2005) further extended the theory to generalized
Erlang(n) interarrival times (i.e. the distribution is the convolution ofn exponential distributions,
with possibly different parameters).

The evaluation of the Gerber–Shiu expected discounted penalty function, first introduced
in Gerber and Shiu (1998), is now one of the main research problems in ruin theory. Cheng
and Tang (2003), Dickson (1998b), Dickson and Hipp (1998), (2001), Gerber and Shiu (2003),
(2005), Li (2003), Li and Garrido (2004), and Lin (2003) first derived high-order integrodifferen-
tial equations for the expected discounted penalty functions. When integrated iteratively, these
produce defective renewal equations. Many ruin-related quantities, e.g. explicit asymptotic,
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A general class of renewal risk process 837

two-sided bounds for ruin probabilities, joint and marginal distributions of the three random
variables, the time of ruin, surplus before ruin, and deficit at ruin, as well as their moments, are
obtained from these renewal equations by appropriately choosing special penalty functions.

In this paper, we consider the expected discounted penalty function for a broad class of Sparre
Andersen risk process, in which the distribution of interclaim times is assumed to belong to the
Kn family of distributions (n ∈ N

+). This general class of distributions includes, as special
cases, the Erlang and phase-type distributions, as well as mixtures of these.

2. Model description and notation

Consider a continuous-time compound renewal risk process

R(t) = ct −
N(t)∑
i=1

Xi, t ≥ 0

(known as Sparre Andersen’s model in risk theory), where c ≥ 0 is the continuous aggregate
premium income rate per unit time, while the random sum represents aggregate claims. The Xi

are independent, identically distributed random variables with common distribution function P

(such that P(0) = 0) and density p. The variable Xi represents the ith claim amount.
Denote the kth moment of X by µk = E[Xk] and the Laplace transform (LT) of p by
p̂(s) = ∫ ∞

0 e−sxp(x) dx. The counting process {N(t), t ≥ 0} denotes the number of claims up
to time t and is defined as N(t) = max{n ∈ N

+ : W1+W2+· · ·+Wn ≤ t}, where the interclaim
times Wi are assumed to be independent and identically distributed with common distribution
function K (and corresponding density function k). Denote by k̂(s) = ∫ ∞

0 e−sxk(x) dx the LT
of k.

Furthermore, assume that {Wi}i≥1 and {Xi}i≥1 are independent and that c E[Wi] > E[Xi],
providing a positive safety loading factor.

The corresponding continuous-time Sparre Andersen surplus process is defined as

U(t) = u + ct −
N(t)∑
i=1

Xi, t ≥ 0,

where u ≥ 0 is the initial surplus. This leads to the definition of the ruin time

T =
{

inf{t ≥ 0 : U(t) < 0} if such a t exists,

∞ otherwise,

and the ultimate ruin probability

�(u) = P{T < ∞ | U(0) = u}, u ≥ 0.

Consider F3(x, y, t | u) = P{U(T −) ≤ x, |U(T )| ≤ y, T ≤ t | U(0) = u}, for
x, y, t ≥ 0, and its corresponding joint probability density function, f3(x, y, t | u), of the
surplus just before ruin, the deficit at ruin and the ruin time. Let δ ≥ 0 be the (constant)
discount factor over one unit of time and define f2(x, y | u) = ∫ ∞

0 e−δtf3(x, y, t | u) dt to be
a ‘discounted’ joint probability density function of U(T −) and |U(T )|. Also define g(y | u) =∫ ∞

0 f2(x, y | u) dx. If f1(x | u) = ∫ ∞
0 f2(x, y | u) dy and P̄ (x) = ∫ ∞

x
p(y) dy = 1 −P(x),

it follows from Gerber and Shiu (1998, Equation (2.40)) that

f2(x, y | u) = f1(x | u)
p(x + y)

P̄ (x)
, x, y, u ≥ 0. (1)
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Let w(x, y), for x, y ≥ 0, be the nonnegative values of a penalty function. For δ > 0, define

φ(u) = E[e−δT w(U(T −), |U(T )|) 1(T < ∞) | U(0) = u], u ≥ 0.

The quantity w(U(T −), |U(T )|) can be interpreted as the penalty at the time of ruin for the
surplus U(T −) and the deficit |U(T )|. Then φ(u) is the expected discounted penalty if δ is
viewed as the force of interest.

3. Martingales and a generalized Lundberg fundamental equation

Let τk = ∑k
j=1 Wj , with τ0 = 0, denote the arrival time of the kth claim and denote by

Uk = U(τk) the surplus immediately after the kth claim. Thus, U0 = u while

Uk = U(τk) = u + cτk −
k∑

j=1

Xj = u +
k∑

j=1

[cWj − Xj ] for k ∈ N
+.

We seek a function v such that the process V0 = {e−δτk v(Uk), k ∈ N} will form a martingale.
Define F0 = {∅, �} and Fk to be the σ -algebra generated by W1, W2, . . . , Wk , X1, X2, . . . , Xk ,
representing the information of the surplus process immediately after the kth claim, k ∈ N

+.
Then, by the definition of a discrete martingale,

E[e−δτk+1v(Uk+1) | Fk] = e−δτk v(Uk), k ∈ N. (2)

Equation (2) is equivalent to

E[e−δWk+1v(Uk + (cWk+1 − Xk+1)) | Fk] = v(Uk), k ∈ N.

In turn, this equation is equivalent to

v(u) = E[e−δWv(u + cW − X)] =
∫ ∞

0
e−δt k(t) E[v(u + ct − X)] dt. (3)

Equation (3) is a necessary and sufficient condition for the process V0 to be a martingale.
As in Gerber and Shiu (1998), we choose v(u) = esu such that {e−δτk+sUk , k ∈ N} is a

martingale. Then (3) simplifies to

γ (s) := 1

k̂(δ − cs)
= p̂(s), s ∈ C, (4)

which is a generalization of Lundberg’s fundamental equation.
Now we claim that {e−δτkφ(Uk), k ∈ N} is a martingale. To show this, let

D = e−δT w(U(T −), |U(T )|) 1(T < ∞)

and define Mk = E[D | Fk]. It is easy to prove that {Mk, k ∈ N} is a martingale. Then

φ(u) = E[M0] = E[M1] = E[E[D | F1]] = E[e−δW1φ(U1)]
= E[e−δW1φ(u + cW1 − X1)] =

∫ ∞

0
e−δt k(t) E[φ(u + ct − X1)] dt.

This shows that {e−δτkφ(Uk), k ∈ N} is a martingale.
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Henceforth, we assume that k belongs to the Kn family of distributions, that is, the LT k̂(s)

of the density k is given by

k̂(s) = λ∗ + sβ(s)∏n
i=1(s + λi)

, (5)

where λ∗ = ∏n
i=1 λi , for λi > 0 and i = 1, 2, . . . , n, and β(s) = ∑n−2

i=0 βis
i is a polynomial

of degree n − 2 or less. Then, the mean and variance of the interclaim time random variables
are given by

E[W ] =
n∑

i=1

1

λi

− β(0)

λ∗ and var(W) =
n∑

i=1

1

λ2
i

+ 2β ′(0)λ∗ − β2(0)

(λ∗)2 ,

respectively. The class of Kn distributions is widely used in applied probability applications
(Cohen (1982), Tijms (1994)).

In this case, the generalized Lundberg equation in (4) simplifies to

γ (s) :=
∏n

i=1(λi + δ − cs)

λ∗ + (δ − cs)β(δ − cs)
= p̂(s), s ∈ C. (6)

The following theorem shows that exactly n of the roots of Lundberg’s generalized equation (6)
lie in the right-half complex plane. These play an important role here.

Theorem 1. For δ > 0 and n ∈ N
+ fixed, Lundberg’s equation (6) has exactly n roots, say

ρ1(δ), ρ2(δ), . . . , ρn(δ), that have a positive real part Re(ρj ) > 0.

To prove this result, consider the half-circle in the complex plane given by |z| = r (for
r > 0 fixed) and Re(z) ≥ 0. We have |γ (s)| > 1 if r is sufficiently large, while, for s on
the imaginary axis (Re(s) = 0), we have |γ (s)| ≥ 1/|k̂(δ − cs)| > 1. That is, on the contour
boundary of the half-circle and the imaginary axis, |γ (s)| > |p̂(s)|. We therefore conclude
that, in the right-half plane, the number of roots of Lundberg’s equation equals the number of
roots of γ (s) = 0. Since the latter has exactly n positive roots, we deduce that (6) has exactly
n roots, say ρ1(δ), ρ2(δ), . . . , ρn(δ), with positive real parts.

Remark 1. 1. Define l(s) := p̂(s) − γ (s). Since l(0) < 0 and lims→−∞ l(s) = ∞, for p

sufficiently regular there is one negative root of l(s) = 0, say −R(δ). We call R(δ) > 0 a
generalized adjustment coefficient.

2. If δ → 0+ then −R(δ) → −R(0) and ρj (δ) → ρj (0), for 1 ≤ j ≤ n, with ρn(0) = 0,
where −R(0) and ρj (0) are roots of the equation

γ0(s) :=
∏n

i=1(λi − cs)

λ∗ − csβ(−cs)
= p̂(s), s ∈ C.

3. For simplicity, write −R and ρj for −R(δ) and ρj (δ), 1 ≤ j ≤ n, when δ > 0.

4. The Laplace transform of φ(u)

In this section, we find the Laplace transform of the expected discounted penalty function
φ(u). By (3),

φ(u) =
∫ ∞

0
e−δt k(t) E[φ(u + ct − X)] dt.
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Setting y = u + ct yields

cφ(u) =
∫ ∞

u

exp

[
−δ(y − u)

c

]
k

(
y − u

c

)
E[φ(y − X)] dy.

Making LTs gives

cφ̂(s) =
∫ ∞

0
e−su

∫ ∞

u

exp

[
−δ(y − u)

c

]
k

(
y − u

c

)
E[φ(y − X)] dy du

=
∫ ∞

0
e−δy/c E[φ(y − X)]

∫ y

0
exp

[
−

(
cs − δ

c

)
u

]
k

(
y − u

c

)
du dy. (7)

First, if λ1, λ2, . . . , λn are distinct then, using partial fractions,

k̂(s) = λ∗ + sβ(s)∏n
i=1(s + λi)

=
n∑

i=1

ai

s + λi

, s ∈ C, (8)

where ai = (λ∗ − λiβ(−λi))/
∏n

j=1,j �=i (λj − λi). This gives k(t) = ∑n
i=1 aie−λi t 1(t ≥ 0).

Then (7) becomes

cφ̂(s)

=
∫ ∞

0
e−δy/c E[φ(y − X)]

n∑
i=1

ai

∫ y

0
exp

[
−

(
cs − δ

c

)
u

]
exp

[
−λi

(
y − u

c

)]
du dy

=
n∑

i=1

ai

∫ ∞

0
exp

[
−

(
δ + λi

c

)
y

]
E[φ(y − X)]

∫ y

0
exp

[
−

(
cs − δ − λi

c

)
u

]
du dy

=
n∑

i=1

cai

cs − δ − λi

{∫ ∞

0
exp

[
−

(
δ + λi

c

)
y

]
E[φ(y − X)] dy

−
∫ ∞

0
e−sy E[φ(y − X)] dy

}
.

Then, from (8),

φ̂(s) =
n∑

i=1

aiei

cs − δ − λi

+ k̂(δ − cs)

∫ ∞

0
e−sy E[φ(y − X)] dy, (9)

where

ei =
∫ ∞

0
exp

[
−

(
δ + λi

c

)
y

]
E[φ(y − X)] dy,

for i = 1, 2, . . . , n. Since

E[φ(y − X)] =
∫ y

0
φ(y − x)p(x) dx + ω(y),

where

ω(y) =
∫ ∞

y

w(y, x − y)p(x) dx,
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(9) reduces to

φ̂(s) =
∑n

i=1 aiei/(cs − δ − λi) + k̂(δ − cs)ω̂(s)

1 − k̂(δ − cs)p̂(s)
, (10)

where ω̂ is the LT of ω.
If, instead, some of the λi in (5) are not distinct, then

k̂(s) =
∏k

i=1 λ
ni

i + sβ(s)∏k
i=1(s + λi)ni

,

where λ1, λ2, . . . , λk are distinct, λ∗ = ∏k
i=1 λ

ni

i , and
∑k

i=1 ni = n. Then, using partial
fractions,

k̂(s) = λ∗ + sβ(s)∏k
i=1(s + λi)ni

=
k∑

i=1

ni∑
j=1

ai,j

(s + λi)j
,

where

ai,j = 1

(ni − j)!
dni−j

dsni−j

k∏
m=1, m�=i

λ∗ + sβ(s)

(s + λm)nm

∣∣∣∣
s=−λi

,

and, hence,

k(t) =
k∑

i=1

ni∑
j=1

ai,j

tj−1e−λi t

(j − 1)! , t > 0.

By a similar argument,

φ̂(s) = − ∑k
i=1

∑ni

j=1

∑j−1
m=0 ai,j ei,m/[cmm! (δ + λi − cs)j−m] + k̂(δ − cs)ω̂(s)

1 − k̂(δ − cs)p̂(s)
, (11)

where

ei,m =
∫ ∞

0
ym exp

[
−

(
δ + λi

c

)
y

]
E[φ(y − X)] dy

for i = 1, 2, . . . , k < n.
The following theorem shows that, in both cases above, φ̂(s) is given by the same expression.

Theorem 2. If the density function k is a Kn distribution, with k̂(s) being of the form in (5),
then the LT of φ is given by

φ̂(s) = ω̂(s) − q(s)/[λ∗ + (δ − cs)β(δ − cs)]
γ (s) − p̂(s)

, (12)

where γ (s) is given in (6) and q(s) is a polynomial of degree n − 1, or less, determined by the
following conditions:

q(ρj ) = ω̂(ρj )[λ∗ + (δ − cρj )β(δ − cρj )], j = 1, 2, . . . , n. (13)

Furthermore, if ρ1, ρ2, . . . , ρn are distinct then

q(s) =
n∑

j=1

ω̂(ρj )[λ∗ + (δ − cρj )β(δ − cρj )]
n∏

k=1, k �=j

s − ρk

ρj − ρk

. (14)
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Proof. If λ1, λ2, . . . , λn are distinct, then multiplying both the numerator and denominator
of (10) by γ (s) = 1/k̂(δ − cs) yields (12), with

q(s) =
[ n∏

i=1

(δ + λi − cs)

][ n∑
i=1

aiei

δ + λi − cs

]

a polynomial of degree n − 1 or less. Since φ̂(s) is finite for all s with Re(s) > 0, and we note
that the ρj (with Re(ρj ) > 0, j = 1, 2, . . . , n) are zeros of the denominator of (12), then they
must also be zeros of the numerator; that is to say, (13) holds. Furthermore, if ρ1, ρ2, . . . , ρn

are distinct then, by the Lagrange interpolation formula, we obtain (14).
If

k̂(s) = λ∗ + sβ(s)∏k
i=1(s + λi)ni

,

with
∑k

i=1 ni = n, then multiplying both the numerator and denominator of (11) by γ (s) =
1/k̂(δ − cs) gives (12), but this time with

q(s) =
[ k∏

i=1

(δ + λi − cs)ni

][ k∑
i=1

ni∑
j=1

j−1∑
m=0

ai,j ei,m

cmm! (δ + λi − cs)j−m

]

a polynomial of degree ≤ n−1, which can also be determined from (13) and obtained explicitly
from (14) if ρ1, . . . , ρn are distinct.

Remark 2. If

k̂(s) = λ∗∏n
i=1(s + λi)

,

that is, p is generalized Erlang(n) distributed, then (12) simplifies to Gerber and Shiu (2005,
Equation (7.3)). Moreover, for n = 1 this formula can be found in the discussion, Dickson
(1998a), of Gerber and Shiu (1998).

In the evaluation of the expected discounted penalty function, usually an integrodifferential
equation satisfied by the expected discounted penalty function is first derived and then solved to
produce a defective renewal equation; see Gerber and Shiu (1998), Dickson (1998b), Dickson
and Hipp (1998), (2001), Cheng and Tang (2003), Li and Garrido (2004), and Gerber and Shiu
(2003), (2005). Here it should be pointed out that, when β(s) �≡ 0, integrodifferential equations
do not exist for the expected discounted penalty function φ(u) since, otherwise, there would
exist a polynomial hm(s), of degree m, such that

hm(D)φ(u) =
∫ u

0
φ(u − x)p(x) dx + ω(u), u ≥ 0,

where D is a differentiation operator. Then, making LTs gives

φ̂(s) = ω̂(s) − gm−1(s)

hm(s) − p̂(s)
,

with gm−1(s) a polynomial of degree m − 1 or less. Theorem 2 shows that hm(s) = γ (s).
When β(s) �≡ 0, γ (s) is not a polynomial, which contradicts the assumption that hm(s) is a
polynomial of degree m.
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5. Analysis of the penalty function when u = 0

We now turn to the solution of our ruin-related problems when u = 0. Henceforth, we assume
that ρ1, ρ2, . . . , ρn in Theorem 1 are distinct. The analysis of the case in which ρ1, ρ2, . . . , ρn

are not distinct is more tedious. First, by applying the initial value theorem,

φ(0)

= lim
s→∞ sφ̂(s)

= lim
s→∞ s

ω̂(s) − q(s)/[λ∗ + (δ − cs)β(δ − cs)]
γ (s) − p̂(s)

= lim
s→∞

[
ω̂(s) −

∑n
j=1{ω̂(ρj )[λ∗ + (δ − cρj )β(δ − cρj )] ∏n

k=1, k �=j (s − ρk)/(ρj − ρk)}
λ∗ + (δ − cs)β(δ − cs)

]

×
[ ∏n

i=1(δ + λi − cs)

s[λ∗ + (δ − cs)β(δ − cs)] − p̂(s)

s

]−1

= − ∑n
j=1{ω̂(ρj )[λ∗ + (δ − cρj )β(δ − cρj )] ∏n

k=1, k �=j 1/(ρj − ρk)}
(−c)n

=
n∑

j=1

ω̂(ρj )bj , (15)

where bj = [λ∗ + (δ − cρj )β(δ − cρj )]/[cn
∏n

k=1, k �=j (ρk − ρj )]. When β(s) ≡ 0, this
becomes Gerber and Shiu (2005, Equation (8.1)).

Since

ω(x) =
∫ ∞

x

w(x, y − x)p(y) dy =
∫ ∞

0
w(x, y)p(x + y) dy,

its LT is ω̂(s) = ∫ ∞
0

∫ ∞
0 e−sxw(x, y)p(x + y) dx dy and, so, φ(0) can be rewritten as

φ(0) =
n∑

j=1

bj

∫ ∞

0

∫ ∞

0
e−ρj xw(x, y)p(x + y) dx dy.

On the other hand,

φ(0) = E[e−δT w(U(T −), |U(T )|) 1(T < ∞) | U(0) = 0]
=

∫ ∞

0

∫ ∞

0
w(x, y)f2(x, y | 0) dy dx,

where f2 is as given in (1). Comparing these two formulae for φ(0) yields

f2(x, y | 0) =
n∑

j=1

bj e−ρj xp(x + y), (16)

whence

f1(x | 0) =
∫ ∞

0
f2(x, y | 0) dy =

n∑
j=1

bj e−ρj xP̄ (x)
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and

g(y) := g(y | 0) =
∫ ∞

0
f2(x, y | 0) dx

=
n∑

j=1

bj

∫ ∞

0
e−ρj xp(x + y) dx =

n∑
j=1

bjTρj
p(y),

where Tr is an operator defined by

Trp(x) =
∫ ∞

x

e−r(y−x)p(y) dy =
∫ ∞

0
e−rxp(x + y) dx.

The function g(y) is a defective density and plays a very important role in this paper. Its LT is
given by

ĝ(s) =
∫ ∞

0
e−syg(y | 0) dy = Tsg(0) =

n∑
j=1

bjTsTρj
p(0) =

n∑
j=1

bj

p̂(ρj ) − p̂(s)

s − ρj

=
n∑

j=1

∏n
i=1(δ + λi − cρj )

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )

− p̂(s)

n∑
j=1

λ∗ + (δ − cρj )β(δ − cρj )

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )

=
n∑

j=1

∏n
i=1[(δ + λi − cs) + c(s − ρj )]

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )

− p̂(s)

n∑
j=1

λ∗ + ∑n−2
m=0 βm[δ − cs + c(s − ρj )]m+1

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )
,

where β0, . . . , βn−2 are the coefficients of the polynomial β(s). Since

n∏
i=1

[(δ + λi − cs) + c(s − ρj )] =
n∑

l=0

σlc
n−l (s − ρj )

n−l ,

where
σ0 = 1,

σ1 =
n∑

i=1

(δ + λi − cs),

σ2 =
∑

1≤i<j≤n

(δ + λi − cs)(δ + λj − cs),

...
...

...

σn =
n∏

i=1

(δ + λi − cs),
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the first term simplifies to

n∑
j=1

∏n
i=1[(δ + λi − cs) + c(s − ρj )]

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )
=

n∑
l=0

n∑
j=1

σlc
n−l (s − ρj )

n−l

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )

= 1 −
∏n

i=1(δ + λi − cs)

cn
∏n

i=1(ρi − s)
. (17)

Equation (17) follows from the following identities from interpolation theory (for n ≥ 2):

n∑
j=1

(s − ρj )
m∏n

k=1, k �=j (ρk − ρj )
=

⎧⎪⎨
⎪⎩

1, m = n − 1,

0, m = 0, 1, 2, . . . , n − 2,

−1/
∏n

i=1(ρi − s), m = −1,

(18)

which can be proved by divided differences (see Li and Garrido (2004)). Similarly,

p̂(s)

n∑
j=1

λ∗ + ∑n−2
m=0 βm[δ − cs + c(s − ρj )]m+1

cn(s − ρj )
∏n

k=1, k �=j (ρk − ρj )
= −p̂(s)

λ∗ + ∑n−2
m=0 βm(δ − cs)m+1

cn
∏n

i=1(ρi − s)

= −p̂(s)
λ∗ + (δ − cs)β(δ − cs)

cn
∏n

i=1(ρi − s)
.

Thus, the LT of g reduces to

ĝ(s) = 1 −
[∏n

i=1(δ + λi − cs) − p̂(s)[λ∗ + (δ − cs)β(δ − cs)]
cn

∏n
i=1(ρi − s)

]
. (19)

Setting w(x, y) = 1 implies that

φ(0) = E[e−δT 1(T < ∞) | U(0) = 0] =
∫ ∞

0
g(y | 0) dy = lim

s→0
ĝ(s)

= 1 −
∏n

i=1(λi + δ) − [λ∗ + δβ(δ)]
cnρ1ρ2 · · · ρn

. (20)

Note that, since k̂(δ) = [λ∗ + δβ(δ)]/ ∏n
i=1(λi + δ) < 1, we have φ(0) < 1.

Finally,

�(0) = lim
δ→0

E[e−δT 1(T < ∞) | U(0) = 0]

= lim
δ→0

[
1 −

∏n
i=1(λi + δ) − λ∗

cnρ1ρ2 · · · ρn

+
∑n−2

m=0 βmδm+1

cnρ1ρ2 · · · ρn

]

= 1 − lim
δ→0

[∏n
i=1(λi + δ) − λ∗]/δ

ρ∗(0)ρ′
n(0)

+ β0

ρ∗(0)ρ′
n(0)

= 1 − λ∗ ∑n
i=1 1/λi − β0

ρ∗(0)ρ′
n(0)

= 1 − λ∗[c E[W ] − E[X]]
ρ∗(0)

< 1, (21)

where ρ∗(0) = ∏n−1
i=1 ρi(0) and a prime denotes differentiation. In the last step, we use the facts

that E[W ]=−k̂′(0) = [λ∗ ∑n
i=1 1/λi − β0]/λ∗ and ρ′

n(0) = E[W ]/[c E[W ]−E[X]]. The lat-
ter follows from differentiating with respect to δ on both sides of 1/k̂(δ − cρn(δ)) = p̂(ρn(δ)),
letting δ → 0, and noting that limδ→0 ρn(δ) → 0.
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Remark 3. 1. When β(s) ≡ 0, i.e. βm = 0 for m = 0, 1, . . . , n − 2, (20) simplifies to Gerber
and Shiu (2005, Equation (11.5)).

2. If c = 1 then (21) simplifies to Willmot (1999, Equation (3.10)).

6. Defective renewal equation

By arguments similar to those in Gerber and Shiu (1998), we condition on the first time that
the surplus falls below the initial level u, i.e.

φ(u) =
∫ u

0

∫ ∞

0

∫ ∞

0
e−δtφ(u − y)f3(x, y, t | 0) dt dx dy

+
∫ ∞

u

∫ ∞

0

∫ ∞

0
e−δtw(x + u, y − u)f3(x, y, t | 0) dt dx dy

=
∫ u

0

∫ ∞

0
φ(u − y)f2(x, y | 0) dx dy

+
∫ ∞

u

∫ ∞

0
w(x + u, y − u)f2(x, y | 0) dx dy

=
∫ u

0
φ(u − y)g(y) dy + H(u), u ≥ 0, (22)

where

H(u) =
∫ ∞

u

∫ ∞

0
w(x + u, y − u)f2(x, y | 0) dx dy

=
∫ ∞

0

∫ ∞

u

w(s, t)f2(s − u, t + u | 0) ds dt

=
n∑

j=1

bj

∫ ∞

u

e−ρj (s−u)

∫ ∞

0
w(s, t)p(s + t) dt ds =

n∑
j=1

bjTρj
ω(u).

Since
∫ ∞

0 g(y) dy < 1, (22) is a defective renewal equation. In particular, if β(s) ≡ 0, it
simplifies to Gerber and Shiu (2005, Equation (9.2)).

Setting w(x, y) = 1, we then obtain ω(u) = P̄ (u) = T0p(u) and

H(u) =
n∑

j=1

bjTρj
T0p(u) = T0g(u) =

∫ ∞

u

g(y) dy.

Therefore, the LT of T , φT (u) := E[e−δT 1(T < ∞) | U(0) = u], satisfies the following
defective renewal equation:

φT (u) =
∫ u

0
φT (u − y)g(y) dy +

∫ ∞

u

g(y) dy, u ≥ 0. (23)

Furthermore, if δ = 0 then (23) gives

�(u) =
∫ u

0
�(u − y)g0(y) dy +

∫ ∞

u

g0(y) dy, u ≥ 0,
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where g0(y) can be obtained by taking limits. Since limδ→0 ρi(δ) → ρi(0) and limδ→0 ρn(δ) =
ρn(0) = 0, we have

g0(y) = lim
δ→0

g(y) = lim
δ→0

n∑
j=1

bjTρj
p(y)

=
n−1∑
j=1

λ∗ − cρj (0)β(−cρj (0))

cn[−ρj (0)] ∏n−1
k=1, k �=j [ρk(0) − ρj (0)]Tρj (0)p(y) + λ∗T0p(y)

cnρ∗(0)

= −λ∗

cn

n−1∑
j=1

Tρj (0)p(y)

ρj (0)
∏n−1

k=1, k �=j [ρk(0) − ρj (0)] + λ∗T0p(y)

cnρ∗(0)

+ 1

cn−1

n−1∑
j=1

β(−cρj )Tρj (0)p(y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)]

= λ∗

cn

n−1∑
j=1

[T0p(y) − Tρj (0)p(y)]/ρj (0)∏n−1
k=1, k �=j [ρk(0) − ρj (0)] + 1

cn−1

n−1∑
j=1

β(−cρj )Tρj (0)p(y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)]

= λ∗

cn

n−1∑
j=1

Tρj (0)P̄ (y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)] + 1

cn−1

n−1∑
j=1

β(−cρj )Tρj (0)p(y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)] ,

where the second last step follows from (18). Note that Tρj (0)T0p(y) = Tρj (0)P̄ (y), while∫ ∞
0 g0(y) dy = �(0) < 1 is given by (21).

We note that the LT of g0(y), for c = 1, is given by Willmot (1999, Equation (3.11));
however, the inversion of the transform is rather complicated except for some special choices
of β.

Now we turn to two special subclasses of distribution for two different choices of β.
(Alternatively, other subclasses may be considered.)

Case 1. (β(s) ≡ 0 (generalized Erlang(n) distribution).) In the case that β(s) ≡ 0, the inter-
claim times distribution is the sum of n exponential distributions with parameters λ1, λ2, . . . , λn

and is called a generalized Erlang(n) distribution. In particular, if λi = λ > 0 for all
i = 1, 2, . . . , n, then it is the Erlang(n) distribution. In general,

H(u) = λ∗

cn

n∑
j=1

Tρj
ω(u)∏n

k=1, k �=j (ρk − ρj )
,

g(y) = λ∗

cn

n∑
j=1

Tρj
p(y)∏n

k=1, k �=j (ρk − ρj )
,

g0(y) = λ∗

cn

n−1∑
j=1

Tρj (0)P̄ (y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)] .

The above equations can be found in Gerber and Shiu (2005), and Li and Garrido (2004) for
the case λi = λ.
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Case 2. (β(s) = β (mixed exponential distribution).) In the case that β(s) = β, we have

H(u) =
n∑

j=1

λ∗ + βδ − cβρj

cn
∏n

k=1, k �=j (ρk − ρj )
Tρj

ω(u),

g(y) =
n∑

j=1

λ∗ + βδ − cβρj

cn
∏n

k=1, k �=j (ρk − ρj )
Tρj

p(y),

g0(y) = λ∗

cn

n−1∑
j=1

Tρj (0)P̄ (y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)]

+ β

cn−1

n−1∑
j=1

Tρj (0)p(y)∏n−1
k=1, k �=j [ρk(0) − ρj (0)] .

In particular, if n = 2 and the density function k is the mixture of two exponential distributions,
i.e. k(x) = {θλ1e−λ1x + (1 − θ)λ2e−λ2x} 1(x > 0), then β = θλ1 + (1 − θ)λ2 and

g(y) = λ1 + λ2 + βδ − cβρ2

c2 Tρ2Tρ1p(y) + β

c
Tρ1p(y),

g0(y) = λ1λ2

c2 Tρ1(0)P̄ (y) + β

c
Tρ1(0)p(y).

7. Discounted distributions of surplus before ruin and deficit at ruin

In this section, we consider the discounted joint and marginal distributions of U(T −) and
|U(T )| using the defective renewal equation (22).

Theorem 3. For x, y, u ≥ 0, we have

f2(x, y | u) =
∫ u

0
f2(x, y | u − z)g(z) dz + 1(u < x)f2(x − u, u + y | 0),

where f2(x − u, y + u | 0) can be derived using (16).

Proof. If we set w(x1, x2) = 1(x1 = x, y1 = y) then φ(u) in (22) simplifies to f2(x, y | u).
This completes the proof.

Next, a closed form for the discounted marginal density f1(x | u) is obtained by inverting
the discounted LT of U(T −). For notational convenience, let ξδ be such that

1

1 + ξδ

=
∫ ∞

0
g(y) dy = φT (0)

and let ξ0 be such that 1/(1 + ξ0) = ∫ ∞
0 g0(y) dy = �(0).

Theorem 4. The discounted marginal density can be written as

f1(x | u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + ξδ

ξδ

n∑
j=1

bj e−ρj xP̄ (x)[eρj x�j (u − x) − �j(u)], 0 ≤ x < u,

1 + ξδ

ξδ

n∑
j=1

bj e−ρj xP̄ (x)[eρj u − �j(u)], x ≥ u,
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where

�j(u) := φT (u) +
∫ u

0
φT (u − t)ρj eρj t dt.

Proof. If w(x, y) = e−sx then φ(u) = E[e−δT e−sU(T −) 1(T < ∞) | u(0) = u] is the dis-
counted LT of U(T −) at s. Then w(x) = e−sxP̄ (x) and, hence, from (22) we have

φ(u) = 1

1 + ξδ

∫ u

0
φ(u − y)(1 + ξδ)g(y) dy + 1

1 + ξδ

(1 + ξδ)H(u),

with

H(u) =
n∑

j=1

bj eρku

∫ ∞

u

e−(ρk+s)xP̄ (x) dx

and b1, b2, . . . , bn as defined in (15). Using Lin and Willmot (1999, Theorem 1.1), we have

φ(u) = 1

ξδ

∫ u

0
[1 − φT (u − x)] dH(x) + H(0)

ξδ

[1 − φT (u)], u ≥ 0.

Substituting into this the expression for H(u), we obtain

φ(u) = 1 + ξδ

ξδ

{ n∑
j=1

bj

∫ u

0
[1 − φT (u − x)]ρj eρj x

∫ ∞

x

e−(ρj +s)t P̄ (t) dt dx

−
n∑

j=1

bj

∫ u

0
[1 − φT (u − x)]e−sxP̄ (x) dx

+
n∑

j=1

bj

∫ ∞

0
e−sxe−ρj xP̄ (x) dx[1 − φT (u)]

}
,

and changing the order of integration yields

φ(u) = 1 + ξδ

ξδ

{ n∑
j=1

bj

∫ u

0
e−sxe−ρj xP̄ (x)

∫ x

0
[1 − φT (u − t)]ρj eρj t dt dx

+
n∑

j=1

bj

∫ ∞

u

e−sxe−ρj xP̄ (x)

∫ u

0
[1 − φT (u − t)]ρj eρj t dt dx

−
n∑

j=1

bj

∫ u

0
[1 − φT (u − x)]e−sxP̄ (x) dx

+
n∑

j=1

bj

∫ ∞

0
e−sxe−ρj xP̄ (x) dx[1 − φT (u)]

}
.

As

φ(u) = E[e−δT e−sU(T −) 1(T < ∞) | u(0) = u] =
∫ ∞

0
e−sxf1(x | u) dx,

by inverting (and recalling the definition of �k(u)), we recover the result.
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To compute f2(x, y | u) and g(y | u), we use relation (1) to obtain

f2(x, y | u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + ξδ

ξδ

n∑
j=1

bj e−ρj xp(x + y)[eρj x�j (u − x) − �j(u)], 0 ≤ x < u,

1 + ξδ

ξδ

n∑
j=1

bj e−ρj xp(x + y)[eρj u − �j(u)], x ≥ u,

and note that g(y | u) = ∫ ∞
0 f2(x, y | u) dx.

When δ → 0, f2(x, y | u), f1(x | u), and g(y | u) reduce to the joint and marginal densities
of U(T −) and |U(T )|.

8. Explicit results for rational claim severity distributions

The above theorems show that the discounted joint and marginal distributions of U(T −) and
|U(T )| can be derived explicitly whenever the function φT (u) is known explicitly. One of these
cases is when the LT φ̂T (s) is a rational function. Then, by locating its poles and using partial
fractions, we can determine φT (u). It follows from (23) that φ̂T (s) is a rational function if and
only if the LT ĝ(s) is also a rational function. Now, by (19), ĝ(s) is rational if and only if p̂(s) is
also. Furthermore, by Lin and Willmot (1999, Theorem 1.1), the solution φ(u) to the defective
renewal equation (22) can be expressed explicitly in terms of φT (u). Therefore, φT (u) plays
an extremely important role in evaluating the expected discounted penalty function φ(u).

Definition 1. A probability measure µ on R is said to belong to Rf if its Laplace transform is
a rational function (i.e. the ratio of two polynomials). If µ is concentrated on R

+ then it is said
to belong to R+

f . In either case, the distribution is said to be rational.

In this section, we assume that the claim size density function p belongs to R+
f (as p is

usually defined on R
+). That is, for m ∈ N

+ we have

p̂(s) = Qm−1(s)

Qm(s)
, with Qm(0) = Qm−1(0) and Re(s) ∈ (hX, ∞), (24)

where the abscissa of holomorphy hX of the claim size random variable X is defined as

hX := inf{s ∈ R : E[e−sX] < ∞},
Qm is a polynomial of degree m with leading coefficient 1, and Qm−1 is a polynomial of degree
m−1 or less. Furthermore, since p̂(s) is finite for all s with Re(s) > 0, the equation Qm(s) = 0
has no roots with negative real parts.

The class R+
f is a wide class of distribution, including the Kn family (n ∈ N

+) and
distributions with damped sine and cosine functions as part of their densities. For example, the
density function 17

13 e−x[1 − sin(4x)] 1(x ≥ 0) has a rational LT given by

17
13 (s2 − 2s + 13)

(s + 1)[(s + 1)2 + 16]
and belongs to R+

f . More complete discussions of rational distributions can be found in Cox
(1955), Neuts (1981, Chapter 2), or Dufresne (2001).
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We now turn to deriving φT (u) by inverting its LT. Making LTs on both sides of the defective
renewal equation (23) and using (19) yields

φ̂T (s)

= φT (0) − ĝ(s)

s[1 − ĝ(s)]
=

∏n
i=1(δ + λi − cs) − p̂(s)[λ∗ + (δ − cs)β(δ − cs)] − cn[1 − φT (0)] ∏n

i=1(ρi − s)

s[∏n
i=1(δ + λi − cs) − p̂(s)][λ∗ + (δ − cs)β(δ − cs)] .

(25)

When p is a rational distribution, as in (24), φ̂T (s) admits a rational expression and we have
the following results.

Theorem 5. If the Laplace transform p̂(s) of the claim size density is defined as in (24), then

φ̂T (s) = Pm−1(s)

(s + R1)(s + R2) · · · (s + Rm)
, s ∈ C.

Furthermore, if R1, R2, . . . , Rm are distinct then

φ̂T (s) =
m∑

i=1

ri

s + Ri

and φT (u) =
m∑

i=1

rie
−Riu, (26)

where Pm−1(s) = [∏m
i=1(s + R1) − φT (0)Qm(s)]/s is a polynomial of degree m − 1 or

less, ri = (Qm(−Ri)/Qm(0))
∏m

j=1, j �=i Rj /(Rj − Ri), and the −Ri , with Re(Ri) > 0 for
i = 1, 2, . . . , m, are those roots of the equation

Qn,m(s) := Qm(s)

n∏
i=1

(δ + λi − cs) − Qm−1(s)[λ∗ + (δ − cs)β(δ − cs)] = 0

that have negative real parts.

Proof. Substituting p̂(s) in (24) into (25), and multiplying both the numerator and denom-
inator by Qm(s), gives

φ̂T (s) = Qn,m(s) − cn[1 − φT (0)]Qm(s)
∏n

i=1(ρi − s)

sQn,m(s)
, s ∈ C, (27)

where Qn,m(s) is, as above, a polynomial of degree n + m with leading coefficient (−c)n. In
this case, the generalized Lundberg equation∏n

i=1(δ + λi − cs)

λ∗ + (δ − cs)β(δ − cs)
= Qm−1(s)

Qm(s)

is equivalent to Qn,m(s) = 0, for Re(s) > hX. It has n roots, say ρ1, ρ2, . . . , ρn, with positive
real parts, and one root, say −R, with a negative real part, where hX < −R < 0. On the other
hand the equation Qn,m(s) = 0 has n + m roots, namely ρ1, ρ2, . . . , ρn, with Re(ρi) > 0, and
−Ri , with Re(Ri) > 0 for i = 1, 2, . . . , m; of the latter, R = min{Re(Ri), i = 1, 2, . . . , m}.
We can express Qn,m(s) as

Qn,m(s) = cn
m∏

i=1

(s + Ri)

n∏
j=1

(ρj − s).
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Substituting this into the expression for φ̂T (s) in (27), and simplifying, yields

φ̂T (s) =
∏m

i=1(s + Ri) − [1 − φT (0)]Qm(s)

s
∏m

i=1(s + Ri)
, s ∈ C.

The numerator above must vanish if s = 0, i.e. 1 − φT (0) = R1R2 · · · Rm/Qm(0), since this
point is a removable singularity. Therefore,

Pm−1(s) :=
∏m

i=1(s + R1) − [1 − φT (0)]Qm(s)

s

is a polynomial of degree m − 1 or less.
When R1, R2, . . . , Rm are distinct, using partial fractions gives

φ̂T (s) = Pm−1(s)∏m
i=1(s + Ri)

=
m∑

i=1

ri

s + Ri

,

where

ri = Pm−1(−Ri)∏m
j=1, j �=i (Rj − Ri)

= Qm(−Ri)

Qm(0)

m∏
j=1, j �=i

Rj

Rj − Ri

.

Inverting this LT gives φT (u) = ∑m
i=1 rie−Riu, which proves (26).

Remark 4. 1. The fact that Pm−1(s) must vanish at s = 0 shows that

1 − φT (0) = R1R2 · · · Rm

Qm(0)
.

Therefore, φT (0) = 1 − R1R2 · · · Rm/Qm(0) can be expressed in terms of the Ri . Of course,
(20) still holds for φT (0).

2. If p̂(s) is as defined in (24), ĝ(s) simplifies to

ĝ(s) = Qm(s) − ∏n
i=1(s + Ri)

Qm(s)
. (28)

Note that (using partial fractions) g(y) is of the same form as the claim density p.

3. We can also obtain φT (u) using the theorem of residues:

φT (u) =
m∑

i=1

{residue of esuφ̂T (s) at singularity − Ri}.

Example 1. Assume that the interclaim times distribution k belongs to the Kn family given
in (5), while the claim amounts are exponentially distributed, that is, p(x) = ae−ax 1(x ≥ 0),
with p̂(s) = a/(s + a) and a > 0. Then ρ1, ρ2, . . . , ρn and −R < 0 are the n + 1 roots of the
equation

Qn,1(s) := (s + a)

n∏
i=1

(δ + λi − cs) − a[λ∗ + (δ − cs)β(δ − cs)] = 0.
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Hence,

φT (u) =
∫ u

0
φT (u − y)g(y) dy +

∫ ∞

u

g(y) dy, u ≥ 0,

with φT (0) = 1 − R/a, and (28) gives

ĝ(s) = a − R

s + a
and g(y) = (a − R)e−ay 1(y ≥ 0).

Finally, Theorem 5 gives φ̂T (s) = φT (0)/(s + R) and, therefore, the LT of T is given by

φT (u) = E[e−δT 1(T < ∞) | U(0) = u] = φT (0)e−Ru = a − R

a
e−Ru,

while the ultimate ruin probability is

�(u) = P{T < ∞ | U(0) = u} = lim
δ→0

φT (u) = a − R(0)

a
e−R(0)u,

where R(0) is the negative root of the generalized Lundberg equation with δ = 0. To compute
the discounted joint and marginal distributions of U(T −) and |U(T )|, we need to find �j(u)

in Theorem 4 for j = 1, 2, . . . , n and u ≥ 0. These can be written as

�j(u) = φT (u) +
∫ u

0
φT (u − t)ρj eρj t dt = a − R

a

1

R + ρj

[Re−Ru + ρj eρj u].

Therefore, by Theorem 4, the discounted marginal distribution of U(T −) is

f1(x | u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a − R)e−(Ru+ax)
n∑

j=1

bj [eRx − e−ρj x]
R + ρj

, 0 ≤ x ≤ u,

e−ax
n∑

j=1

[
bj (a + ρj )

R + ρj

e−ρj (x−u) − bj (a − R)

R + ρj

e−(Ru+ρj x)

]
, x > u,

where here

bj = λ∗ + (δ − cρj )β(δ − cρj )

cn
∏n

k=1, k �=j (ρk − ρj )
.

Finally, the relation f2(x, y | u) = f1(x | u)p(x + y)/P̄ (x) yields

f2(x, y | u) = ae−ayf1(x | u)

and, hence,

g(y | u) =
∫ ∞

0
f2(x, y | u) dx = ae−ayφT (u) = (a − R)e−(Ru+ay).

Example 2. Assume that the interclaim times are distributed as a mixture of two exponentials,
with density k(x) = [θλ1e−λ1x + (1 − θ)λ2e−λ2x] 1(x ≥ 0). The LT of the density is

k̂(s) = λ1λ2 + [θλ1 + (1 − θ)λ2]s
(s + λ1)(s + λ2)

.
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Here, the claim size density has a damped sine term, i.e.

p(x) = a(a2 + b2)

a2 + b2 − ab
e−ax[1 − sin(bx)] 1(x ≥ 0),

with

p̂(s) = Q2(s)

Q3(s)
= a(a2 + b2)

a2 + b2 − ab

s2 + (2a − b)s + b2 + a2 − ab

(s + a)[(s + a)2 + b2] ,

where a > 0 and b > 0. Now,

0 = Q2,3(s)

= (a2 + b2 − ab)(s + a)[(s + a)2 + b2](δ + λ1 − cs)(δ + λ2 − cs)

− a(a2 + b2)[s2 + (2a − b)s + b2 + a2 − ab][λ1λ2 + (θλ1 + (1 − θ)λ2)(δ − cs)]
has two roots with positive real parts, say ρ1 and ρ2, and three roots with negative real parts (at
least one real), say −R1, −R2, and −R3 (Re(Ri) > 0). Here,

φT (u) =
∫ u

0
φT (u − y)g(y) dy +

∫ ∞

u

g(y) dy,

where

φT (0) = 1 − R1R2R3

Q3(0)
= 1 − R1R2R3

a(a2 + b2)
.

Hence, (28) gives

ĝ(s)

= (3a − ∑3
i=1 Ri)s

2 + (3a2 + b2 − R1R2 − R1R3 − R2R3)s + a(a2 + b2) − R1R2R3

(s + a)[(s + a)2 + b2] ,

which has inverse
g(y) = e−ay[η − η1 cos(by) − η2 sin(by)],

where

b2η = a3 − a2(R1 + R2 + R3) + a(R1R2 + R1R3 + R2R3) − R1R2R3,

b2η1 = a3 − 3ab2 + (b2 − a2)(R1 + R2 + R3) + a(R1R2 + R1R3 + R2R3) − R1R2R3,

b2η2 = 3a2b − b3 − 2ab(R1 + R2 + R3) + b(R1R2 + R1R3 + R2R3).

Note that g(y) is of the same form as the claim size density function. Here, Theorem 5 gives

φT (u) = φT (0)[z1e−R1u + z2e−R2u + z3e−R3u], u ≥ 0,

with

z1 = (a − R1)[(a − R1)
2 + b2]

a(a2 + b2) − R1R2R3

R2R3

(R2 − R1)(R3 − R1)
,

z2 = (a − R2)[(a − R2)
2 + b2]

a(a2 + b2) − R1R2R3

R1R3

(R1 − R2)(R3 − R2)
,

z3 = 1 − z1 − z2.
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Finally, in this example, Theorem 4 yields

�j(u) = φT (u) +
∫ u

0
φT (u − y)ρj eρj y dy

= φT (0)

[ 3∑
i=1

πj,ie
−Riu + (1 − πj,1 − πj,2 − πj,3)e

ρj u

]
,

where πj,i = ziRi/(Ri + ρj ), i = 1, 2, 3, j = 1, 2, which gives the discounted marginal
distribution of U(T −) as

f1(x | u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φT (0)

1 − φT (0)
P̄ (x)

2∑
j=1

bj

3∑
i=1

πj,ie
−Riu[eRix − e−ρj x], 0 ≤ x < u,

φT (0)

1 − φT (0)
P̄ (x)

2∑
j=1

bj e−ρj x
3∑

i=1

πj,i[eρj u − e−Riu], x ≥ u,

where here

b1 = λ1λ2 + (δ − cρ1)[θλ1 + (1 − θ)λ2]
c2(ρ2 − ρ1)

and b2 = λ1λ2 + (δ − cρ2)[θλ1 + (1 − θ)λ2]
c2(ρ1 − ρ2)

.

9. Concluding remarks

We have shown how the evaluation of the Gerber–Shiu expected discounted penalty func-
tion for the classical risk model can be extended to a class of renewal risk processes with
Kn-distributed interclaim times (n ∈ N

+). This leads to a defective renewal equation for the
penalty function with a general claim severity distribution. Moreover, in cases in which the
claim severities have a rational distribution, we have obtained explicit results using partial
fractions.

The defective renewal equations obtained here can be used to solve other problems related
to ruin: explicit expressions or bounds and asymptotic formulae for ruin probabilities, and joint
and marginal distributions of the time to ruin, surplus before ruin, and deficit at ruin, as well as
their moments.

These results can be extended to the case in which the interclaim times distribution belongs
to the class R+

f , which is wider than the Kn family.
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