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Abstract We study a class of second-order nonlinear differential equations on a finite interval with
periodic boundary conditions. The nonlinearity in the equations can take negative values and may
be unbounded from below. Criteria are established for the existence of non-trivial solutions, positive
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1. Introduction

Let T be a fixed positive number. In this paper, we are concerned with the existence of
solutions of the boundary-value problem (BVP) consisting of the equation

−(p(t)u′)′ + q(t)u = w(t)f(t, u), t ∈ (0, T ), (1.1)

and the periodic boundary condition (BC)

u(0) = u(T ), u[1](0) = u[1](T ), (1.2)

where

u[1](t) = p(t)u′(t)

denotes the quasi-derivative of u(t). As applications of our results, we also study the
BVP consisting of the equation

−(p(t)u′)′ + q(t)u = λw(t)f(t, u), t ∈ (0, T ), (1.3)
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and the BC (1.2), where λ is a positive parameter. We assume throughout, and without
further mention, that the following conditions hold:

1
p
, q, w ∈ L(0, T ),

p, w > 0, q � 0 and q �≡ 0 a.e. on (0, T ),

f ∈ C([0, T ] × R).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(H)

By a solution of BVP (1.1), (1.2), we mean a function u ∈ C1[0, T ] such that p(t)u′ is
absolutely continuous on (0, T ), u satisfies equation (1.1) a.e. on (0, T ), and u satisfies
BC (1.2). Moreover, if u(t) > 0 for t ∈ [0, T ], then u(t) is said to be a positive solution of
BVP (1.1), (1.2). Similar definitions also apply for BVP (1.3), (1.2) as well as for negative
solutions of these problems.

BVPs with periodic BCs have been extensively studied in the literature. As examples
of recent work, we mention the papers of Atici and Guseinov [1], Graef et al . [3], Jiang et
al . [6], Lan [10], O’Regan and Wang [11], Torres [15], Yao [19] and Zhang and Wang [21].
In particular, Atici and Guseinov [1] used Krasnosel’skii’s fixed-point theorem to obtain
sufficient conditions for the existence of positive solutions of BVPs (1.1), (1.2) and (1.3),
(1.2) when the nonlinearity f is non-negative over [0, T ] × R

+ with R
+ = [0,∞). In a

very nice paper, Lan [10] considered the problem (1.1), (1.2) with p(t) ≡ 1, q(t) ≡ a > 0,
w(t) ≡ 1 and f(t, x) non-negative but with a possible singularity at x = 0. He obtained
sufficient conditions for the existence of one or several positive solutions. Yao [19] used
fixed-point theory in a cone to obtain the existence of one or more positive solutions of
the problem (1.1), (1.2) with p(t) ≡ 1, q(t) ≡ 0 and w(t) ≡ 1. The function f(t, x) could
be singular at x = 0 here as well.

In this paper, by means of topological degree theory, we derive new criteria for the
existence of non-trivial solutions, positive solutions and negative solutions of these prob-
lems when f is a sign-changing function and not necessarily bounded from below even
over [0, T ] × R

+. Our existence conditions are determined by the relationship between
the behaviour of the quotient f(t, x)/x for x near 0 and ±∞ and the smallest eigenvalue
λ0 (given in (2.2), below) of a related linear problem. Our work extends some results
in [1] (see Remarks 2.5 and 2.10).

The proofs of our results are partly motivated by a recent paper by Han and Wu [5],
where the BVP consisting of the equation

−u′′ = g(t)h(u), t ∈ (0, 1), (1.4)

and the BC
u(0) = u(1) = 0 (1.5)

is studied for the case when h is, loosely speaking, superlinear. By a topological degree
argument, conditions are given in terms of the relative behaviour of the quotient h(x)/x

for x near 0 and ∞ with respect to the smallest eigenvalue of a related linear problem.
Existence criteria of the kind in [5] are obtained in [2,13,14,16,17] for other different
types of BVPs.
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We now introduce some notation that will be used throughout this paper. For b � 0,
denote by φb and ψb the unique solutions of the initial-value problems

−(p(t)u′)′ + (q(t) + bw(t))u = 0, u(0) = 1, u[1](0) = 0,

and

−(p(t)u′)′ + (q(t) + bw(t))u = 0, u(0) = 0, u[1](0) = 1,

respectively. Let
D = φb(T ) + ψ

[1]
b (T ) − 2. (1.6)

Then, by [1, Lemma 2.3], D > 0. Define H(t, s; b) by

H(t, s; b) =
ψb(T )

D
φb(t)φb(s) − φb(T )

D
ψb(t)ψb(s)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ
[1]
b (T ) − 1

D
φb(t)ψb(s) − φb(T ) − 1

D
φb(s)ψb(t), 0 � s � t � T,

ψ
[1]
b (T ) − 1

D
φb(s)ψb(t) − φb(T ) − 1

D
φb(t)ψb(s), 0 � t � s � T.

(1.7)

From [1, Theorem 2.5],
H(t, s; b) > 0 for t, s ∈ [0, T ]. (1.8)

When b = 0, we denote H(t, s; 0) by G(t, s), i.e.

G(t, s) = H(t, s; 0). (1.9)

Let
m = min

t,s∈[0,T ]
G(t, s) and M = max

t,s∈[0,T ]
G(t, s). (1.10)

Then M > m > 0.

Remark 1.1. For some special coefficients p and q, the constants m and M defined
by (1.10) can be explicitly computed. For instance, when p(t) > 0 and q(t) = ρ2/p(t) on
[0, T ] for some ρ > 0, m and M are given by (see, for example, [1, p. 354])

m =
exp{(ρ/2)

∫ T

0 ds/p(s)}
ρ(exp{ρ

∫ T

0 ds/p(s)} − 1)
and M =

exp{ρ
∫ T

0 ds/p(s)} + 1

2ρ(exp{ρ
∫ T

0 ds/p(s)} − 1)
.

We also refer the reader to [15, Proposition 2.0.1] for general formulae to compute m

and M .

This paper is organized as follows. In § 2, we state the main results and give sev-
eral examples to illustrate the significance of the results. Some preliminary lemmas are
presented in § 3 and the proofs of the main results are given in § 4.
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2. Main results

It is well known that the eigenvalue problem consisting of the equation

−(p(t)u′)′ + q(t)u = λw(t)u, t ∈ (0, T ), (2.1)

and BC (1.2) has a countable number of eigenvalues λi, i = 0, 1, 2, . . . , which are bounded
below and unbounded above and can be ordered to satisfy

0 < λ0 < λ1 � λ2 < · · · < λ2n−3 � λ2n−2 < λ2n−1 � λ2n < λ2n+1 � · · · . (2.2)

The reader is referred to [7, Theorem 2.1 and Corollary 2.1] and [18, Theorem 13.7] for
the proofs of these results. In some of our results we will use the first eigenvalue λ0.

We need the following assumptions.

(A1) There exist b � 0, c > 0, α > 1 and 0 < r < 1 such that

f(t, x) + bx + c|x|α � 0 for (t, x) ∈ [0, T ] × [−r, 0]. (2.3)

(A2) There exists b � 0 such that

x(f(t, x) + bx) � 0 for (t, x) ∈ [0, T ] × R. (2.4)

(A3) There exist 0 < r1 < r2 < ∞ such that

f(t, x) � 1

m
∫ T

0 w(s) ds
x for (t, x) ∈ [0, T ] × [0, r1] (2.5)

and

f(t, x) � 1

M
∫ T

0 w(s) ds
x for (t, |x|) ∈ [0, T ] × [r2,∞], (2.6)

where m and M are given in (1.10).

For convenience, we introduce the following notation:

f0 = lim inf
x→0+

min
t∈[0,T ]

f(t, x)
x

and f∞ = lim sup
|x|→∞

max
t∈[0,T ]

∣∣∣∣f(t, x)
x

∣∣∣∣. (2.7)

We first state the results for BVP (1.1), (1.2). The first two results establish the
existence of at least one non-trivial solution.

Theorem 2.1. Assume that (A1) holds. If

f∞ < λ0 < f0, (2.8)

then BVP (1.1), (1.2) has at least one non-trivial solution.

Corollary 2.2. Assume that (A1) and (A3) hold. Then BVP (1.1), (1.2) has at least
one non-trivial solution.
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The next two results provide sufficient conditions for the existence of multiple solutions
of BVP (1.1), (1.2).

Theorem 2.3. Assume that (A2) and (2.8) hold. Then BVP (1.1), (1.2) has at least
one positive solution and one negative solution.

Corollary 2.4. Assume that (A2) and (A3) hold. Then BVP (1.1), (1.2) has at least
one positive solution and one negative solution.

Remark 2.5. We make the following observations.

(a) In Theorem 2.1 and Corollary 2.2, to guarantee the existence of non-trivial solu-
tions, all we need is the behaviour of f for x near 0 and ±∞.

(b) Corollary 2.4 extends [1, Theorem 3.5], where only the existence of positive solu-
tions was established.

We now state the existence results for BVP (1.3), (1.2), which are immediate conse-
quences of the above results.

Theorem 2.6. Assume that (A1) holds. If

λ0

f0
< λ <

λ0

f∞ , (2.9)

then BVP (1.3), (1.2) has at least one non-trivial solution.

Corollary 2.7. Assume that (A1) holds. If

1

mf0
∫ T

0 w(s) ds
� λ � 1

Mf∞
∫ T

0 w(s) ds
, (2.10)

then BVP (1.3), (1.2) has at least one non-trivial solution.

Theorem 2.8. Assume that (A2) and (2.9) hold. Then BVP (1.3), (1.2) has at least
one positive solution and one negative solution.

Corollary 2.9. Assume that (A2) and (2.10) hold. Then BVP (1.3), (1.2) has at least
one positive solution and one negative solution.

Remark 2.10. Corollary 2.9 extends [1, Theorem 4.3 and Corollary 4.4], where only
the existence of positive solutions was established.

In the remainder of this section, we give three simple examples to illustrate some of
our results. To the best of our knowledge, no previous criteria can be applied to these
examples.

Example 2.11. Consider the BVP consisting of the equation

−u′′ + u = f(t, u), t ∈ (0, 1), (2.11)

and the BC
u(0) = u(1), u′(0) = u′(1), (2.12)
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where

f(t, x) =

⎧⎪⎨
⎪⎩

−12t2 + 13 + (|x|1/2 − 2)x1/3, x < −4,

−t2(x2 + x) + 3|x| + 1, −4 � x � 0,

1 − tx1/2, x > 0.

(2.13)

We claim that BVP (2.11), (2.12) has at least one non-trivial solution.
Here, T = 1 and p(t) = q(t) = w(t) = 1 on (0, T ) so (H) holds. Now with b = c = 1

and α = 2, from (2.13), we see that (2.3) holds for any r ∈ (0, 1), and so (A1) holds.
Moreover, in view of (2.7), we have that f0 = ∞ and f∞ = 0. It is well known that, for
the problem consisting of the equation

−u′′ = λu, t ∈ (0, 1),

and BC (2.12), the first eigenvalue is 0 (see, for example, [12, p. 428]). It follows that
the first eigenvalue is λ0 = 1 for the problem consisting of the equation

−u′′ + u = λu, t ∈ (0, 1),

and BC (2.12). Hence, (2.8) holds. The conclusion then follows from Theorem 2.1.

Example 2.12. Consider the BVP consisting of the equation

−u′′ + 8u = λf(t, u), t ∈ (0, 1), (2.14)

and BC (2.12), where λ is a positive parameter and

f(t, x) = x1/3 − 2t2x. (2.15)

We claim that, for each 0 < λ < 4, BVP (2.14), (2.12) has at least one positive solution
and one negative solution.

Here, T = 1, p(t) = w(t) = 1 and q(t) = 8 on (0, T ) so again (H) holds and, for
b = 2, from (2.15), it is clear that (A2) holds. Moreover, in view of (2.7), we have that
f0 = ∞ and f∞ = 2. Reasoning as in Example 2.11, we see that the first eigenvalue for
the problem consisting of the equation

−u′′ + 8u = λu, t ∈ (0, 1),

and BC (2.12) is λ0 = 8. The conclusion then follows from Theorem 2.8.

Example 2.13. Consider the BVP consisting of the equation

−((t2 + 1)u′)′ +
64

t2 + 1
u = t−1/2f(t, u), t ∈ (0, 1), (2.16)

and the BC
u(0) = u(1), u′(0) = 2u′(1), (2.17)

where

f(t, x) =

⎧⎪⎨
⎪⎩

−(e2π + 1)2 − 2e2πt(x1/3 + 1)x2/3, x < −1,

(e2π + 1)2x, −1 � x � 1,

(e2π + 1)2 + 2e2πt3(1 − x1/2)x1/2, x > 1.

(2.18)
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We claim that, for each λ with

4(e2π − 1)
eπ(e2π + 1)2

� λ � 4(e2π − 1)
e2π(e2π + 1)

,

BVP (2.16), (2.17) has at least one positive solution and one negative solution.
Here, T = 1, p(t) = t2 + 1, q(t) = 64/(t2 + 1) and w(t) = t−1/2 on (0, T ). Then, (H)

holds and, with b = 2e2π, from (2.18), we see that (A2) holds. Moreover, in view of (2.7),
we have that f0 = (e2π +1)2 and f∞ = 2e2π. For m and M defined by (1.10), and noting
Remark 1.1, it follows that

m =
eπ

8(e2π − 1)
and M =

e2π + 1
16(e2π − 1)

.

Thus,

1

mf0
∫ T

0 w(s) ds
=

4(e2π − 1)
eπ(e2π + 1)2

and
1

Mf∞
∫ T

0 w(s) ds
=

4(e2π − 1)
e2π(e2π + 1)

.

The conclusion then follows from Corollary 2.9.

Examples may also be readily given to illustrate the other results. We leave this to the
interested reader.

3. Preliminary lemmas

Our first lemma follows from [1, Theorem 2.4]; it can also be verified directly.

Lemma 3.1. For any b � 0 and h ∈ L(0, T ), the BVP consisting of the equation

−(p(t)u′)′ + (q(t) + bw(t))u = h(t), t ∈ (0, T ),

and BC (1.2) has a solution u(t) if and only if

u(t) =
∫ T

0
H(t, s; b)h(s) ds,

where H(t, s; b) is defined by (1.7).

We refer the reader to Theorem A.3.3 (ix) and Lemma 2.5.1 in [4], respectively, for
the proofs of the following two well-known lemmas. In the rest of this paper, the bold 0
denotes the zero element in any given Banach space.

Lemma 3.2. Let Ω be a bounded open set in a real Banach space X and let T : Ω̄ → X

be compact. If there exists u0 ∈ X, u0 �= 0, such that

u − Tu �= τu0 for all u ∈ ∂Ω and τ � 0,

then the Leray–Schauder degree

deg(I − T, Ω,0) = 0.
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Lemma 3.3. Let Ω be a bounded open set in a real Banach space X with 0 ∈ Ω and
T : Ω̄ → X be compact. If

Tu �= τu for all u ∈ ∂Ω and τ � 1,

then the Leray–Schauder degree

deg(I − T, Ω,0) = 1.

Now assume that X is a real Banach space with the norm ‖ · ‖, X∗ is the dual space
of X, P is a total cone in X, i.e. X = P − P , and P ∗ is the dual cone of P , i.e.

P ∗ = {g ∈ X∗ : g(u) � 0 for all u ∈ P}.

The following Krein–Rutman theorem can be found in [20, Proposition 7.26].

Lemma 3.4. Let L : X → X be a compact linear positive operator, let L∗ be the dual
operator of L and let rL be the spectral radius of L. If rL > 0, then rL is an eigenvalue
of L and L∗ with eigenfunctions in P \ {0} and P ∗ \ {0}, respectively.

Let L, L∗ and rL be given as in Lemma 3.4. If rL > 0, then, from Lemma 3.4, there
exist ϕ ∈ P \ {0} and h ∈ P ∗ \ {0} such that

Lϕ = rLϕ and L∗h = rLh. (3.1)

Choose δ > 0 and define

P (h, δ) = {u ∈ P : h(u) � δ‖u‖}. (3.2)

Then P (h, δ) is a cone in X.

Lemma 3.5. Assume that the following conditions hold.

(C1) There exist ϕ ∈ P \{0} and h ∈ P ∗ \{0} such that (3.1) holds and L(P ) ⊆ P (h, δ).

(C2) A : X → P is a continuous operator and there exist α > 1 and K > 0 such that
‖Au‖ � K‖u‖α for all u ∈ X.

(C3) f : X → X is a bounded continuous operator and there exists r∗ > 0 such that

fu + Au ∈ P for all u ∈ X with ‖u‖ < r∗.

(C4) There exist η > 0 and r∗∗ > 0 such that

Lfu � r−1
L (1 + η)Lu for all u ∈ X with ‖u‖ < r∗∗.

Let T = Lf . There then exists 0 < R < min{r∗, r∗∗} such that the Leray–Schauder
degree

deg(I − T, B(0, R),0) = 0,

where B(0, R) = {u ∈ X : ‖u‖ < R}.

https://doi.org/10.1017/S0013091507000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000788


Solutions of periodic BVPs 87

Proof. We first claim that there exists 0 < R < min{r∗, r∗∗} such that

u − Tu �= τϕ for all u ∈ ∂B(0, R) and τ � 0. (3.3)

If this is not the case, then, for all 0 < R < min{r∗, r∗∗}, there exist u1 ∈ ∂B(0, R) and
τ1 � 0 such that

u1 − Lfu1 = τ1ϕ. (3.4)

Then, from (3.1) and (C4), we have

h(u1) = h(Lfu1) + τ1h(ϕ)

� h(Lfu1)

� r−1
L (1 + η)h(Lu1)

= r−1
L (1 + η)(L∗h)(u1)

= r−1
L (1 + η)rLh(u1)

= (1 + η)h(u1).

Hence, h(u1) � 0. This, together with (3.1) and (C2), implies that

h(u1 + LAu1) = h(u1) + h(LAu1)

= h(u1) + (L∗h)(Au1)

� (L∗h)(Au1)

� rLh(Au1)

� rLK‖h‖ ‖u1‖α

= D1‖u1‖α, (3.5)

where D1 = rLK‖h‖. From (3.1) and (3.4), we see that

u1 + LAu1 = Lfu1 + LAu1 + τ1ϕ

= L(fu1 + Au1) + τr−1
L Lϕ.

In view of (C1) and (C3), we see that u1 + LAu1 ∈ P (h, δ). Thus, from (3.2),

h(u1 + LAu1) � δ‖u1 + LAu1‖ � δ‖u1‖ − δ‖LAu1‖,

and so
‖u1‖ � δ−1h(u1 + LAu1) + ‖LAu1‖.

Hence, from (C2) and (3.5),

R = ‖u1‖ � δ−1D1‖u1‖α + K‖L‖ ‖u1‖α

= D2‖u1‖α (3.6)

= D2R
α, (3.7)

where D2 = δ−1D1 + K‖L‖. Since α > 1, (3.6) cannot hold if R is sufficiently small.
Therefore, there exists 0 < R < min{r∗, r∗∗} such that (3.3) holds. Note that the operator
T is compact. The conclusion now readily follows from Lemma 3.2, and this completes
the proof of the lemma. �
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4. Proofs of the main results

In what follows, let X = C[0, T ] be the Banach space equipped with the norm ‖u‖ =
maxt∈[0,T ] |u(t)|. Define a total cone P in X by

P = {u ∈ X : u(t) � 0 for t ∈ [0, T ]}

and operators L, f T : X → X by

Lu(t) =
∫ T

0
H(t, s; b)w(s)u(s) ds, (4.1)

fu(t) = f(t, u(t)) + bu(t), (4.2)

and

Tu(t) = Lfu(t) =
∫ T

0
H(t, s; b)w(s)fu(s) ds, (4.3)

where b is given in (A1) or (A2) and H(t, s; b) is defined by (1.7) with this b. Then
L : X → X is compact, linear and positive, f : X → X is bounded and continuous and
T : X → X is compact. Moreover, by Lemma 3.1, u(t) is a solution of BVP (1.1), (1.2)
if and only if it is a fixed point of T .

Proof of Theorem 2.1. We first verify that conditions (C1)–(C4) of Lemma 3.5 are
satisfied.

From (1.8), we see that (Lv)(t) > 0 for t ∈ [0, T ] for any v ∈ P with v(t) �≡ 0 on [0, T ].
Thus, there exists d > 0 such that d(Lv)(t) � v(t) for t ∈ [0, T ]. Then, from [8, Chapter 5,
Theorem 2.1], it follows that the spectral radius, rL, of L satisfies rL > 0. Hence, by
Lemma 3.4, there exist ϕ ∈ P \ {0} and h ∈ P ∗ \ {0} such that (3.1) holds. Moreover, it
is easy to see that r−1

L = λ0 + b, where λ0 is given in (2.2). We now show that h can be
explicitly given by

h(u) =
∫ T

0
w(t)ϕ(t)u(t) dt, u ∈ X. (4.4)

In fact, from (1.7), it is clear that H(t, s; b) = H(s, t; b) for t, s ∈ [0, T ]. Then, for u ∈ X,
(4.4) implies that

rLh(u) =
∫ T

0
w(t)(rLϕ(t))u(t) dt

=
∫ T

0
w(t)u(t)

( ∫ T

0
H(t, s; b)w(s)ϕ(s) ds

)
dt

=
∫ T

0
w(s)ϕ(s)

( ∫ T

0
H(t, s; b)w(t)u(t) dt

)
ds

=
∫ T

0
w(s)ϕ(s)

( ∫ T

0
H(s, t; b)w(t)u(t) dt

)
ds

=
∫ T

0
w(s)ϕ(s)(Lu)(s) ds

= h(Lu) = (L∗h)(u),
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i.e. h satisfies the second equality in (3.1). Thus, h can be explicitly given as in (4.4).
Note that ϕ(t) > 0 on [0, T ], so there exists δ1 > 0 such that

ϕ(s) > δ1H(t, s; b) for t, s ∈ [0, T ]. (4.5)

Let δ = rLδ1. We will show that L(P ) ⊆ P (h, δ). For any u ∈ P , from (4.4) and (4.5),
we have that

h(Lu) = rL

∫ T

0
w(t)ϕ(s)u(s) ds

� rLδ1

∫ T

0
H(t, s; b)w(s)u(s) ds

= δ(Lu)(t)

for t ∈ [0, T ]. Hence, h(Lu) � δ‖Lu‖, i.e. L(P ) ⊆ P (h, δ). Therefore, condition (C1) of
Lemma 3.5 holds.

Let Au(t) = c|u(t)|α for u ∈ X, where c and α are given in (A1). Then, with K = c,
(C2) of Lemma 3.5 holds.

Let r be given in (A1). Since f0 > λ0, there exist η > 0 and 0 < ε1 < 1 such that

f(t, x) + bx � (λ0 + b)(1 + η)x

= r−1
L (1 + η)x

� 0 for (t, x) ∈ [0, T ] × [0, ε1]. (4.6)

Let f be defined by (4.2). Now, in view of (2.3) and (4.6), we see that condition (C3) of
Lemma 3.5 holds with r∗ = min{ε1, r}.

From (2.3), it follows that

f(t, x) + bx � −c|x|α for (t, x) ∈ [0, T ] × [−r, 0].

Choose 0 < ε2 < min{ε1, r} to be sufficiently small that −c|x|α � r−1
L (1 + η)x for

x ∈ [−ε2, 0]. Then

f(t, x) + bx � r−1
L (1 + η)x for (t, x) ∈ [0, T ] × [−ε2, 0]. (4.7)

From (4.6) and (4.7), we have

f(t, x) + bx � r−1
L (1 + η)x for (t, x) ∈ [0, T ] × [−ε2, ε2],

which clearly implies that

Lfu � r−1
L (1 + η)Lu for all u ∈ X with ‖u‖ < ε2.

Hence, (C4) of Lemma 3.5 holds with r∗∗ = ε2.
We have verified that all the conditions of Lemma 3.5 hold, so there exists R1 > 0

such that
deg(I − T, B(0, R1),0) = 0, (4.8)

where B(0, R1) = {u ∈ X : ‖u‖ < R1}.
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Next, since f∞ < λ0, there exist 0 < ν < 1 and R3 > R1 such that

|f(t, x) + bx| � (λ0 + b)(1 − ν)|x|
= r−1

L (1 − ν)|x| for (t, |x|) ∈ [0, T ] × (R3,∞). (4.9)

Let

L = sup
u∈X, ‖u‖�R3

max
t∈[0,T ]

∫ T

0
H(t, s; b)w(s)|fu(s)| ds. (4.10)

Then 0 < L < ∞. Choose R2 sufficiently large that

R2 > max{R3, ν
−1L}. (4.11)

For any u ∈ X, let

Iu
1 = {t ∈ [0, T ] : |u(t)| > R3},

Iu
2 = [0, T ] \ Iu

1 ,

and

ũ(t) = min{|u(t)|, R3}.

Define

B(0, R2) = {u ∈ X : ‖u‖ < R2}.

We claim that

Tu �= τu for all u ∈ ∂B(0, R2) and τ � 1. (4.12)

If this is not the case, then there exist u∗ ∈ ∂B(0, R2) and τ∗ � 1 such that Tu∗ = τ∗u∗.
It follows that u∗ = s∗Tu∗, where s∗ = 1/τ∗. Clearly, s∗ ∈ (0, 1). Assume that ‖u∗‖ =
|u∗(t∗)| for some t∗ ∈ [0, T ]. Then R2 = |u∗(t∗)| = s∗|Tu∗(t∗)|. For h defined by (4.4),
we have

h(R2) = h(|u∗(t∗)|)
= s∗h(|Tu∗(t∗)|)
� h(|Tu∗(t∗)|)

= h

(∣∣∣∣
∫ T

0
H(t∗, s; b)w(s)fu∗(s) ds

∣∣∣∣
)

� h

( ∫ T

0
H(t∗, s; b)w(s)|fu∗(s)| ds

)

= h

( ∫
Iu∗
1

H(t∗, s; b)w(s)|fu∗(s)| ds

)
+ h

( ∫
Iu∗
2

H(t∗, s; b)w(s)|fu∗(s)| ds

)
.
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Now, from (4.9), (4.10) and the second equality in (3.1), we obtain

h

( ∫
Iu∗
1

H(t∗, s; b)w(s)|fu∗(s)| ds

)
+ h

( ∫
Iu∗
2

H(t∗, s; b)w(s)|fu∗(s)| ds

)

� r−1
L (1 − ν)h

( ∫
Iu∗
1

H(t∗, s; b)w(s)|u∗(s)| ds

)
+ h

( ∫
Iu∗
2

H(t∗, s; b)w(s)|fu∗(s)| ds

)

� r−1
L (1 − ν)h

( ∫ T

0
H(t∗, s; b)w(s)|u∗(s)| ds

)
+ h

( ∫ T

0
H(t∗, s; b)w(s)|f ũ∗(s)| ds

)
� r−1

L (1 − ν)h(L|u∗(t∗)|) + h(L)

= r−1
L (1 − ν)(L∗h)(|u∗(t∗)|) + h(L)

= r−1
L (1 − ν)rLh(|u∗(t∗)|) + h(L)

= (1 − ν)h(R2) + h(L).

Thus,
h(R2) � (1 − ν)h(R2) + h(L),

which implies that
(νR2 − L)h(1) � 0.

In view of the fact that h(1) > 0, it follows that R2 � ν−1L. This contradicts (4.11) and
so (4.12) holds. By Lemma 3.3, we have

deg(I − T, B(0, R2),0) = 1. (4.13)

By the additivity property of the Leray–Schauder degree, (4.8) and (4.13), we obtain

deg(I − T, B(0, R2) \ B(0, R1)) = 1.

Thus, from the solution property of the Leray–Schauder degree, T has at least one fixed
point u in B(0, R2) \ B(0, R1). Clearly, u(t) is a non-trivial solution of BVP (1.1), (1.2),
and this completes the proof of the theorem. �

The following lemma will be used in some of our remaining proofs.

Lemma 4.1. Let λ0 be given in (2.2). Then

1

M
∫ T

0 w(s) ds
< λ0 <

1

m
∫ T

0 w(s) ds
,

where m and M are defined by (1.10).

Proof. Let the operator L0 be defined by (4.1) with b = 0, i.e. let

L0u(t) =
∫ T

0
G(t, s)w(s)u(s) ds. (4.14)
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Now L0 is u0-positive with u0 ≡ 1 (see [9] or [20]), so there exist ki(u) > 0, i = 1, 2,
such that

k1(u) · 1 � L0u � k2(u) · 1.

Note that

L1u(t) =
∫ T

0
mw(s) ds � L0u(t),

so r(L1) � r(L0), and hence

∫ T

0
mw(s) ds � r(L0) =

1
λ0

.

This proves the right-hand inequality in the lemma. The proof of the other half is similar.
�

Proof of Corollary 2.2. Let f0 and f∞ be defined by (2.7). From (A3), we have
that

f0 � 1

m
∫ T

0 w(s) ds
and f∞ � 1

M
∫ T

0 w(s) ds
. (4.15)

Then the conclusion follows from Theorem 2.1 and Lemma 4.1. �

Proof of Theorem 2.3. For u ∈ X, let

f1u(t) =

{
f(t, u(t)) + bu(t), u(t) � 0,

−(f(t, u(t)) + bu(t)), u(t) < 0.
(4.16)

In virtue of (2.4), we see that f1 : X → R is continuous and non-negative. Define a
compact operator T1 : X → X by

T1u(t) =
∫ T

0
H(t, s; b)w(s)f1u(s) ds. (4.17)

Note that f1u(t) + c|u(t)|α � 0 for u ∈ X, where c and α are given in (A1). Then, as in
the proof of Theorem 2.1, we see that conditions (C1)–(C4) of Lemma 3.5 hold, where
A is defined as before, f = f1 and T = T1. Hence, by Lemma 3.5, there exists R1 > 0
such that

deg(I − T1, B(0, R1),0) = 0, (4.18)

where B(0, R1) = {u ∈ X : ‖u‖ < R1}.
Since f∞ < λ0, there exist 0 < ν < 1 and R3 > R1 such that

|f(t, x) + bx| � (λ1 + b)(1 − ν)|x|
= r−1

L (1 − ν)|x| for (t, |x|) ∈ [0, T ] × (R3,∞).

Let

L1 = sup
u∈X, ‖u‖�R3

max
t∈[0,T ]

∫ T

0
H(t, s; b)w(s)|f1u(s)| ds.

https://doi.org/10.1017/S0013091507000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000788


Solutions of periodic BVPs 93

Then 0 < L < ∞. Choose R2 large enough that

R2 > max{R3, ν
−1L1}.

Define
B(0, R2) = {u ∈ X : ‖u‖ < R2}.

An argument similar to the one used in deriving (4.12) yields

T1u �= τu for all u ∈ ∂B(0, R2) and τ � 1.

Thus, by Lemma 3.3, we have

deg(I − T1, B(0, R2),0) = 1. (4.19)

By the additivity property of the Leray–Schauder degree, (4.18), and (4.19), we obtain

deg(I − T1, B(0, R2) \ B(0, R1)) = 1.

Thus, from the solution property of the Leray–Schauder degree, T1 has at least one fixed
point u in B(0, R2) \ B(0, R1). Then

u1(t) =
∫ T

0
H(t, s; b)w(s)f1u(s) ds for t ∈ [0, T ],

which, together with (1.8), implies that u1(t) > 0 on [0, T ]. Therefore, from (4.16),
f1u1(t) = f(t, u1(t)) + bu1(t), and so u1(t) is a positive solution of BVP (1.1), (1.2).

For u ∈ X, let

f2u(t) =

{
−(f(t, −u(t)) + b(−u(t))), x � 0,

f(t, −u(t)) + b(−u(t)), x < 0.
(4.20)

Then, from (2.4), we see that f2 : X → R is continuous and non-negative. Define a
compact operator T2 : X → X by

(T2u)(t) =
∫ T

0
H(t, s; b)w(s)f2u(s) ds.

By an argument similar to that above, we see that T2 has a fixed point v satisfying
v(t) > 0 on [0, T ]. From (4.20) and the fact that

v(t) =
∫ T

0
H(t, s; b)w(s)f2v(s) ds,

we obtain

−v(t) =
∫ T

0
H(t, s; b)w(s)(f(s,−v(s)) + b(−v(s))) ds.

Therefore, u2(t) := −v(t) is a negative solution of BVP (1.1), (1.2), and the theorem is
proved. �
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Proof of Corollary 2.4. Since (A3) implies (4.15), the conclusion then follows from
Theorem 2.3 and Lemma 4.1. �

Finally, by virtue of Lemma 4.1, Theorems 2.6 and 2.8 and Corollaries 2.7 and 2.9
are direct applications of Theorems 2.1 and 2.3 and Corollaries 2.2 and 2.4 with f in
equation (1.1) replaced by λf . We omit the proofs here.

In conclusion, we note that it is reasonable to ask if results analogous to Theorems 2.1
and 2.3 hold if

f0 < λ0 < f∞,

where f0 and f∞ are defined analogously to f0 and f∞. The answer is ‘yes’ provided
certain changes are made in conditions (A1)–(A3) as well as in the proofs of Theorems 2.1
and 2.3. These results will appear elsewhere.

Acknowledgements. The authors thank the referee for making several valuable
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