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Abstract

A common feature in Answer Set Programming is the use of a second negation, stronger than
default negation and sometimes called explicit, strong or classical negation. This explicit nega-
tion is normally used in front of atoms, rather than allowing its use as a regular operator. In
this paper we consider the arbitrary combination of explicit negation with nested expressions,
as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new
syntax and then prove that it can be captured by an extension of Equilibrium Logic with this
second negation. We study some properties of this variant and compare to the already known
combination of Equilibrium Logic with Nelson’s strong negation.

KEYWORDS: Answer set programming; Non-monotonic reasoning; Equilibrium logic; Explicit
negation.

1 Introduction

Although the introduction of stable models (Gelfond and Lifschitz 1988) in logic pro-

gramming was motivated by the search of a suitable semantics for default negation, their

early application to knowledge representation revealed the need of a second negation to
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represent explicit falsity. This second negation was already proposed in (Gelfond and

Lifschitz 1991) under the name of classical negation, an operator only applicable on

atoms that, when present in the syntax, led to a change in the name of stable mod-

els to become answer sets. Classical negation soon became common in applications for

commonsense reasoning and action theories (Gelfond and Lifschitz 1993) and was also

extrapolated to the Well-Founded Semantics (Pereira and Alferes 1992) under the name

of explicit negation. Later on, it was incorporated to the paradigm of Answer Set Pro-

gramming (Niemelä 1999; Marek and Truszczyński 1999) (ASP), being nowadays present

in the input language of most ASP solvers.

To understand the difference for knowledge representation between default negation

(in this paper, written as ¬) and explicit negation (represented as ∼), a typical example

is to distinguish the rule ¬train → cross , that captures the criterion “you can cross if you

have no information on a train coming,” from the (safier) encoding ∼train → cross that

means “you can cross if you have evidence that no train is coming.” In ASP, this explicit

negation can only be used in front of atoms1 so it is not seen as a real connective. In an

attempt of providing more flexibility to logic program connectives, Lifschitz et al. (1999)

introduced programs with nested expressions where conjunction, disjunction and default

negation could be arbitrarily nested both in the heads and bodies of rules, but classical

negation was still restricted to an application on atoms. To see an example, suppose that

a given moment, three trains should be crossing, and we have an alarm that fires if one

of them is known to be missing. Using nested expressions, we can rewrite the program:

∼train1 → alarm

∼train2 → alarm

∼train3 → alarm

as a single rule with a disjunction in the body:

∼train1∨ ∼train2∨ ∼train3 → alarm

but we cannot further apply De Morgan to rewrite the rule above as:

∼(train1 ∧ train2 ∧ train3) → alarm

It is easy to imagine that providing a semantics for this kind of expressions would

be interesting if we plan to jump from the propositional case to programs with vari-

ables and aggregates (where, for instance, the number of trains is some arbitrary value

n ≥ 0).

An important breakthrough that meant a purely logical treatment, was the character-

isation of stable models in terms of Equilibrium Logic proposed by Pearce (1997). This

non-monotonic formalism is defined in terms of a models selection criterion on top of the

(monotonic) intermediate logic of Here-and-There (HT) (Heyting 1930) and captures

default negation ¬ϕ as a derived operator in terms of implication ϕ→ ⊥, as usual in in-

tuitionistic logic. The definition of Equilibrium Logic also included a second, constructive

negation ‘∼’ corresponding to Nelson’s strong negation (Nelson 1949) for intermediate log-

ics. In the case of HT, this extension yields a five-valued logic called N 5 where, although

1 In fact, the construct “∼ train” is normally treated in ASP as a new atom train′ and an implicit
constraint train ∧ train′ → ⊥ is used to guarantee that both atoms cannot be true simultaneously.
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‘∼’ can now be nested as the rest of connectives, there exists a reduction for shifting it

in front of atoms, obtaining a negative normal form (NNF). Once in NNF, the obtained

equilibrium models actually coincide with answer sets for the syntactic fragments of

nested expressions (Lifschitz et al. 1999) or for regular programs (Gelfond and Lifschitz

1993). For this reason, most papers on Equilibrium Logic for ASP assumed a reduction to

NNF from the very beginning, and little attention was paid to the behaviour of formulas

in the scope of strong negation under a logic programming perspective. There are, how-

ever, cases in which this behaviour is not aligned with the reduct-based understanding

of nested expressions in ASP. Take, for instance, the formula:

∼¬p→ p (1)

Its NNF reduction removes the combination of negations ∼¬ and produces the tautologi-

cal rule p→ p whose unique equilibrium model is ∅, i.e., neither p nor ∼p hold. However,

if we start instead from the formula ∼¬¬¬p → p, the NNF reduction removes again

the first pair of negations producing the rule ¬¬p → p with a second answer set {p}.
This illustrates that we cannot replace ¬p by ¬¬¬p in the scope of strong negation, even

though they would produce the same effect in any reduct of the style of (Lifschitz et al.

1999) for nested expressions.

In this paper, we consider a different characterisation of ‘∼’ in HT and Equilibrium

Logic. We call this variant explicit negation to differentiate it from Nelson’s strong nega-

tion. To test its adequacy, we start generalising the definition of nested expression by

introducing an arbitrary nesting of ‘∼’, adapting the definitions of reduct and answer set

from (Lifschitz et al. 1999) to that context. After that, we prove that equilibrium models

(with explicit negation) capture the answer sets for these extended nested expressions

and, in fact, preserve the strong equivalences from (Lifschitz et al. 1999) even for ar-

bitrary formulas (including implication). We also prove several properties of HT with

explicit negation and provide a reduction to NNF that produces a different effect from

N5 when applied on implications or default negation.

The rest of the paper is organised as follows. In the next section, we introduce the

extended definition of answer sets for programs with nested expressions, where explicit

negation can be arbitrarily combined both in the rule bodies and the rule heads. In

Section 3, we present Equilibrium Logic with explicit negation and in particular, its

new monotonic basis, X5, since the selection of equilibrium models is the same one as

in (Pearce 1997). Section 4 provides a five-valued characterisation of X5 and studies differ-

ent types of equivalence relations, including variants of strong equivalence. In Section 5,

we briefly explain the main differences between explicit (X5) and strong (N5) negations.

Finally, Section 6 concludes the paper. Proofs can be found in the supplementary material

corresponding to this paper at the TPLP archives.

2 Nested expressions with explicit negation

We begin describing the syntax of nested expressions, starting from a set of atoms At .

A nested expression F is defined with the following grammar:

F ::= 
 | ⊥ | p | F ∨ F | F ∧ F | ¬F | ∼F
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where p is any atom p ∈ At . The two negations ¬ and ∼ are respectively called default

and explicit negation (the latter is also called classical in the ASP literature). An explicit

literal is either an atom p or its explicit negation ∼p. A default literal is either an explicit

literal A or its default negation ¬A. Thus, given atom p, we can form the default literals

p,∼p,¬p and ¬∼p. As we can see, the main difference with respect to (Lifschitz et al.

1999) is that, in that case, the explicit negation2 operator ∼ was only used for explicit

literals, whereas in this definition, it can be arbitrarily nested. For instance, ∼(p∨¬q) is
a nested expression under this new definition, but it is not under (Lifschitz et al. 1999).

A rule is an implication of the form F → G where F and G are nested expressions

respectively called the body and the head of the rule. A rule of the form 
 → G is

sometimes abbreviated as G and is further called a fact if G is an explicit literal. A logic

program is a set of rules. We say that a nested expression, a rule or a program is explicit

if it does not contain default negation.

A program rule F → G is said to be regular if the body F = B1 ∧ · · · ∧ Bn is a

conjunction of default literals and the head G = H1 ∨ · · · ∨Hm is a disjunction of default

literals. In a regular rule, we allow an empty body n = 0 and write F = 
 or an

empty head m = 0 and G = ⊥ but not both. A program is regular if all its rules are

regular.

An interpretation is a set of explicit literals that is consistent, that is, it does not

contain both p and ∼p for any atom p. We define when an interpretation T satisfies

(resp. falsifies) a nested expression F , written T |= F (resp. T =| F ) providing the

following recursive conditions:

T |=
 T �=| 

T �|=⊥ T =| ⊥
T |= p if p ∈ T T =| p if ∼p ∈ T

T |=ϕ ∧ ψ if T |= ϕ and T |= ψ T =| ϕ ∧ ψ if T =| ϕ or T =| ψ
T |=ϕ ∨ ψ if T |= ϕ or T |= ψ T =| ϕ ∨ ψ if T =| ϕ and T =| ψ
T |=∼ϕ if T =| ϕ T =| ∼ϕ if T |= ϕ

T |=¬ϕ if T �|= ϕ T =| ¬ϕ if T |= ϕ

As an example, given At = {p, q} and T = {∼p} we have T |=∼p ∨ q because T |=∼p
(i.e. T =| p) although neither T |= q nor T =| q, that is, q is undefined. The latter can

be expressed as T |= ¬q ∧ ¬∼q (i.e., q is neither true nor false). As another example,

T =| p ∧ q because T =| p even though, as we said, q is undefined. We say that ϕ is valid

if we have T |= ϕ for every interpretation T . The logic induced by these valid expres-

sions precisely corresponds to classical logic with strong negation as studied by Vakarelov

(1977). Note that, as usual in classical logic, ϕ → ψ is definable as ¬ϕ ∨ ψ in this

context.

Let Π be an explicit program. A consistent set of literals T is a model of Π if, for every

rule F → G in Π, T |= G whenever T |= F .

2 To be precise, (Lifschitz et al. 1999) used a different notation and names for operators: ∧, ∨ and ¬
were respectively denoted as comma, semicolon and ‘not’ in (Lifschitz et al. 1999), whereas explicit
negation ∼was denoted as ¬ and called classical negation.
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Definition 1 (reduct)

The reduct of a nested expression F with respect to an interpretation T is denoted as

FT and defined recursively as follows:

pT
def
= p for any atom p ∈ At

(F ∧G)T def
= FT ∧GT

(F ∨G)T def
= FT ∨GT

(∼F )T def
= ∼(FT )

(¬F )T def
=

{ ⊥ if T |= F


 otherwise

The reduct of a program Π with respect to T corresponds to the explicit program:

ΠT def
= { (FT → GT ) | (F → G) ∈ Π }. �

Proposition 1

For any consistent set of literals T and any nested formula F :

• T |= F iff T |= FT ;

• T =| F iff T =| FT . �

Definition 2 (answer set)

A consistent set of literals T is an answer set of a program Π if it is a ⊆-minimal model

of the reduct ΠT . �

Notice that the definitions of reduct and answer set for the case of regular programs

directly coincide with the standard definitions in ASP without nested expressions (Gel-

fond and Lifschitz 1991). They also coincide with (Lifschitz et al. 1999), defined on the

case of programs with nested expressions where ‘∼’ is only in front of atoms.

Example 1

Take the program consisting of the single rule (1). For At = {p}, we have three possible

interpretations T1 = {p}, T2 = {∼ p} and T3 = ∅. This yields two possible reducts

ΠT1 = {∼⊥ → p} and ΠT2 = ΠT3 = {∼
 → p}. It is easy to see that their corresponding

minimal models are T1 and T3 which constitute the two answer sets of Π. �

Example 2

Take the program consisting of the single rule:

¬(bird∧ ∼flies) → ∼(bird∧ ∼flies) (2)

capturing the idea that “being a bird that does not fly” should be false by default. If

we choose any interpretation T such that T |= bird∧ ∼flies then the reduct will have a

single rule with ⊥ in the body and the minimal model will be ∅ which does not satisfy

bird∧ ∼flies . If T �|= bird∧ ∼flies instead, the reduct becomes 
 → ∼(bird∧ ∼flies)

and the minimal models of this program are {∼bird} and {flies} that, as they are both

compatible with the assumption for T , they become the two answer sets of (2).

Suppose we extend now (2) with the fact bird. Doing so, it is easy to see that the

only answer set becomes {flies}. Analogously, if we take (2) plus the fact ∼flies the only
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answer set becomes {∼bird}. Finally, if we add the facts bird and ∼flies to (2), the

default is deactivated and we get the unique answer set {bird ,∼flies}. �

3 Equilibrium logic with explicit negation

We start defining the monotonic logic of Here-and-There with explicit negation, X5. Let

At be a set of atoms. A formula ϕ is an expression built with the grammar:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∼ϕ
for any atom p ∈ At . We also use the abbreviations:

¬ϕ def
= (ϕ→ ⊥)


 def
= ¬⊥

ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ⇔ ψ
def
= (ϕ↔ ψ) ∧ (∼ϕ↔∼ψ)

Given a pair of formulas ϕ and α, we write ϕ[α/p] to denote the uniform substitution of

all occurrences of atom p in ϕ by α. As usual, a theory is a set of formulas. We sometimes

understand finite theories (or subtheories) as the conjunction of their formulas. Notice

that programs with nested expressions are also theories under this definition.

An X5-interpretation is a pair 〈H,T 〉 of consistent sets of explicit literals (respectively
standing for “here” and “there”) satisfying H ⊆ T . We say that the interpretation is

total when H = T .

Definition 3 (X5 Satisfaction/falsification)

We say that 〈H,T 〉 satisfies (resp. falsifies) a formula ϕ, written 〈H,T 〉 |= ϕ (resp.

〈H,T 〉 =| ϕ), when the following recursive conditions hold:

〈H,T 〉 |=� 〈H,T 〉 �=| �
〈H,T 〉 �|=⊥ 〈H,T 〉=| ⊥
〈H,T 〉 |= p if p ∈ H 〈H,T 〉=| p if ∼p ∈ H
〈H,T 〉 |=ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ 〈H,T 〉=| ϕ ∧ ψ if 〈H,T 〉 =| ϕ or 〈H,T 〉 =| ψ
〈H,T 〉 |=ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ 〈H,T 〉=| ϕ ∨ ψ if 〈H,T 〉 =| ϕ and 〈H,T 〉 =| ψ
〈H,T 〉 |=∼ϕ if 〈H,T 〉 =| ϕ 〈H,T 〉=| ∼ϕ if 〈H,T 〉 |= ϕ
〈H,T 〉 |=ϕ→ψ if both 〈H,T 〉=| ϕ→ψ if 〈T, T 〉 |= ϕ and 〈H,T 〉 =| ψ

(i)〈H,T 〉 �|= ϕ or 〈H,T 〉 |= ψ
(ii)〈T, T 〉 �|= ϕ or 〈T, T 〉 |= ψ

�

A formula ϕ is a tautology (or is valid), written |= ϕ, if it is satisfied by every possible

interpretation. We say that an X5-interpretation 〈H,T 〉 is a model of a theory Γ, written

〈H,T 〉 |= Γ, if 〈H,T 〉 |= ϕ for all ϕ ∈ Γ. The next observation about Definition 3 connects

satisfaction ‘|=’ with standard HT.

Observation 1

The satisfaction relation ‘|=’ (left column in Def. 3) of any formula corresponds to regular

HT satisfaction up to the first occurrence of ‘∼’, where the falsification ‘=| ’ comes into

play. �

As a result, any tautology from HT can be shifted to X5, even if its atoms are uniformly

replaced by subformulas containing explicit negation.

https://doi.org/10.1017/S1471068419000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000267


914 F. Aguado et al.

Theorem 1

If formula ϕ is HT valid (and so, it does not contain ∼) then ϕ[α/p] is also X5 valid, for

any formula α and any atom p. �

If we choose any p not occurring in ϕ, then ϕ[α/p] = ϕ and the theorem above is just

saying that X5 is a conservative extension of HT. But it can also be exploited further by

replacing, in the HT tautology, any atom by an arbitrary formula containing negation.

For instance, if explicit negation only occurs in front of atoms, we essentially get HT with

explicit literals playing the role of atoms (disregarding inconsistent models). However,

when we combine explicit negation in an arbitrary way, some usual properties of HT

need to be checked in the new context.

Lemma 1

Let T be a consistent set of literals and F a nested expression. Then:

• 〈T, T 〉 |= F iff T |= F ;

• 〈T, T 〉 =| F iff T =| F . �

Theorem 2 (Persistence)

For any X5-interpretation 〈H,T 〉 and any formula ϕ then both:

(i) 〈H,T 〉 |= ϕ implies 〈T, T 〉 |= ϕ;

(ii) 〈H,T 〉 =| ϕ implies 〈T, T 〉 =| ϕ. �

Proposition 2

For any X5-interpretation 〈H,T 〉, any formula ϕ:

• 〈H,T 〉 |= ¬ϕ iff 〈T, T 〉 �|= ϕ;

• 〈H,T 〉 =| ¬ϕ iff 〈T, T 〉 |= ϕ. �

The following results establish a connection between X5 and the reduct of a nested

expression or a program.

Lemma 2

Let 〈H,T 〉 be an X5-interpretation and F a nested expression. Then:

• 〈H,T 〉 |= F iff H |= FT ;

• 〈H,T 〉 =| F iff H =| FT . �

Corollary 1

For any consistent set of literals T and any program Π: 〈T, T 〉 |= Π iff T |= Π. �

Proposition 3

For any X5-intepretation 〈H,T 〉 and any program Π:

〈H,T 〉 |= Π iff H is a model of ΠT and T is a model of Π. �

Definition 4 (Equilibrium model)

A total X5-interpretation 〈T, T 〉 is an equilibrium model of a theory Γ if 〈T, T 〉 is a model

of Γ and there is no other model 〈H,T 〉 of Γ with H ⊂ T . �
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Equilibrium logic (with explicit negation) is the non-monotonic logic induced by equi-

librium models. The following theorem guarantees that equilibrium models and answer

sets coincide for the syntax of programs with nested expressions.

Theorem 3

An interpretation T is an answer set of a program Π iff 〈T, T 〉 is an equilibrium model

of Π. �

To conclude this section, we provide an alternative reduct definition for arbitrary

formulas (and not just nested expressions) obtained as a generalisation of Ferraris’

reduct (Ferraris 2005). This generalisation introduces a main feature3 with respect

to (Ferraris 2005): it actually uses two dual transformations, ϕT
+ and ϕT

−, to obtain a

symmetric behaviour depending on the number of explicit negations in the scope.

Definition 5

Given a formula ϕ and an interpretation T (a consistent set of explicit literals) we define

the following pair of mutually recursive transformations:

ϕT
+

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if T �|= ϕ
p if ϕ = p ∈ At , p ∈ T

αT
+ ⊗ βT+ if T |= ϕ,ϕ = α⊗ β,

for ⊗ ∈ {∨,∧}
¬(αT

+) ∨ βT+ if T |= ϕ,ϕ = α→ β

¬(αT
+) if T |= ϕ,ϕ = ¬α,

∼(αT−) if T |= ϕ,ϕ =∼α

ϕT−
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

� if T �=| ϕ
p if ϕ = p ∈ At ,∼p ∈ T

αT− ⊗ βT− if T =| ϕ,ϕ = α⊗ β,
for ⊗ ∈ {∨,∧}

βT− if T =| ϕ,ϕ = α→ β
⊥ if T =| ϕ,ϕ = ¬α

∼(αT
+) if T =| ϕ,ϕ =∼α

The reduct ΓT
+ of a theory Γ is just defined as the set {ϕT

+ | ϕ ∈ Γ}. �

For instance, given ϕ = (2) and T = {∼bird}, the reader can check that the application

of the definition above eventually produces the formula ϕT
+ = ¬¬⊥∨ ∼(bird ∧ 
) which

is equivalent to ∼bird . If we take T = {flies} instead, the result is ϕT
+ = ¬¬⊥∨ ∼(
∧ ∼

flies) that is equivalent to flies . As a third example, if we take T = {bird} then we

directly get ϕT
+ = ⊥.

Theorem 4

For any formula ϕ and any pair of interpretations H ⊆ T :

(i) H |= ϕT
+ iff 〈H,T 〉 |= ϕ;

(ii) H =| ϕT
− iff 〈H,T 〉 =| ϕ. �

From Lemma 2 and Theorem 4 we immediately conclude:

Corollary 2

For any nested expression F and any pair of interpretations H ⊆ T :

(i) H |= FT iff T |= F and H |= FT
+ ;

(ii) H =| FT iff T =| F and H =| FT
− . �

Corollary 3

〈T, T 〉 is an equilibrium model of Γ iff T is a minimal model of ΓT
+. �

3 We also provide a translation for implications α → β but this is not strictly necessary: for computing
the reduct, they can be previously replaced by ¬α ∨ β.
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Back to the example formula ϕ =(2), taking T = {∼bird} we saw that ϕT
+ is equivalent

to ∼bird whose minimal model is obviously T . Therefore, 〈T, T 〉 is an equilibrium model.

4 Multivalued characterisation and equivalence relations

An alternative way of characterising X5 is as a five-valued logic defined as follows. Given

any X5-interpretation M = 〈H,T 〉 we define its corresponding 5-valued mapping M :

At → {−2,−1, 0, 1, 2} so that, for any atom p ∈ At :

M(p)
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if p ∈ H

−2 if ∼p ∈ H

1 if p ∈ T \H
−1 if ∼p ∈ T \H
0 otherwise, i.e., p �∈ T,∼p �∈ T

We can read these five values as follows: 2 = proved to be true; −2 = proved to be false;

1 = true by default ; −1 = false by default ; and 0 = undefined. Notice that values 1 and

−1 are used for explicit literals in T \H. As a consequence:

Proposition 4

An X5-interpretation M = 〈H,T 〉 is total (i.e. H = T ) iff M(p) ∈ {−2, 0, 2} for all

p ∈ At . �

Definition 6 (Valuation of formulas)

This 5-valuation can be extended to arbitrary formulas in the following way:

M(⊥)
def
= −2

M(
)
def
= 2

M(ϕ ∧ ψ) def
= min(M(ϕ),M(ψ))

M(ϕ ∨ ψ) def
= max(M(ϕ),M(ψ))

M(ϕ→ ψ)
def
=

{
2 if M(ϕ) ≤ max(M(ψ), 0)

M(ψ) otherwise

M(∼ϕ) def
= −M(ϕ) �

The designated value is 2, that is, we will understand that a formula is satisfied when

M(ϕ) = 2. Moreover, a complete correspondence with the satisfaction/falsification of

formulas given in the previous section is fixed by the following theorem:

Theorem 5

For any X5-interpretation M = 〈H,T 〉 and any formula ϕ:

• 〈H,T 〉 |= ϕ iff M(ϕ) = 2;

• 〈T, T 〉 |= ϕ iff M(ϕ) > 0;

• 〈H,T 〉 =| ϕ iff M(ϕ) = −2;

• 〈T, T 〉 =| ϕ iff M(ϕ) < 0. �

The equilibrium condition given in Definition 4 can be rephrased in 5-valued terms as

follows. Given two X5-interpretations M = 〈H,T 〉 and M ′ = 〈H ′, T ′〉 we say that M is

smaller than M ′, written M ≤M ′, when T = T ′ and H ⊆ H ′.
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Proposition 5

Let M and M ′ be a pair of X5-interpretations. Then M ≤ M ′ iff, for any atom p ∈ At ,

the following three conditions hold:

1. M(p) = 0 iff M ′(p) = 0;

2. If M(p) > 0, then M(p) ≤M ′(p);
3. If M(p) < 0, then M ′(p) ≤M(p). �

Theorem 6

A total interpretation M = 〈T, T 〉 is an equilibrium model of a theory Γ iff M(ϕ) = 2

for all ϕ ∈ Γ and there is no M ′ < M such that M ′(ϕ) = 2 for all ϕ ∈ Γ.

Proof

It follows from Theorem 5 and the definition of ≤ relation.

The truth tables derived from Definition 6 are depicted in Figure 1, including the

tables for derived operators ‘¬’, ‘↔’ and ‘⇔’. Note that the table for ¬ϕ = (ϕ → ⊥) is

just the first column of the table for ‘→’ since the evaluation of ‘⊥’ is fixed to −2. It is

∧ −2 −1 0 1 2

−2 −2 −2 −2 −2 −2
−1 −2 −1 −1 −1 −1
0 −2 −1 0 0 0
1 −2 −1 0 1 1
2 −2 −1 0 1 2

∨ −2 −1 0 1 2

−2 −2 −1 0 1 2
−1 −1 −1 0 1 2
0 0 0 0 1 2
1 1 1 1 1 2
2 2 2 2 2 2

→ −2 −1 0 1 2

−2 2 2 2 2 2
−1 2 2 2 2 2
0 2 2 2 2 2
1 −2 −1 0 2 2
2 −2 −1 0 1 2

ϕ ∼ϕ

−2 2
−1 1
0 0
1 −1
2 −2

ϕ ¬ϕ

−2 2
−1 2
0 2
1 −2
2 −2

↔ −2 −1 0 1 2

−2 2 2 2 −2 −2
−1 2 2 2 −1 −1
0 2 2 2 0 0
1 −2 −1 0 2 1
2 −2 −1 0 1 2

⇔ −2 −1 0 1 2

−2 2 1 0 −2 −2
−1 1 2 0 −1 −2
0 0 0 2 0 0
1 −2 −1 0 2 1
2 −2 −2 0 1 2

Fig. 1. Truth tables for X5.

easy to check, for instance, that the following implication is valid:

∼ϕ→ ¬ϕ (3)
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expressing that explicit negation is stronger than default negation4. Moreover, default

negation is definable in terms of implication and explicit negation (without resorting to

⊥) since, with some effort, it can be checked that the table for ¬ϕ can be equally obtained

through the expression:

∼((ϕ→ ∼ϕ) → ∼(ϕ→ ∼ϕ))
An important remark regarding equivalence is that to express that this (or any) pair of

formulas are equivalent, double implication does not suffice. This is because, as we can

see in the tables, M(ϕ ↔ ψ) = 2 does not imply that M(ϕ) = M(ψ). To get such a

correspondence, we must resort instead to the stronger ‘⇔’ for which M(ϕ ⇔ ψ) = 2

holds if and only if M(ϕ) = M(ψ). This lack of the ‘↔’ equivalence (we call it weak

equivalence) has an important consequence: it does not define a congruence relation since

|= α↔ β no longer implies that we can freely replace subformula α by β in any arbitrary

context: it may be the case that �|=∼α ↔∼β. For instance, we can easily check that

|= p∧¬p↔ ⊥ because min(M(p),M(¬p)) ≤ 0 and M(⊥) = −2, so M(p∧¬p↔ ⊥) = 2

for any M . However, we cannot replace p ∧ ¬p by ⊥ in any context. Take the program

Π consisting of the unique rule

∼(p ∧ ¬p) (4)

with empty body. Interpretation T = {∼p} is an answer set because ΠT = {∼(p ∧ 
)}
has {∼p} as minimal model (in fact, it is the unique answer set) but if we replace p∧¬p
by ⊥ in Π we get the trivial program {∼⊥} whose unique answer set is ∅. Although
weak equivalence does not guarantee arbitrary replacements, it can be used to replace

formulas in a theory, as stated below:

Proposition 6

Let α, β be a pair of formulas such that |= α↔ β. Then, M |= Γ∪ {α} iff M |= Γ∪ {β}
for any theory Γ and X5-interpretation M . �

As we mentioned before, for obtaining a congruence relation we can use validity of ‘⇔’

instead, which guarantees the following substitution theorem.

Theorem 7 (Substitution)

Let α, β be a pair of formulas satisfying |= α ⇔ β. Then, for any formula ϕ, we also

obtain |= ϕ[α/p] ⇔ ϕ[β/p]. �

Still, there are some cases in which ↔ can be used for substitution, provided that the

replaced formulas are not in the scope of explicit negation.

Theorem 8

Let ϕ be a formula where atom p only occurs outside the scope of explicit negation, and

let α, β be two formulas satisfying |= α↔ β. Then, |= ϕ[α/p] ↔ ϕ[β/p]. �

An important property of ASP related to HT equivalence is strong equivalence. We say

that two programs (resp. theories) Γ and Γ′ are strongly equivalent iff Γ ∪Δ and Γ′ ∪Δ

have the same answer sets (resp. equilibrium models), for any additional program (resp.

theory) Δ. When we talk about strong equivalence of formulas α and β we assume they

4 This property is called the coherence principle in (Pereira and Alferes 1992).
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correspond to the singleton theories {α} and {β}. As shown in (Lifschitz et al. 2001) (for

the case without explicit negation), two programs or theories are strongly equivalent if

and only if they are HT equivalent. Since the ‘↔’ relation in HT is congruent, there is no

difference between strong equivalence (replacing formulas in a theory) and substitution

(replacing subformulas in a formula). However, as explained in (Ortiz and Osorio 2007),

once congruence is lost, we can further refine strong equivalence in the following way.

Definition 7 (Strong equivalence on substitution)

We say that two formulas α and β are strongly equivalent on substitutions if Δ∪{ϕ[α/p]}
and Δ ∪ {ϕ[β/p]} have the same equilibrium models, for any formula ϕ and theory Δ.

The proof of the next lemma can be obtained following similar steps to the proof of the

main theorem in (Lifschitz et al. 2001) replacing atoms in that case by explicit literals

in ours.

Lemma 3

Let α and β be two formulas and be an interpretation such that 〈H,T 〉 |= α but 〈H,T 〉 �|=
β. Then, there is a finite theory Δ such that 〈T, T 〉 is an equilibrium model of one of

Δ ∪ {β}, Δ ∪ {α} but not of both. �

Theorem 9

Formulas α and β are strongly equivalent iff |= α↔ β. �

Theorem 10

Formulas α and β are strongly equivalent on substitutions iff |= α⇔ β. �

The following set of valid equivalences allow us reducing any nested expression with

explicit negation to an explicit negation normal form (NNF) where ∼ is only applied on

atoms.

∼
 ⇔ ⊥ (5)

∼⊥ ⇔ 
 (6)

∼(ϕ ∧ ψ) ⇔ ∼ϕ ∨ ∼ψ (7)

∼(ϕ ∨ ψ) ⇔ ∼ϕ ∧ ∼ψ (8)

∼∼ϕ ⇔ ϕ (9)

∼¬ϕ ⇔ ¬¬ϕ (10)

For instance, we can reduce the nested expression (4) to NNF as follows:

∼(p ∧ ¬p) ⇔ ∼p∨ ∼¬p by (7)

⇔ ∼p ∨ ¬¬p by (10)

Programs in NNF correspond to the original syntax in (Lifschitz et al. 1999). That paper

provided several transformations that allowed reducing any program in NNF to a regular

program. These transformations included commutativity and associativity of conjunction

and disjunction (which are obviously satisfied in X5) plus the equivalences in the following

proposition.
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Proposition 7

The following formulas are X5 tautologies:

ϕ ∧ (ψ ∨ γ) ⇔ (ϕ ∧ ψ) ∨ (ϕ ∧ γ) ϕ ∨ (ψ ∧ γ) ⇔ (ϕ ∨ ψ) ∧ (ϕ ∨ γ) (11)

ϕ ∧ ⊥ ⇔ ⊥ ϕ ∨ 
 ⇔ 
 (12)

ϕ ∧ 
 ⇔ ϕ ϕ ∨ ⊥ ⇔ ϕ (13)

¬(ϕ ∧ ψ) ⇔ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ⇔ ¬ϕ ∧ ¬ψ (14)

¬
 ⇔ ⊥ ¬⊥ ⇔ 
 (15)

¬¬¬ϕ ⇔ ¬ϕ (16)

ϕ→ ψ ∧ γ ⇔ (ϕ→ ψ) ∧ (ϕ→ γ) (17)

ϕ ∨ ψ → γ ⇔ (ϕ→ γ) ∧ (ψ → γ) (18)

ϕ ∧ ¬¬ψ → γ ⇔ ϕ→ γ ∨ ¬ψ (19)

ϕ→ γ ∨ ¬¬ψ ⇔ ϕ ∧ ¬ψ → γ (20)

and correspond to the transformations in (Lifschitz et al. 1999). �

For instance, as we saw, (4) was equivalent to ∼ p ∨ ¬¬p but this can be further

transformed into the regular rule ¬p →∼ p commonly used to assign falsity of p by

default.

Example 3 (Example 2 continued)

Rule (2) can be transformed as follows:

(2) ⇔ ¬bird ∨ ¬∼flies → ∼(bird∧ ∼flies) by (14)

⇔ ¬bird ∨ ¬∼flies → ∼bird∨ ∼∼flies by (7)

⇔ ¬bird ∨ ¬∼flies → ∼bird ∨ flies by (9)

⇔ (¬bird → ∼bird ∨ flies)

∧(¬∼flies → ∼bird ∨ flies) by (18)

and the last step is a conjunction of two regular rules as in standard ASP solvers. �

Reduction to NNF is also possible on arbitrary formulas. For that purpose, we can

combine (5)-(10) with the following valid (weak) equivalence:

∼(ϕ→ ψ) ↔ ¬¬ϕ∧ ∼ψ (21)

However, the reduction must be done with some care, because this last equivalence can-

not be shifted to ⇔. Indeed, the left and right expressions have different valuations when

M(ϕ) = M(ψ) = 1, obtaining M(∼(ϕ → ψ)) = −2 �= −1 = M(¬¬ϕ∧ ∼ψ). Fortu-
nately, Theorem 8 allows us applying (21) from the outermost occurrence of ∼ and then

recursively combining with (5)-(10) until ∼ is only applied to atoms.

Theorem 11

For any formula ϕ there exists a formula ψ in NNF such that |= ϕ↔ ψ. �

For instance, we can reduce the following formula into NNF as follows:

∼ (a→ ∼b ∧ (c→ d)) ↔ ¬¬a∧ ∼ (∼b ∧ (c→ d))

↔ ¬¬a ∧ (∼∼b∨ ∼(c→ d))

↔ ¬¬a ∧ (b ∨ ¬¬c∧ ∼d)

https://doi.org/10.1017/S1471068419000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000267


Revisiting Explicit Negation in Answer Set Programming 921

However, we cannot apply (21) making a replacement in the scope of explicit negation.

A clear counterexample is the formula ∼∼(p→ q) that, due to (9), is strongly equivalent

to p → q, but applying (21) inside would incorrectly lead to the nested expression ∼
(¬¬p∧ ∼ q) that can be transformed into the strongly equivalent expression ¬p ∨ q,

different from p→ q in ASP.

5 Related work

As explained in the introduction, this work is obviously related to the characterisation of

‘∼’ as Nelson’s strong negation (Nelson 1949) for intermediate logics. In particular, the

addition of strong negation to HT produces the five-valued logic N5 already present in

the original definition of Equilibrium Logic (Pearce 1997). In fact, the interpretations and

the truth values we have chosen for X5 coincide with those for N5, and their evaluation of

(non-derived) connectives 
,∧,∨ and→ from Figure 1 also coincide in both logics, except

for one difference in the table of implication: the value for M(ϕ) = 1 and M(ψ) = −2

changes from −2 to −1 in N5. This change and its result on derived operators is shown

in Figure 2 where the different values are framed in rectangles. As a result, N5 ceases to

→ −2 −1 0 1 2

−2 2 2 2 2 2
−1 2 2 2 2 2
0 2 2 2 2 2

1 −1 −1 0 2 2

2 −2 −1 0 1 2

ϕ ¬ϕ

−2 2
−1 2
0 2

1 −1

2 −2

↔ −2 −1 0 1 2

−2 2 2 2 −1 −2

−1 2 2 2 −1 −1
0 2 2 2 0 0

1 −1 −1 0 2 1

2 −2 −1 0 1 2

⇔ −2 −1 0 1 2

−2 2 1 0 −1 −2

−1 1 2 0 −1 −2
0 0 0 2 0 0

1 −1 −1 0 2 1

2 −2 −2 0 1 2

Fig. 2. Truth tables for N5 that differ from X5.

satisfy (10) and (21) whose role in the reduction to NNF is respectively replaced by the

N5-valid weak equivalences:

∼¬ϕ ↔ ϕ (22)

∼(ϕ→ ψ) ↔ ϕ∧ ∼ψ (23)

The difference between (21) and (23) also reveals the effect on falsification of implication

in both logics. While 〈H,T 〉 =| ϕ → ψ requires 〈T, T 〉 |= ϕ in X5, this is replaced

by condition 〈H,T 〉 |= ϕ in N5. Curiously, although these two logics provide a different

behaviour for ∼ as strong versus explicit negation, they actually have the same evaluation

for that connective, while their real technical difference lies on falsity of implication.

https://doi.org/10.1017/S1471068419000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000267


922 F. Aguado et al.

The reason why N5 does not capture the extended reduct for nested expressions pro-

posed in this paper is that (16) is not valid in that logic. This is because, whenM(ϕ) = 1,

we get M(¬ϕ) = −1 �= −2 = M(¬¬¬ϕ). It is still possible to define N5 operators in X5

as follows:

ϕ
N5→ ψ

def
= ϕ→ ∼ϕ ∨ ψ

N5¬ ϕ
def
= ϕ→ ∼ϕ

using here the X5 interpretation for implication. Analogously, we can also define the X5

operators in N5 in the following way:

ϕ
X5→ ψ

def
= (ϕ→ ψ) ∧ (∼ψ → ¬¬¬ϕ)

X5¬ ϕ
def
= ¬¬¬ϕ

assuming that we interpret implication and ¬ under N5 instead.

An interesting connection between both variants is that the addition of the excluded

middle axiom schemata ϕ∨¬ϕ imposes the restriction of total models 〈T, T 〉 both in X5

and in N5. This means that all atoms and formulas are evaluated in the set {−2, 0, 2},
for which the truth tables coincide in these two logics and actually collapse to classical

logic with strong negation (Vakarelov 1977) introduced in Section 2. This coincidence is

important since equilibrium models (and so, answer sets) are total models.

To conclude the section on related work, another possibility for interpreting a second

negation ‘∼’ inside intuitionistic logic was provided by (Fariñas del Cerro and Herzig 1996)

using a classical negation interpretation. Although the idea seems closer to Gelfond and

Lifschitz’ original terminology for a second negation, it actually provides undesired effects

from an ASP point of view. Classical negation in HT means keeping only the satisfaction

relation ‘|=’ in Definition 3 (falsification ‘=| ’ is not needed) but replacing the condition

for ‘∼’ so that 〈H,T 〉 |=∼ϕ if 〈H,T 〉 �|= ϕ. One important effect of this change is that

HT with classical negation ceases to satisfy the persistence property (Theorem 2). But

perhaps a more important problem from the ASP perspective is that ¬p implies ∼p for

any atom p. Thus, the rule ¬p →∼p becomes a tautology in this context, whereas it is

normally used in ASP to conclude that p is explicitly false by default.

6 Conclusions

We have introduced a variant of constructive negation in Equilibrium Logic (and its

monotonic basis, HT) we called explicit negation. This variant shares some similarities

with the previous formalisation based on Nelson’s strong negation, but changes the in-

terpretation for falsity of implication. We have also introduced a reduct-based definition

of answer sets for programs with nested expressions extended with explicit negation,

proving the correspondence with equilibrium models.

For future work, we will study a possible axiomatisation. To this aim, it is interesting

to observe that the formulas (7)-(9) (in their weak equivalence versions) plus (22) and

(23) actually correspond to Vorob’ev axiomatisation (Vorob’ev 1952a; Vorob’ev 1952b)

of strong negation in intuitionistic logic. As we saw, the role of (22) and (23) in N5 is

replaced in X5 by (9) and (21), so an interesting question is whether this replacement

may become a complete axiomatisation for explicit negation in X5 or intuitionistic logic
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in the general case. We also plan to explore the effect of explicit negation on extensions

of equilibrium logic, revisiting the use of strong negation in paraconsistent (Odintsov and

Pearce 2005) and partial (Cabalar et al. 2006) equilibrium logic, or considering its combi-

nation with partial functions (Cabalar 2011; Cabalar et al. 2014), and temporal (Aguado

et al. 2013) or epistemic (Fariñas del Cerro et al. 2015; Cabalar et al. 2019) reasoning.

References
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