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RIBBON KNOT FAMILIES VIA STALLINGS' TWISTS
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Abstract

We investigate the effect on the Jones polynomial of a ribbon knot when two of its bands are
twisted together. We use our results to prove that each of the three S-equivalence classes of
genus 2 fibered doubly slice knots in S3 can be represented by infinitely many distinct prime
fibered doubly slice ribbon knots.
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1. Introduction

In 1973 Burde and Neuwirth [18] conjectured that the number of fibered
knots with a given Alexander polynomial is finite. Shortly afterward, Morton
[16] and Stallings [20] independently proved that the conjecture is false. In
fact, Stallings exhibited infinitely many distinct prime fibered ribbon knots
S2n, n > 0, with the same Alexander polynomial as the square knot 3{#
(-3j) (where 3, denotes the right-hand trefoil) but with different Alexander
modules.

The Jones polynomial is surprisingly twist-sensitive and can be used to dis-
tinguish Stallings'knots S2n (see Section 3). Motivated by this consideration,
we modify Stallings' construction to produce infinitely many distinct prime
fibered doubly slice ribbon knots K2n, n e Z, that have the same Seifert
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[2] Ribbon knot families via Stallings' twists 357

matrix (hence the same Alexander module) as the square knot and are also
distinguished by their Jones polynomials. By combining our observations
with the main result of [1] we obtain the following strengthened version of
[3, Proposition 2]:

THEOREM 1. Each of the three S-equivalence classes of genus 2 fibered
doubly slice knots can be represented by infinitely many distinct prime fibered
doubly slice ribbon knots distinguished by their Jones polynomials.

The knots K2n were originally proposed by Aitchison [1] who was able to
distinguish an analogous collection, derived from 4t#4, (where 4j denotes
the figure eight knot) by examining stretching factors of pseudo-Anosov dif-
feomorphisms. Other examples of distinct fibered knots with the same Seifert
matrix have been obtained by Morton [17] and Bonahon [5] while recent re-
sults of Long and Morton [ 15] provide the means to construct many more
examples. In each case differentiation is achieved by considering the hyper-
bolic structure of the knots' exteriors.

In order to distinguish the knots K2n, we develop Kauffman's switching
calculus for calculating his bracket invariant for double stranded links and
doubles of knots. We then study the effect on the Jones polynomial of any
ribbon knot when two of its bands are twisted together.

Much of this work was inspired by the results of Kanenobu [11], [12]. In
[11] Kanenobu used the Jones polynomial and its 2-variable generalization
[7] to complete a classification of fibered ribbon knots introduced in [10].
The knots, parameterized by integers p and q, are fibered ribbon knots and
are prime if (p, q) ^ ( 0 ,0 ) ; their Alexander modules are determined by
p-q.

A knot K c S3 is doubly slice if K = U n S3 c S4, where U is an
unknotted 2-sphere in S 4 . The reader may wish to consult [19], [8], [21],
[7] for definitions of other terms used and for background information about
knots and the Jones polynomial.

Many results in this paper concerning knots can be stated more generally
for links. For simplicity, we have chosen not to do this.

The authors are grateful to the referee for making several valuable sugges-
tions, and to Professor Dale Rolfsen for suggesting the method of attack used
in the proof of Corollary 3.2.

2. Construction of K,
n

It is well-known that K#(-K) is a ribbon knot for any knot K. Also, if
K is fibered then so is K#(-K) (see [19] for example). Consider the fibered
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3, # - 3

fiber F

FIGURE 1

ribbon knot 31#(-31) (the square knot) as it appears in Figure 1 together
with a minimal-genus Seifert surface (hence a fiber) F. Each of the circles
C(

+ (/ = 1, 2) is a normal push-off of a simple closed curve Ci in F. Let
Df denote the obvious disk with boundary Ci. Stallings' knots S2n , n > 0,
can be obtained by giving 2n right-hand half-twists to everything passing
through D{, as in Figure 2. We define Kn , n € Z, to be the knot obtained
by giving |n| half-twists to everything passing through D2 , as in Figure 2.

By [20] the knots K2n , n e Z , are fibered since they are obtained from a
fibered knot 31#(—3X) by Stallings' twists as described above. In fact, K_x

is fibered: it can be obtained by performing Stallings' twists at two sites of
the fibered knot (-3,)#41 (see Figure 3). Since the knots Kln+l, n e Z, are
obtained from K_x by Stallings' twists, they are also fibered. (The proof of
Theorem 1 will contain another proof that the knots Kn are fibered.)

The interest in our choice of curve C2 in Figure 1 comes from the follow-
ing observation in [1]. (See [17, pp. 214-215] also.)

LEMMA 1. The knots K2 , n e Z, have the same Seifert matrix. Similarly
for K.2/1+1 n €
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half-twists

XAX / (keep bands flat),

(after isotopy of bands)
n > 0

.\\n\ left-hand

/ half-twists

1 | n | left-hand

half-twists

(keep bands flat)

n < 0

FIGURE 2

PROOF (Aitchison). The circle C2 bounds a punctured torus disjoint from
the fiber F. (This is easy to see in Figure 1; the torus is obtained by surgering
D2.) Choose a set of embedded circles {a,} c F representing a basis for
Hl (F;Z), and push each circle off to obtain an embedded circle a,+ in a
neighborhood of F . The linking number of a,, a* is unchanged by twisting
any even number of times everything that passes through D, since a,, aj"
are both algebraically unlinked from C2 .

It follows that each of the knots K2n, n e Z, has the same Alexander
polynomial as Ko, namely, (t2 - t + l){t~2 - t~l + 1). On the other hand,
each of the knots K2n+i, n e Z, has Alexander polynomial (t2 -1 - l)(t~2 -
t~x - 1). The second assertion can be readily seen by computing the 1-
relator presentation (x, y.y = xy~ xy2x~x) for nx{BA - D), where D is
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- 3 , # 4 ,

[5]

FIGURE 3

the obvious ribbon disk in B4 with boundary K_{ , and noting that its
Alexander polynomial is t1 - t - 1. A standard duality argument involving
order ideals (see [3, Proposition 1], for example) completes the argument.

3. Jones polynomials of twisted ribbon knots

Let the symbols [ X I > [ X ]» and [ ) ( ] represent three oriented links
which are identical except near one point where they differ as depicted in the
notation. Also let V(L; t) denote the Jones polynomial in the variable t of
a link L. Recall that the Jones polynomial satisfies the identity

y,t) = o.
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band b

FIGURE 4

This equation, together with the condition that F(unknot; t) = 1,
uniquely defines the Jones polynomial of L. (See [9] for details.) In order
to compute the Jones polynomials of the knots Kn we need the following
lemmas.

Let k be any ribbon knot and consider a specific ribbon band presentation
for k. Let k(b, n) denote the new ribbon knot obtained by putting |n| half-
twists in a band b. (See Figure 2.) Let kb denote the 2-component link that
results when the band b is broken, as in Figure 4. If the knot k has only
one band, we will abbreviate k(b, n) by k{n). Notice that in this case, kb

is trivial. The following has been observed by Kanenobu [12].

LEMMA 2 (Ribbon band twisting). For any integer n,

(a) V{k(b, n);t) = t"V(k; t) + ̂ l{l + (-l)"-1

denotes the formal inverse of n — -t~x^2 -tx^2 \
(b) V(k(b, 2n); t) = t2nV{k;t) + n-x{\-t2n)V{kb;t);
(c) V(k(2n);t) = t2nV(k;t)-t2n + l.

; t), where - l

Let Deg V(k; t) denote the largest exponent of t in V(k; t) and let
deg V(k; t) denote the smallest exponent of t in V(k; t). The following
can be seen by straightforward calculation.

COROLLARY 2.1. IfV(k; t)£ n~xV(kb; t), thentheknots k(b, 2n), n e
Z, are distinct. Moreover, for n > 0 and sufficiently large, Deg V(k(b, 2w); t)
is strictly increasing. Also, for « > 0 and sufficiently large, degV(k(b,-2n); t)
is strictly decreasing.

REMARKS. (1) The reader is cautioned that [ 12] employs an early definition
of the Jones polynomial in which t~l replaces t everywhere in (1).

(2) Stallings' knots S2n have Jones polynomial

V(S7,;t) = t2n[(t- t3- t*)(rl + r 3 - **" + 1 .
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FIGURE 5

(3) For knots having a ribbon band presentation with only one band, the
hypothesis V(k; t) # fi~lV(kb; t) is equivalent to V(k; t) ± 1. In gen-
eral, one may use Kauffman's bracket polynomial [13] to see that V(k; t) ^
fi~l V(kb; 0 if and only if V(k; t) ± V(k(b, 1); 0 •

(4) It can easily be seen that K_{ = Q(-4), where Q is depicted in Figure
3. By performing a single Conway move on Q (Figure 5) we obtain the knot
942 and one of the links 42, the Jones polynomials of which can be easily
computed or, with proper attention to orientation details, looked up in a
table. From (1) it follows that V(Q; t) = rs-t~*+r3-r2+l-t+t2-t3+t4

and using Lemma 2 we can immediately write down the Jones polynomial of

V{K_X ; o = r9 - r8 + r7 - r6 - r 3 + r2 - r1 + 2.
We will make use of this fact shortly.
If a ribbon knot is altered by switching a band crossing, we can find the

Jones polynomial of the resulting (ribbon) knot, but we must work harder:
Lemma 3 below is Kauffman's identity 3.2 [ 13] applied to the case of a ribbon
band presentation of a knot at a site where one band crosses another.

LEMMA 3 (Ribbon band switching).

(tl/2 -

REMARKS. (1) Kauffman's identity 3.2 [ 13] is stated in terms of his bracket
polynomial, which is a regular isotopy invariant. Following Kauffman, to
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obtain an isotopy invariant, we multiply the bracket polynomials by an ap-
propriate factor (involving the writhe), and to obtain the Jones polynomial,
Kauffman's variable is replaced by t~1^.

(2) Notice that twisting an even number of times and/or switching the
bands of any ribbon knot produces a (ribbon) knot with the same Alexander
polynomial as the original knot. (The original knot and the altered knot
bound ribbon disks in B4 with the same group.) Consequently, ribbon knots
provide an inexhaustible supply of knots with the same Alexander polynomial
but different Jones polynomials.

As an application of Lemma 3, consider any ribbon knot k with a spe-
cific ribbon band presentation. Suppose that bands bx and b2 (possibly the
same) pass through a trivial circle I disjoint from k, as in Figure 2. Let
k denote the ribbon knot or link obtained by giving |«| half-twists to every-
thing passing through the obvious disk that Z bounds. (We continue to use
the twist convention of Figure 2.) The following relation follows immediately
from Lemma 3 and then Lemma 2:

(2) V(kn ; t) = r4V(kn+2; t) + ( r 3 - t~l)V(kn+l ;t) + Cn,

where

(-o"( 3/2

Here k' denotes the ribbon knot or link obtained by replacing the twisting
site t l Tl m k by ^ . (Alternatively, k' is ky with one negative

j-twist in each band b{, b2 .) Also, kb b denotes the link obtained from k
by breaking both bands b{, b2. In general, Cn depends on n. However,
when bl and b2 are the same band b, then Cn reduces to a constant:

+ (t-i + if2 - r 3 - r V " 1 v{\; o + (2 - 2t-2)n~l v(icb2 •, t).

The symbol [• • • ] denotes the knot or link identical to k except through Z
where they differ as depicted. Notice that C contains no fractional exponents
since no other term in relation (2) does. Solving for V(kn+2; t) we have

(3) V{kn+2; t) = t4V(kn • t) + (f3 - t)V(kn+l; 0 - t*C.

Using relations (2) and (3) we obtain the following result which is useful for
distinguishing the knots kn .
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COROLLARY 3.1. Let kn, n e Z, be obtained by twisting two band seg-
ments of the same band bofa ribbon knot k.

(1) If one of 1 + Deg V(kj; t), Deg V(kJ+l; t), 1+ Deg C is larger than
the remaining two, then Deg V(kn ; t) is strictly increasing for n> j + I.

(2) If one of - 4 + deg V{k_j+2 ;t), - 3 + deg V(k_j+l; t), deg C is less
than the remaining two, then deg V(k_n; t) is strictly decreasing for n > j-l.

COROLLARY 3.2. Let kn, n e Z, be obtained by twisting two band seg-
ments of the same band b of a ribbon knot k. If V(k; t) ^ V(kx; t), then
for sufficiently large n, Deg V(kn ; t) is strictly increasing and deg V(k_n; t)
is strictly decreasing.

P R O O F . For n > 0 , the polynomials Vn = V(kn; t) can be found from
the matrix equation

n+l 1 n / M t - t t -t C \

K = A \vo ' where A = \ l ° ° •
w V w V o o I ;

(Here we make use of relation (3).) Notice that A has eigenvalues k{ =
t3, X2 = -t, A3 = 1 with corresponding eigenvectors

Write

for some f,g,h in the field of fractions Z(f, T 1 ) of Z[t, t~1]. Then

Hence Vn = t3nf+(-l)n+1tng - htAC. Clearly, if / and g are not both
zero, then Deg Vn is strictly increasing for n sufficiently large. But / and
g are not both zero when VQ^V^.

From relation (2), a similar argument applies to deg V(k_n; t):

r3-rl r4

where B = \ 1 0
0 0
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The matrix B has eigenvalues
sponding eigenvectors

r3'

Write

x

- I N

=uYl+vY2

for some u, v, w eZ(i, t ). Then

= l with corre-

C
C

i + r1 - r3 - r4

-n+l
1

Hence V_n = t~i{n+l)u + {-l)n+1r"'lv + wC. Now degF_n is strictly
decreasing for sufficiently large n, since u and v are not both zero when

REMARK. The condition in Corollary 3.2 that the two band segments are
part of the same band can be eliminated. The same techniques, with a little
more work, can show that the conclusion of the corollary holds for any two
band segments.

We now return to the knots Kn , n e Z, constructed above. Calculation
reveals that C = t~6 - t~5 - t~4 - 2t~3 + 2t~l + 1 + t - t2 (see Figure 6).

FIGURE 6
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Since -3+deg V(K_l; t) = - 12 is less than both -4+deg V(K0; t) = - 7
and degC = - 6 , it follows by Corollary 3.1 that de$V(K_n; t) is strictly
decreasing for all n > 1. In fact, deg V(K_n ; t) = - 9 - 3(« - 1) for n > 1.

The knots Kn, n > 0 , can also be distinguished now if we use Corollary
3.1, but extra care is needed since 1 +Deg V(K_l; t) = 1, Deg V(K0 ;t) = 3
and 1 +Deg C = 3 . Using our calculation of V(K_X; t) above together with
relation (3) we find that

V{K1 ; t) = r 5 - r 4 + r 3 - r 2 +1 -1 +t2 -13 +1\
Applying (3) once more we obtain

V(K2 ; t) = - r 4 + r 3 - r2 + r 1 + 2 -1+it1 - 3/3 + 2*4 - 2t5 +1\
Now since Deg V(K2; t) = 6 is larger than 1 + Deg V(Kl; t) = 5 and 1 +
Deg C = 3 it follows by Corollary 3.1 that Deg V{Kn ; t) is strictly increasing
for all n > 0 . In fact, Deg V{Kn; t) = 6 + 3(n - 2) for n > 2. In the
Appendix we have included the Jones polynomial of Kn for |«| < 10.

It now follows, of course, that all of the knots Kn , n e Z, are distinct.
Furthermore, if n > 1 they are prime: if Kn is composite, then it must be the
connected sum of genus 1 fibered knots 3j , - 3 , , or 4, .An examination of
Alexander polynomials shows that this is impossible. (See the second remark
following Lemma 3.)

4. Proof of Theorem 1

Elementary matrix calculations as in [3], using results of [21], show that
there are at most three S-equivalence classes of genus 2 fibered doubly slice
knots in S 3 . (See [3, Proposition 2].) Moreover, classes of such knots are
distinguished by their Alexander polynomials: A,(f) = (t2-J5t+\)(t~2-'ht~x+
i), A2(O = (t2 -1 + i)(r2 - r 1 +1), A3(r) = (t2 -1 - \)(t~2 - r 1 - 1 ) .
Aitchison [1] has produced infinitely many distinct knots as in the statement
of Theorem 1 having Alexander polynomial A,(f). Since K2n and K2n+l

have Alexander polynomials A2(t) and A3(f), respectively, it suffices to show
that these knots are doubly slice.

Casson and Gordon [6] have shown that the monodromy of any fibered
ribbon knot extends over some handlebody. For the square knot more can
be shown: Let S denote a genus 2 handlebody in S3 obtained by thickening
the fiber of a trefoil knot as in Figure 7. Let D be a 2-disk and w a null-
homologous curve on the boundary, as indicated. There exists an isotopy
ht: S

3 -» S3, 0 < t < 1, with the following properties.
(1) hQ= identity.
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trefoil fiber

367

full twist

handlebody

full twist

FIGURE 7

(2) h{ restricted to 3 is a diffeomorphism 0:3 —> 3 .
(3) ht fixes a neighborhood in 3 of D pointwise.
(4) The mapping torus M(</>) = S x ^ 1 together with a 2-handle y

attached along D x ^ ' c dM(<f>) is B4 .
(5) 3D x {0} c 3 x {0} is the square knot.
(6) w x {«} is isotopic to C^ .

In [1] Aitchison shows abstractly that an isotopy as above exists. In Figure
8 we give an explicit description of such an isotopy using handle slides. We
keep track of framed representatives for a basis of Hl ( 3 ; Z) for what follows.

Using techniques introduced by Akbulut and Kirby [4], Aitchison proves
assertions (4)-(6) by constructing a handle decomposition for M(0) U y and
simplifying. (See Figure 9.) Details of the construction can be found in [1].
(See also [2], [3].) If we now compose 0 with n ambient half-twists of 3
along w before forming the mapping cylinder (Figure 10), the final result is
B4 with the knot K on the boundary.
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(after 1sotopIng bands)

FIGURE 8

Clearly D is a slice disk for Kn in B4 . Also, since <j) is the final map
of an ambient isotopy, it's easy to see that B4 - D = M{4>) can embed in
S3 x Sx inducing an isomorphism of integral first homology groups. By an
observation of Levine [14, page 252] the disk knot {B4, D) is invertible.
Consequently, Kn is doubly slice.

REMARKS. (1) Our differentiation of the knots Kn , n e Z, is much more
effective than that obtainable by hyperbolic geometric techniques involving
volume where one has to tolerate possible pairwise repetitions and conclu-
sions for only sufficiently large n. (See [17, top of page 219].) However,
the techniques of [5], used in [1], involve computing stretching factors from
iterates of matrices, and when applicable are as effective as those considered
here, since the possibility of repetition is excluded by monotonicity.

(2) In [1] Aitchison remarks that the boundary of H contains infinitely
many null-homologous curves, other than w , along which we can twist Ko
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FIGURE 9

FIGURE 10

to construct potential families of knots as in Theorem 1. We expect that the
members of many such families can be distinguished using the techniques
above.
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5. Questions

(1) Let k c S3 be any fibered knot with fiber F and let c be any essential
simple closed curve in F such that c is unknotted in S3 with self-linking
number zero. Let kn denote the fibered knot obtained from k by Stallings'
twists (n times) along c, twisting always in the same direction. Is either the
maximum degree or the minimum degree of V(kn ; t) a strictly monotone
function for sufficiently large n ?

Long and Morton [15] have shown that if k is a hyperbolic knot, then for
all sufficiently large n the 3-manifolds obtained by «-framed surgery on k
are hyperbolic with strictly increasing (bounded) hyperbolic volumes.

(2) Does the Jones polynomial have special geometric significance for
fibered hyperbolic knots?

(3) In [3] it was proved that if f(t) = adt
d + • • • + axt + a0 is any in-

tegral polynomial such that aoad = 1 and / ( I ) = ±1 then there exists a
fibered (ribbon) doubly slice knot with Alexander polynomial f{t)f(t~l).
Can twisting produce infinitely many such knots with identical Seifert matri-
ces and distinct Jones polynomials?

Appendix

Using only the defining relation (1) of the Jones polynomial, we calculated
the polynomials for the knots Kn for \n\ < 10. We wish to thank Peter
Pacheco for providing a computer program which was of assistance, and to
thank the Alabama Supercomputer Center for providing the necessary time
on the Alabama Supercomputer Network Cray X-MP/24 for the calculations.

V(Kl0; t) = I™ - t29 - t2S + t24 - t13 + 2t12 -3tU + 3r10 - 2t9 + 2t° - t1 + t5 - t4 - t1

— 1 —2

V(K9; t) = t21 - t26 - t22 + t21 + tn - 2tu + 3t10 - 3t9 + 2t* - 2tn
 + t6-t4

 + t3-t2

— 1 —2

; 0 = / 2 4 - r 2 3 - t 1 9 + r 1 8 - t I I + 2 t 1 0 - 3 r 9 + 3t8-2t7 + 2 r 6 - ( i + r 3 -2 t 2

— 1 —2

, , t ) = P - f » - t u + t" + tl° -2t9 + 3t* -It1 + 2t6 -2t5 + t* - r f + 3 t - l

; t ) = tn -t17 - t n + t12 -t9
 + 2t* - 3 1 1 + 3t6 -2ts + 2 t 4 -t3 -t2 + 3 t - 2
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V(K4 ;t) = tl2-tU- 2t7 + 3t6 - 3t5 + 3t4 - 2? + t2 + t - 1 + 3t~l - 2C2

t) = t9-ti + t6- 2t5 + 2t* - 2? + t2 + 2t~l - 2t~2 + t~3

V(K2; t) = t6- 2t5 + 2tA -3t3+2t2-t + 2 + t~l - t~2 + t~3 - t~4

t) = t*-t3 + t2-t + i-t~2 + r i - r 4 + r 5

V(KQ -,t)= -13 +12 -1 + 3 - r 1 + r 2 - r 3

V(K_1 ;t) = 2-rl + r2 - r3 - r6 + r 7 - r8 + r 9

V(K_2; t) = - t2 +1 + 1 - T 1 + 2t~2 - 2C3 + 2 r 4 - T 5 + T 6 - T 8 - f " + T1 2

o = - <2 + 2t+2r2 - 3t~3 + 2 r 4 - 2<~5 + r 6 - r 8 + 2t~9 - r 1 0 - r 1 4

+ r15

K(A:_4 ; o = -12 + 2t - I + r 1 + r 2 - s r 3 + 3r4 - 2r5 + 2t~6 - r 7 + r 9 - r1 0

+ rI 2-r1 3-r1 7 + r18

_5; 0 = - t2 + 2t - 1 + 2Cl - 2 r 3 + 3 r 4 - 3t~5 + 2t~6 - 2t~7 + T 8 - T 1 0 + f "

_6; 0 = - t2 + 2r - 1 + 2t~l - t~2 -1~3 + 2t~* - 3t~5 + 3t~6 - 2C1 + 2t~* - t~9

V(K_7 ;t)= - t2 + 2t - 1+ 2/"1 - t~2 + T 4 - 2t~5 + 3t~6 - 3t~7 + 2t~* - 2t~9

V{K_S; 0 = - t2 + 2t - 1+ 2t~l - t~2 - t~5 + 2t~6 - 3t~7 + 3 r 8 - 2 r 9 + 2t~10

_9 ;t)= -t2 + 2t-\+ 2t~1 - t~2 + t~6 - 2C1 + 3t~* - 3t~9 + 2t~XQ - 2t~U

V(K_l0; 0 = - t2 + It - 1+ 2t~l - t~2 - t~7 + 2t~% - 3t~9 + 3t~X0 - 2t~U + 2t~12
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