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1. Introduction. In complex affine n-space with a unitary metric, a reflection 
is a congruent transformation leaving invariant all the points of a hyperplane. 
Thus the characteristic roots of a unitary reflection of period p consist of a 
primitive pth root of unity and n — 1 unities. A group generated by n reflec­
tions is conveniently represented by a graph having a node for each generator 
and a branch for each pair of non-commutative generators. For a generator of 
period p, the node is generally marked p, but we find it convenient to omit 
the mark when p = 2, as in the case of real reflections (8, p. 619). Whenever 
two such involutory generators do not commute, the corresponding nodes are 
joined by a branch which is marked with the period of their product, except 
that for simplicity the mark is omitted when this period takes its most pre­
valent value 3. 

Nodes representing commutative generators are not (directly) joined. 
This convention has the happy result that the graph for a (completely) 
reducible group consists of disconnected pieces representing the irreducible 
components. 

For any finite irreducible group generated by n involutory reflections, 
Shephard (29) and Todd (31) showed, in effect, that the generators may be 
so chosen that the graph either is a tree or contains just one triangular circuit. 
Since the abstract group defined by 
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244 H. S. M. COXETER 

R \ = R* = R2
3 = (R2R3)U = (R3R!)Z2 = (RiR2)^3 = E (lu l2, h > 2) 

is infinite (32, pp. 26-29), the three generators represented by the nodes 
of such a circuit must satisfy some further relation. One of the purposes of the 
present paper is to indicate the advantages of using the relation 

(R1R2R3R2)W = E, 

which is equivalent to (R2R3RiR3)m = E or (R3RiR2Ri)TO = E if, as can 
always be arranged, at least two of the /'s take the value 3. Accordingly, we 
complete the graphical symbol by writing m inside the triangle. This agrees 
with the notation of Shephard (29, 370-374) when m = 3; for other values 
of m there is an essential difference, as we shall see. 

The finite irreducible groups generated by three real reflections are the 
symmetry groups of the Platonic solids (26a, pp. 20, 24). We shall exhibit all 
the remaining finite three-dimensional irreducible groups generated by three 
reflections as instances of [1 1 ll]m (see 3.8), which is finite when / and m 
satisfy the inequality 3.7. In particular, [1 1 l4]4 , which is "No. 24" in the list 
of Shephard and Todd (31, p. 301), is interesting because of its connection 
with the new senary extreme form discovered by Barnes (see the preceding 
paper (4)). 

Groups in more than three dimensions are derived by adding "tails" to the 
graph for [1 1 V]m. The graph so obtained enables us to compute certain 
numbers Wi, ra2, . . . , mn which quickly yield both the order of the group and 
the order of its centre. 

Reflections of period p > 2 will be discussed in a subsequent paper, where 
it will be shown that the proper interpretation for a branch marked 4 or 5 is 
not 

(RiR2)4 = E or (RiR2)5 = E 

but 
RiR2RiR2 = R2RiR2Ri or RiR2RiR2Ri = R2RiR2RiR2. 

2. Reflections in the coordinate hyperplanes. In complex affine w-space, 
with the "contravariant" notation (x1, . . . , xn) for coordinates, any finite 
group of affine collineations (i.e., linear transformations) leaves invariant a 
positive definite Hermitian form, say 

2.1 Yl 1 ] <*jk xJ xk (ajk = âkj) 

(6, p. 253). This form determines a unitary metric in which the point 
(x1, . . . , xn) may be usefully regarded as having also covariant coordinates 
(xi, . . . , xn), defined by 

2.2 Xj=J2aJkXk ( j = l , . . . , » ) . 

In this notation, the form 2.1 may be expressed either as 

2.3 ^2 xi%3 
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or as 
2 .4 X ) 2 2 <>>* XJ %k> 

where the new coefficients ajk = dkj are given by 

so that 

2.5 JC;' = 22 a'* x*, â* = 22 «'* **• 
Embedding the affine w-space in a projective n-space, we may define an 

affine reflection (36, pp. 109, 115) to be a homology whose centre is a point 
at infinity, and define a unitary reflection (28, p. 82) to be an affine reflection 
that leaves invariant the form 2.1 or 2.3 or 2.4. 

For a group generated by n unitary reflections, we may choose such a frame 
of reference that the centres of the n homologies are the points at infinity on 
the contra variant axes. Then Rk, the &th generating reflection, leaves invariant 
all the contravariant coordinates xj except xk. Let us suppose that it trans­
forms xk into 

22 Ci%1. 

Since 2.1 is invariant, we have 

akk xkxk + 22 (ajk xj xk + akj xk xj) 

= % Z CiXlJ2 ôix1 + 22 ( a ^ x ' 2 2 Ci*1 + 0*yâ'22 cix%)> 

whence, by comparing coefficients of xj xk (j ^ k), 

Z.b ajk = akk Cj ck -f- a$k ck. 

In the present paper we restrict consideration to cases where Rk is involutory 
(i.e., of period 2), so that 

c* = - 1 

and therefore 2ajk + akkCj = 0 (j 9^ k). Since the vanishing of akk would 
imply ajk = 0 for all 7, we must have akk 9e 0 for each k. Thus 

2.7 cj = - 2ajk/akk (j ^ *), 

and Rk is the transformation leaving invariant every xj except xk, which be­
comes 

Z.o 2-t CJx ~ x x  

&kk &kk 

(cf. 17, p. 403). Thus R^ leaves invariant every point on the hyperplane 

xk = 0. 

In other words, the reflecting hyperplanes are the covariant coordinate 
hyperplanes. 
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Expressing Rk in terms of covariant coordinates, we find 

0 o xj — 2Li a j i x — Z~i &jix ~ r ctjk\x ~~ / 

— X j 

akk 

(14, p. 182). Thus the matrix for the covariant transformation is the transpose 
of the matrix for the contravariant transformation (as it clearly must be for 
any transformation of period 2). 

3. Groups in unitary 3-space. In the case of the ternary Hermitian form 

3.1 xlxl + oc2x2 + xzx* — \{x2xz + xzx2 + xzxl + xlxz + cxlx2 + cx2xl) 

(which is semidefinite when c = 1), we have 

> # 2 3 — # 3 1 — ~~ 2» ^'12 — — 2C' 

The three reflections, expressed as matrices, are 

1-1 c 1\ / l 0 0\ 
3.2 Ri = I 0 1 0 ] , R2 = L - 1 l ) , R3 

\ 0 0 1/ \ 0 0 1/ 

We may easily verify that these three transformations Rk are of period 2, 
while their products R2R3 and R3R1 are of period 3. Certain abstract definitions 
obtained by Shephard and Todd (31, p. 299) suggest that we may have a 
sufficient set of defining relations for the abstract group {Ri, R2, R3} as soon 
as we have specified also the periods of the products R1R2 and RiR2R3R2-
Since 

R1R2R3R2 = R1R3R2R3 and R2R3R1R3 = R2R1R3R1, 

the relation (R1R2R3R2)ro = E can be replaced by (R2R3RiR3)w = E or by 
(R3RiR2Ri)w = E. 

To find how the periods of RiR2 and R1R2R3R2 depend on c, we observe 
that the characteristic equations for 

( cc — 1 — c c + l \ Ice + c + c — 1 — c\ 

c - 1 1 I, RxRaRs^ = I c+1 0 - 1 
0 0 1 / \ c+1 - 1 0 / 

are respectively 
(X - 1) {(X + 1)2 - cc\} = 0, (X - 1){(X + l ) 2 - (c+ l ) ( c + 1)X} = 0. 
Comparing these with the characteristic equation 

'1 0 0̂  
0 1 0 

a 1 - 1 

"-W ( X + l ) 2 - ^2 cos-^j X = 0 
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for an ordinary rotation through 2T/P, we see that the reflections 3.2 satisfy 
the relations 

3.3 

if 

3.4 

i.e., if 

3.5 

R*2 = (R2R3)3 = (R3R1)3 = (R1R2V = (RiR2R3R2)m = E 

cc = 4 cos2 -7 , (c + 1) (c + 1) = 4 cos2 — , 

c — 2 cos Tr/l-e7ri,s, where 5 is given by 

2 cos — = I 4 cos2 4 cos2 — — 1 ) / ( 2 cos — J . 

The most significant cases are worked out in Table I on page 269, where we 
use the abbreviations 

V5 + 1 •1 + n / 3 
2 2 

(so that r2 - r - 1 = 0, co2 + co + 1 = 0). 

The form 3.1, having determinant 

3.6 

a n #12 #13 

#21 #22 ^ 2 3 
1 

— 8 

#31 #32 #33 

2 - £ - 1 

- c 2 - 1 

- 1 - 1 2 

= l{5-cc- (c+l)(c + l)} 

(• § I 5 — 4 cos 2^r 

7 4 z cos m) ' 

is positive definite if 

i.e., if 

3.7 

. 2 7T . . 2 7T ^ 

4 cos -7 + 4 cos — < o, 
l m 

2 cos -— + 2 cos — < 1. 
/ m 

When / (or m) has the value 3, m (or /) is unrestricted. The only other possibility 
is that / (or m) is 4 while m (or /) is 4 or 5. In each case, the results of Shephard 
and Todd will enable us to establish the sufficiency of 3.3 for an abstract 
definition of the group. 

In the graphical notation of §1, the abstract group 3.3 is 

3.8 
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for which a convenient abbreviation is [1 1 1 l]m, with the / omitted when / = 3. 
(We place the first node at the top, the second at the bottom, and the third 
on the right.) 

The substitution R2 <-> R2R3R2 = R3R2R3 shows that / and m are inter­
changeable : 
3.9 [1 1 V]m~ [1 1 lm]1. 

In the case of [11 lw]3 , we can replace (R1R2R3R2)3 = E or (R2R3RiR3)3= E 
by the equivalent relation 

(R3R1R2)2 = (R1R2R3)2, 

which enables us to identify this group with Shephard's [1 1; l ] m or Todd's 
G(m, m, 3) (29, p. 374; 31, p. 277). Thus Shephard's 

p* is our or 

[ l , l ; l ] " [1 1 I™]* [11 If, 

which is 3.3 with / = 3. It follows that the order of [1 1 l]m is 6m2. The first 
two values of m yield symmetric groups: 

[1 1 l ] i ; 

[1 1 i p : 

©3, generated by (2 3), (3 1), (1 2); 

: ©4, generated by (14), (24), (3 4). 

Since the relations 3.3 with / = 1 or 2 imply m = 3, there are no other groups 
with I or m = 1 or 2. 

The substitution R3 <-» R1R3R1 enables us to express [1 1 l4]4 in the form 

R*2 = (R2R1R3R1)3 = (R3R1)3 = (R1R2)4 = (R2R3)4 = E, 

which is No. 24, of order 336, in the list of Shephard and Todd (31, p. 299). 
Similarly [1 1 l5]4 is No. 27, of order 2160. Thus the relations 3.3 suffice for 
an abstract definition in every case. 

4. Extension to higher spaces. In accordance with the graphical sym­
bolism described in §1, we derive from [1 1 V]m a group 

[p qrl]m~ [qp rl]m 

in unitary (p + q + r)-space, by adding "tails" of p — 1, q — 1, r — 1 
branches to the three nodes in 3.8. 

The isomorphism 3.9 is easily seen to be maintained when we add a tail 
to either or both of the first two nodes (which are joined by the marked 
branch): 
4.1 [p q ll]m~ [p q lm]1. 

https://doi.org/10.4153/CJM-1957-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-032-2


UNITARY REFLECTION GROUPS 249 

When I = 3, we have the group 

[p q r]m, 

which involves the three numbers p, q, r symmetrically. 
As this notation scarcely differs from Shephard's (29, p. 371), we can make 

use of his results in order to interpret the graphical symbol both abstractly 
and geometrically. For instance, the group 

defined by 

4.2 

[1 1 2l]\ 

Rl = (R2R3)3 = (R3Ri)3 = (R1R2)' = (R1R2R3R2)3 

= (RxR4)
2 = (R2R4)2 = (R3R4)3 = E, 

is generated by reflections in the covariant coordinate hyperplanes when the 
metric is determined by the form 3.1 with the extra terms 

X 4/Ç54 i //v-3/yJ4 _ |_ ^>4/y;3\ 
2 V 1 ^v »t/ y . 

In Shephard's notation (29, p. 379), this group of order 24/3 is 

[1 1;2]'. 

Extending the tail, we have [1 1 (n — 2)z]3, which is his [1 1; n — 2]\ of order 
I71-1 nl. In fact, all his graphical symbols (29, pp. 371, 374, 379, 382, 383) 
can be amended by the following simple modification. Whenever he draws a 
triangle with a number (m or 4) inside, this inner number should be changed 
to 3. 

Let 2~p~Q~r f(p, q> r) denote the determinant of the form corresponding to 
[P q rl]m; for instance, 

/ ( I , 1,2) = 

2 - c - 1 0 

-c 2 - 1 0 

- 1 - 1 2 - 1 

0 0 - 1 2 

6 — 4 COS — — 8 COS — 
/ m 
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We easily find (cf. 17, p. 426) the recursion formulae 

f(p, g, r) = 2f(p -\,q,r) - f(p - 2, q, r) 

= /(<Z> P, r) 

= 2f(p,g,r - 1) -f(j>,q,r- 2), 

with the initial values 

/ ( l , 1, 1) = 5 — 4 cos2 -,— 4 cos2 — , 

7(1, 1,0) = 4 s i n 2 j , /(£,(), r) = p + r + 1, 

whence 

/ (£ , <?, r) = (/> 4- 1) (g + 1) + r - 4pq(cos2 j + r cos2 - ) 

(cf. 29, p. 372). The necessary condition 

f(p, g, r) > o 

yields the finite groups listed in Table II. The identification with Shephard's 
list can be completed as follows. 

Setting / = 3, Ave see that [p g r]m occurs whenever 

4.3 p-\-q + r-\-l— 4pgr cos — > 0. 
m 

In particular, we have [p q r]2 for all values of p, q, r; but this is merely an 
unusual way of generating <&p+Q+r+i, the symmetry group of the regular 
simplex ap+q+r in real (p + q + r)-space. For instance, 

[2 1 3? 

is ©7, generated by the transpositions 

(1 5), (1 4), 
(3 4), (3 6), (6 7). 

(2 4), 

The criterion 4.3 shows that, when m > 2, the numbers p, q} r cannot all be 
greater than 1. Thus every such finite group (with / = 3) is expressible as 

4.4 [p q l]m ~ [p g \m]\ 

which we shall usually write with the 1 in the middle: [p 1 q]m. It is evidently 
Shephard's [p l;q]m (29, p. 373). 
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T h e isomorphism 4.4, which is a special case of 4.1 , has an interesting counter­
par t for [1 1 rl]'s. Consider, for instance, [1 1 2Z]3, defined by 4.2. Instead of 
Ri , we may introduce a new generator 

Ri = R4R3R1R3R4 
by writing 

Ri = R3R4R1R4R3. 

The consequent relations 

Rx
2 = R2

2 = R2
3 = R2

4 = (R 2 R, ) 3 = (R 4 R\) 3 

= ( R s R ^ R ^ R s ) ' = (RiR 2 ) 3 

= ( R ^ ) 2 = (R 2 R 4 ) 2 = (R3R4)3 = E 

are natural ly represented by the graphical symbol 

T T 

I • 
[11 1 1']. 

More generally, an al ternative symbol for [1 1 rl]z (r — n — 2) consists of 
an n-gon with the mark / inside to indicate any one of n equivalent relations 
such as 

( R 1 R 2 R 3 . . . R „ R H - I . . . R 2 ) , = E. 

When n = 3, we simply have [11 \]1 as an alternative symbol for [1 1 I*]3. 

5. C o m m u t a t o r s u b g r o u p s . If the words in the defining relations for a 
given abs t rac t group @ are such t ha t each involves an even number of letters, 
then every element is either "even" or "odd" according to the pari ty of the 
number of letters occurring in any expression for it. The "even" elements form 
a subgroup © + of index 2. 

When © is [p q rl]m, one possible set of p + q + r — 1 generators for © + 

is provided by the products R^RA; of period 3, represented in the graph by the 
unmarked branches. (We may ignore the branch marked /, even when / = 3.) 
Any such product is a commuta tor : 

R^Rfe = R&RjRfcRi = R*: Ri R^Ry-

Moreover, any commuta tor 

( R 7 : . . . R , ) ( R A : . . . R,-)(R, . . . R , ) (R. / . • • R/,:) 

is the product of an even number of R's. Hence 

The commutator subgroup of [p q rl]m is [p q rl]m+. 
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In particular, the commutator subgroup of [1 1 ll]m is [1 1 l*]m+, whose 
generators 

Si = R1R3, S2 = R3R2 

satisfy the relations 

5.1 Sx3 = S2
3 = ( S A ) l = (Sr'Sa)"1 = E. 

These relations suffice for an abstract definition, since we can reconstruct 3.3 
by adjoining to 5.1 a new element T, of period 2, which transforms both the 
S's into their inverses (and then defining Ri = SiT, R2 = TS2, R3 = T). 
Thus 
5.2 [1 1 I ' ] » H - ~ (3,3 I / > m ) 

in the notation of (12, pp. 77-85). (In order to interchange / and m, we merely 
have to replace one of the S's by its inverse.) 

Setting / = 3, we recognize [1 1 l ] w + as a group of order 3m3 considered by 
Edington (21, p. 208). This is generated by the permutations 

Si = (3m 1 2)(3 4 5) . . . (3m - 3 3m - 2 3m - 1), 
S2 = (2 3 4) (5 6 7) . . . (3m - 1 3m 1) 

which yields, for [1 1 l]m, 

Ri = (1 2)(4 5) . . . (3m - 2 3m - 1), 
R2 = (2 3)(5 6) . . . (3m - 1 3m), 
R3 = (3 4) (6 7) . . . (3m 1). 

A more interesting case is 

5.3 [1 1 14]4+ ~ (3, 3 I 4, 4) ~ LF(2, 7) 

(12, pp. 83-84). The generators 

Si = (0 1 « ) (2 6 4) = \TZr~) (mod 7) 

S2 = (0 2 3H1 6 5^ = (4:x + 2) (mod 7^ 

are transformed into their inverses by 

(0 6)(1 2) (3 5) (4 » ) = ( l ^ T ï ) (mod 7). 

Hence in this case we have an inner automorphism, and 

5.4 [1 1 l 4 ] 4 ^ g2 XLF(2, 7). 

6. Exponents and invariants. By 2.9 with akk = 1, the reflection Rk (in 
covariant coordinates) is 

x'j = Xj — 2ajk xk (j = 1, . . . , n) 

or 

x, = x'* — 2a Jk xi. 
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Since this is the same expression as for real reflections (16, pp. 766-767), the 
characteristic equation for the product 

is again 

6.1 
i(x + D 

#21 

0 n l 

Ri R 2 . . . Rw 

<2l2A &13A 

i(X + 1) a23 

&n2 0>n* 

a in\ 

HA + 1) 

(25, p. 20). In the case of [1 1 ll]m, given by 3.1, we take a i2 = 
while the remaining ajk (j ^ k) are all — f, so that the equation is 

2^, # 2 i — — 2^1 

6.2 
X + 1 

— c 
- 1 

-c\ - X 
X + 1 - X 

- 1 X + 1 
0 

X3 - (cc + c - 1) X2 - (cc + c - 1) X + 1 = 0. 

This is unchanged when c is replaced by — c — 1 ; therefore, by 3.4, it involves 
/ and m symmetrically. 

In the case of [1 1 l]m
y we have c = e2iri/m, the equation reduces to 

X3 - c\2 - cX + 1 = 0 

(31, p. 295, with c instead of 0"1), and the roots are 

c, ±c*. 

In the case of [1 1 1 *]4, we have (c + 1) (c + 1) = 2, and the equation reduces 
to 

X3 + cX2 + c\ + 1 = 0 

with c = | ( —1 + i\ /7) when / = 4, and c = cor when / = 5 (31, p. 296). 

Similarly, we can reconstruct the characteristic equation for RiR 2 . . . Rw 

when n > 3: 

for [1 1 2]4, 
for [2 1 2]3, 
for [2 1 3]6, X6 

X4 - tX3 - X2 + i\ + 1 = 0; 
X5 - coX4 + coX3 + o>X2 - wX + 1 = 0; 
coX5 + coX4 - X3 + coX2 - coX + 1 = 0 

(31, p. 298). The last equation arises in the form 

X+l 
- 1 

0 
0 
0 
0 

- X 
X+l 

— w 
- 1 

0 
0 

0 
— coX 

X+l 
- 1 

0 
0 

0 
- X 
- X 

X + l 
- 1 

0 

0 
0 
0 

- X 
X+l 

- 1 

0 
0 
0 
0 

- X 
X + l 

= o, 
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which is the na tura l extension of 6.2 (with c = co) from [1 1 I ] 3 to [2 1 3]3 . If 
the equat ion for [p q rl]m is fr(\) = 0, we can use the recursion formula 

/ r(X) = ( X + l ) / r . ! ( X ) - X / r _ 2 ( X ) . 

By taking p, q, r in such an order t h a t q = 1, we may name the n generators 
(as in the above example) in the order of a Hamil tonian pa th (14, p . 8 ) . W e 
s ta r t a t the t ip of the first tail, pass to the second node (where there is no 
second tail) , and proceed along the third tail. 

In the case of [ 1 1 (n — 2)z]3 , we have c = —b — 1 where b = e2iri/l, the 
equation is 

(X - b) (Xn~l - 6) = 0 

(31, p. 295, with b instead of 6~l), and the roots are 

e"-1, e'"1, e2l~\ . . . , e ^ » 1 " 1 , 

where e = e
2iril^"l)l. 

In each case, to compute h, the period of RiR* . . . Rw, we observe t ha t 
the characterist ic roots are powers 

emj (j = 1, 2, . . . , n\ mi < m2 < . . . < mn) 

of a primitive hth root of uni ty , e = e2iri/h. Our choice of the positive value 
of s in 3.5, combined with the " n a t u r a l " order of Ri , R2, . . . , R„. in the 
chosen product , has the effect t h a t 

6.3 mn = h — 1. 

(By reversing either of these conventions we would have had mx = 1 instead 
of 6.3. In the case of real reflections, this impor tan t distinction disappears, as 
we have both wi\ = 1 and mn = h — 1.) T h e actual values are given in 
Table II on page 270 (cf. 16, p . 771). I t was proved by Shephard and Todd 
(31, p. 289) t h a t any finite group of uni ta ry t ransformations which possesses 
a basic set of n invar iant polynomial forms is a group generated by un i ta ry 
reflections. Moreover, when the n invar iant forms are chosen so as to have 
the smallest possible degrees, the product of the degrees is equal to the order 
of the group. They observed (31, pp. 283, 294) t h a t these degrees are jus t 
the numbers 

m j + 1 ( j = 1, 2, . . . , n). 

Therefore the Jacobian / of the n forms has degree £ m ^ , which is equal to 
the number of reflections in the group (31, p . 290). Since J changes sign 
when operated on by a reflection of period 2, it follows t h a t J factorizes into 
£ m ; linear forms which, when equated to zero, give the Y^mj reflecting 
hyperplanes (30, p . 47). 

For instance, the group [1 1 l 4 ] 4 has exponents m\ — 3, m2 = 5, m3 = 13. 
Klein (26, pp. 446-448) described invar iants / , V , C, of degrees 4, 6, 14, 
and observed tha t their Jacobian factorizes into 21 linear forms which, when 
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equated to zero, give the axes of 21 harmonic homologies transforming the 
plane quartic curve / = 0 into itself. 

Incidentally, we have the simple expression 

6.4 (wi + 1) (w2 + 1) . . . (mn + 1) 

for the order of the group. 

7. Central quotient groups. Another interesting property of the degrees 
nij + 1 is that their greatest common divisor 

k = (wi + 1 , . . . , mn + 1) 

is equal to the order of the centre of the group. In fact, since 

Mj = —1 (mod k), 

the characteristic roots of the element 

(Rl . . . RnY/k 

are 
e = e J = e , 

• 

i.e., they are all equal, which means that this is the central transformation 
g-2r</* j f 0f period k (31, p. 280). 

By regarding the coordinates Xj or xj as being homogeneous, we pass from 
complex affine w-space to complex projective (n — 1)-space. Instead of a 
group @ generated by involutory reflections, we now have the central quotient 
group 

generated by harmonic homologies (31, p. 275). Its abstract definition is given 
by the graphical symbol along with the single extra relation 

7.1 (Ri . . . R„)*'* = E. 

In the complex projective plane, we have two groups: 

[ l l l 4 ] 7 e 2 ^ Z ^ ( 2 , 7), 

defined by 3.3 with / = m = 4 and (RiR2R3)7 = E (cf. 5.3, 5.4), which is 
Klein's collineation group of order 168, containing 21 harmonic homologies 
(26, p. 440); and 

[1 1 l5]4/6e ^ Sïe, 

defined by 3.3, with / = 5, m — 4 and (R1R2R3)5 = E, which is Valentiner's 
collineation group (35, p. 227), of order 360, containing 45 harmonic homolo­
gies. When the latter is represented as the alternating group of degree six 
(37), the homologies appear as the double transpositions; e.g., the generators 
may be taken to be 

Ri = (1 3) (4 6), R2 = (3 4) (5 6), R3 = (2 3) (5 6). 
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In complex projective 3-space, we have 

[112]V64 , 

defined by 

Rj = (R2R3)3 = (R3R1)3 = (R1R2)3 = (R1R2R3R2)4 

= (R1R4)2 = (R2R4)2 = (R3R4)3 = (R1R2R3R4)5 = E, 

which is Bagnera's collineation group (1, p. 33) of order 1920, containing 40 
harmonic homologies. This leaves invariant the Maschke quartic surface 

x4 + 3>4 + zA + /4 - I2xyzt = 0 

(27, p. 504; 20a), and a configuration consisting of five tetrahedra (29, p. 382), 
namely the tetrahedra (ab), (ac), (ad), (ae), (af) of Hudson (24, p. 43). 

In complex projective 4-space, we have 

[2 12P /S2 , 

which is Mitchell's collineation group of order 36-6!, containing 45 harmonic 
homologies whose centres are the nodes of the Burkhardt primal (2; 33; 34). 
Since the word 

(RXR2R3R4R5)9 

involves an odd number of letters, this element, which occurs in [2 1 2]3 as 
the "central inversion", does not belong to the commutator subgroup 
[2 1 2]3 + ; hence the central quotient group 

[2 1 2 ] 3 / g 2 ~ [2 1 2]3+ 

is the simple group of order 25920, and [2 1 2]3 is its direct product with (£2. 

In complex projective 5-space, we have 

[2 1 3 ] 3 /S 6 

(29, p. 375), which is Mitchell's collineation group of order 18-9!, containing 
126 harmonic homologies whose centres form the Mitchell-Hamill configuration 
(23, p. 402). Its commutator subgroup is the simple group of order 9-9!: 

[2 1 3 ] 3 V £ 6 ^ # 0 ( 4 , 3 2 ) ~ P c / 4 + ( F 9 ) 

(23, p. 451; 19, p. 310; 20, p. 48). 

8. Infinite groups. When the form 2.1 is not definite but only semi-
definite, we have an infinite group generated by reflections 2.9 in n hyperplanes 
Xjc = 0 forming an (n — 1)-dimensional simplex. In fact, since det(ajk) = 0, 
there exist constants 21, . . . , zn such that 

2 2 z° ajJc = 0 

and therefore, by 2.9, 

Z) z3 x'j = 2 z° xi-
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Thus we may regard the group as operating in the {n — 1)-space 

2 3 zJ %j = 1, 

in which the semidefinite form determines a unitary metric, and the R^'s 
appear as reflections in the simplex formed by the sections of the coordinate 
hyperplanes. 

Adapting 3.7, we see that [1 1 V]m is infinite when 

2 cos -7- + 2 cos — = 1. 
/ m 

When / = 3 and m = oo, this is the group 

RjS = (R2R3)3 = (RsRi)3 = (RiR2)3 = E 

generated by real reflections in the sides of an ordinary equilateral triangle 
(14, p. 78). The only other two-dimensional instance is 

[1 1 1 4 ] 6 ~ [1 1 l6]4, 

whose commutator subgroup (3, 3 | 4, 6) is already known to be infinite 
(12, p. 95; 13, p. 250). 

The group [111 z ] 3 , of order 6/2, defined by 3.3 with m = 3, has two infinite 
extensions 

given by the extra relations 

R2o = (R0R1) 3 = (R0R2) 3 = (R0R1R2R1) 3 = E , 

K\ = (R!R4)2 = (R2R4)2 = (R3R4)4 = E, 

respectively. When / = 2, they reduce to the real groups 

• and [3, J] 
(14, pp. 84, 85). More generally, [1 1 rlY is a subgroup of the infinite group 

(but on p. 265 we shall see that, as a geometrical group, this is discrete only 
if / = 2, 3, 4 or 6). 
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Similarly, the finite groups 

[1 1 l4]4 , [2 1 l4]3, fl 1 2]4, [2 1 3]3 

have infinité extensions 

[1 1 24]4, [2 1 24]3, [1 1 3]4, [2 1 4]8. 

The last three were discovered by Shephard (29, pp. 382, 383, 381). But we 
must remember to change the mark inside his triangles from 4 to 3. His scheme 
does not include our 

whose determinant is 

2 -c - 1 0 

- c 2 - 1 0 

- 1 - 1 2 - 1 

0 0 - 1 2 

[1 1 24]4, 

À{6 - ce- 2(c + l)(c + 1)! 

(since cc = (c + 1) (c + 1) = 2). 

9. Orthogonal coordinates. By working out the cofactors in the 
determinant 3.6 for [1 1 1 l]m, we find the adjoint form of 3.1 to be a numerical 
multiple of 

9.1 3(xi^i + x2x2) + (4 — cc)xix-i 
+ (c + 2) (x2xz + XzXi) + (c + 2) (x3x2 + XiX3) 

+ (2c + l)x!X2 + (2c + l)x2X2. 

(See Table I, on page 269, for the values of c.) 

In the case of [1 1 l ] w , where 1 = 3 and 

9.1 may be expressed as 

(xi + cx2 + xz) (xi + cx2 + xz) + (exi + x2 + xz) (cxi + x2 + xz) 
+ (xi + x2 + xz) (xi + x2 + xz). 

In terms of orthogonal coordinates 

§1 = Xi + CX2 + Xz, 2̂ = CXi + X>2 + Xz, f 3 = Xi + X2 + Xz, 

the form is £i£i + £2̂ 2 + Ç3I3, and the reflecting planes are xk = 0 where 

https://doi.org/10.4153/CJM-1957-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-032-2


UNITARY REFLECTION GROUPS 259 

9.2 (1 - c)xi = c(%2 - £3), (1 - c)x2 = £3 - fi, (1 - c)x* = £1 - c£2, 

so that the reflections themselves are : 

Ri, tti,€2,£8) -» (Si, £s, {2); 
R2, (€1, €2, fa) -> &, £2, £1); 

Ra, (€1, €2, €s) -> (^2,cfi,f8) 

(31, pp. 276, 295). 

In the case of [1 1 lz]3 , we have 

c = -b - 1, 6 = e2^/z, 

and the form 9.1 is 

3 (#1X1 + x2x2) + (6 — 1) (b — l)x3x3 

— (S — 1) (x2x3 + x3x"i) — (b — 1) (x3x2 + XiX3) 
- (2b + l)xxx2 - (26 + l)x2xi 

= (xi — x2) (xi — x2) + (bxi — x2) (bxi — x2) 
+ {bxi — x2 + (b — l)x3} {6x1 — x2 + (5 — l)x3}. 

In terms of orthogonal coordinates 

£1 = &(ffi — x2), £2 = 6x1 — x2, £3 = &#i ~ x2 + (b — l)x3, 

the reflecting planes are xk = 0 where 

9.3 (1 - 6)*i = 6Ç1 - {2, (1 - 6)x2 = £1 - ?2, (1 - 6)^8 = & - £s, 

so that the reflections themselves are : 

Ri, (Éi,É2,É8) -> (6f2, 6Çif €s) ; 
R2, (£1, £2, £3) —> (£2, £1, £3) ; 

R3, (fl,f2,{8) -> (€l, f8, f2). 

The resemblance of 9.2 and 9.3 illustrates the fact that [1 1 1 l]m and [1 1 lm]l 

are different ways of generating the same group. 

In the case of [1 1 l4]4 , we have 

9.4 c = K - l + W7) = P + 02 + P\ p = ^ i / 7 , 

so that c and c are the roots of the equation 

9.5 x2 + x + 2 = 0, 

and the form 9.1 is 

3(xiXi + x2x2) + 2x3X3 — c2(x2x3 + X3X1) 
— C2(X3X2 + X1X3) — (C — C) (XiX2 — X2Xi) 

= M^i^i + (xi + cxz) (^1 + ex2) 

+ (c2Xi + c2x2 — 2x3) (£2Xi + c2x2 — 2x3)}. 

In terms of orthogonal coordinates 
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?1 = Xi, £2 = #1 + CX2j (-3 = C2Xi + C2X2 — 2X3, 

the reflecting planes are xk — 0, where 

9.6 xi = £i, x2 = J c ( - £ i + £2), x3 = è ( - S i + ^2 - fa), 

in agreement with Shephard and Todd (31, p. 295), whose a and Xj are our 
— c and £.,. The reflections themselves are: 

Ri, reversing the sign of £i; 

R2, interchanging £x and £2; 

R3, £2 = ic(f ! + f8), 
£i = i ( - f i + c{2 + fs). 

In terms of the £'s, the quartic invariant (Klein's / , mentioned near the 
end of p. 254) is 

9.7 £ + £ + £ + 3c (f 1 f î + £ g + é û) • 

One can soon verify that this is transformed into itself not only by Ri and R2 

but also by R3 (cf. 22, p. 338 with b/a = 3c). 
The remaining groups may be treated similarly, but the details are omitted 

because the results have all been obtained another way by Shephard (29, 
p. 373) and Todd (31, pp. 296, 298). 

10. Polytopes and honeycombs. Let 0 denote the origin, i.e., the point 
of intersection of the hyperplanes of the generating reflections Ri, . . . , Rn. 
Clearly, 0 is invariant, and the images of any other point are all equidistant 
from 0. In particular, let P be a point on the line of intersection of n — 1 of 
the n hyperplanes, say all except the &th. Then P is invariant under the 
subgroup generated by all the R's except Rk; but Rk transforms P into another 
point Ç, and the whole group transforms P and Q into the vertices of a con­
figuration called a polytope (28, p. 83) (or, when n = 2 or 3, a polygon or a 
polyhedron). Any subset of the R's (including Rk) generates a subgroup which 
transforms P into the vertices of a sub-configuration called an element of the 
polytope (e.g., a side of the polygon, or an edge or face of the polyhedron). 

Similarly, when we have an infinite discrete group in (n — 1)-space, 
generated by reflections Ri, . . . , Rn in n hyperplanes forming a simplex, as 
in §8, the images of the &th vertex P of the simplex are said to form a honey­
comb (29, pp. 364, 375). The &th reflection R* transforms P into another 
vertex Q of the honeycomb, and the subgroup generated by the remaining 
n — 1 R's transforms Q into the vertex figure at P. 

When the group is symbolized by a graph, the polytope or honeycomb 
is indicated by drawing a ring round the &th node (14, p. 87; 29, p. 375), 
and an element can be found by deleting one or more nodes (along with any 
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branches that occur there). Adapting the notation of Coxeter (9, p. 331) 
and Shephard (29, p. 378), we let 

(pPqrlr, (Pq«rl)m, (Pqrr
l)m 

denote the polytopes (or honeycombs) indicated by ringing the tip of the 
first, second, or third tail. Of course, 

(PP qrT = (<Z Pv rlY\ 

and there is complete symmetry when / = 3 (in which case the / is omitted). 
The same reasoning that led to 3.9 and 4.1 shows that the two polytopes 

iPv <Z 1 0 " , (PP q lm)1 

have the same vertices; in fact, they have the same 7-dimensional elements 
for j = 0, 1, . . . , p. Similarly, (li 1 rl)z has the same vertices and edges as 

(U 1 . . . D ' , 

whose graphical symbol consists of an n-gon (n = r + 2) with one vertex 
ringed (see p. 251). 

To compute the number of vertices of (pp q rl)m or of (p q rT
l)m, as in Table 

III , we divide the order of the group [p q rl]m by the order of the subgroup 
that leaves one vertex invariant. This subgroup is given by reducing p to 
p — 1, or r to r — 1, respectively. To make this rule apply to (p l i rl)m or to 
(p q liz)m, we have to interpret the symbols 

[p 0 rl\m, [p q 0<]m. 

We see from the graph that [p 0 rl]m (including [p 0 r]m or [p r 0]m as the 
special case when / = 3) is the symmetric group 

[3, 3, . . . , 3] ~ ©H-H-I, 

represented by a simple chain of p + r — 1 unmarked branches. For instance, 
the six-dimensional polytope (2 l i 3)3 has 

^ = 54432 
o! 

vertices. Similarly, by removing the ringed node from 

(2 1 li4)3, 

we see that [2 1 04]3 is the extended octahedral group [3, 4], of order 48 
(14, pp. 82, 85). 
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The only remaining case of [p q 0l]m with I > 3 is [1 1 0l]m, which is the 
dihedral group [/], of order 2/, defined by 

Rl = R2
2 = ( R ^ ) ' = E. 

This is the case of the polyhedron 

10.1 <* 

(l l UT, 
whose faces are equilateral triangles. The initial vertex P is taken on the line 
of intersection of the first two reflecting planes ("mirrors"). The third reflec­
tion transforms P into another vertex Q, such that PQ is an edge (symbolized 
by the ringed node alone). The first two reflections, whose product is of period 
/, transform PQ into 2/ edges PQ, PQf, etc. (see Fig. 1). Hence this is a poly­
hedron of type {3,21}: the faces are triangles such as PQQ'', and every vertex 
belongs to 21 of them. By 6.4, the order of the group [ 1 1 1 l]m is 

g = (nti+ 1) (ra2 + 1) (mz + 1), 

where Wi, m2, m$ are computed from the roots e27rimi/h of the equation 6.2 
(see Table II). Since there is one element of the group for every half-edge of 
(1 1 liOw, this polyhedron of type {3, 21) has \g edges, \g triangular faces, 
and g/2l vertices. 

Q 

FIG. 1: A face PQQ' of (1 1 li1) 
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When / = 2 (and therefore, by 3.3, m = 3), we have the octahedron {3, 4}. 
In other cases we may obtain a real interpretation by regarding the real and 
imaginary parts of the £'s as Cartesian coordinates in a Euclidean space of 
twice as many dimensions. When so interpreted, (1 1 IV)™ appears as a 
regular skew polyhedron (11) in Euclidean 6-space. Shephard (28) did not 
include it in his list of regular complex polyhedra because, as we shall see in 
§ 11, the symmetry operation interchanging two adjacent faces is not, in 
general, a unitary reflection. 

When / = 3 we have (1 1 li)w , and 9.2 shows that the first two mirrors 
meet along the line £i = £2 = £3, so we take P to be the point (1, 1, 1). Apply­
ing the reflections, we find Q to be (c, c, 1), and Qr (1, c, c) ; altogether we obtain 
the m2 points 

(c*S â\ c*«), c = e2"i/m, ki + k2 + k* = 0 (mod m). 

Topologically, (1 1 l i)w is a triangulation of the torus, namely the regular 
map 

|3, 6U,o 

(15, p. 421), which thus has a metrical realization as a skew polyhedron in 
Euclidean 6-space. Fig. 2 shows the case m = 4, with the values of k\k2k^ 
marked at each vertex (so that P , Q, Q' are 000, 130, 031). 

000 

FIG. 2: (1 1 h ) 4 = {3, 6}4(o. 

Similarly in n dimensions, reflections in the n hyperplanes 

£2 = £3, £3 = É4, . . . , fn = Éi, Éi = <& (c = e***"*) 

generate the group 
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[ 1 1 . . . l]m, 

which transforms the point (1, 1, . . . , 1) into the mn~l points 

(c*\ c\ ... , ckn), I > , - ^ 0 (mod m). 

These were shown by Shephard (29, p. 378) to be the vertices of the "fractional 
7 poly tope" 

a i m \ 3 1 m o 

i 1 r ) = * 7n , r = n - 2. 
We now recognize the same mn~l points as the vertices of the new polytope 

(li 1 . . . l )w , 

whose (n — 1)-dimensional elements are the various truncations of the 
regular simplex an_i, just as they are in the limiting case of the real honey­
comb 

( h i . . . i r = *w_ih 

(7, p. 366; 14, p. 205, footnote). 

In the case of (1 1 l i ' )3 , 9-3 shows that the first two mirrors meet along the 
line £i = £2 = 0, so we take P to be (0, 0, 1) and obtain the 3/ points whose 
coordinates are the permutations of 

(b\ 0, 0), b = e1^'1, k = 0, 1, . . . , / - 1 

(29, p. 377). Accordingly, (1 1 li*)3 is the "generalized octahedron" /33. 
Similarly in n dimensions, reflections in the n hyperplanes 

£i = b%2, £i = £2, £2 = £3, • • • , £w-i = in 

generate the group 
[1 1 rl)\ r = n - 2; 

and the nl points obtained by permuting 

(b\ 0, 0, . . . , 0) (k = 0, 1, . . . , / - 1) 

are the vertices of the generalized cross polytope 

-€> 

(i 1 riy = A! 

(10, p. 287). When / = 2, 3, 4 or 6, this polytope $l
n is the vertex figure 

of the honeycomb 

"® 
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which is derived from the origin by applying the group [1 1 rl]s along with the 
{n + l)th reflection 

(£i, . . . , fn_i, £n) —> (£i, . . . , £n_i, 1 — fn). 

The reason for restricting / to the "crystallographic" values 

2, 3, 4, 6 

may already be seen when n = 1 (although the graphical symbol applies only 
when n > 3). The one-dimensional honeycomb consists of the points (£) 
whose single coordinate £ is derived from 0 by the two operations of multiply­
ing by b and subtracting from 1. In the Argand plane, these operations appear 
as rotation through 2T/1 about the origin and reflection in the line x = J. 
The group so generated is not discrete when 1 = 5, nor when / > 7. (The 
proof, ascribed to Wigner in (14, p. 65), is really due to Barlow (3, p. 17).) 
When 1 = 2, the values of £ are the real integers; when / = 4 they are the 
Gaussian integers x + yi\ when / = 6 they are the Eisenstein integers u + vco; 
when 1 = 3 they are two-thirds of the Eisenstein integers, namely those 
for which u + v = 0 or 1 (mod 3) (14, p. 64). The corresponding honeycombs 
in the Argand plane are 

{co}, {4, 4 } , { 3 , 6 } , { 6 , 3 } . 

For greater values of n, we have points (£i, . . . , £n) where each of the n 
coordinates is restricted to the appropriate one of the four classes. The corres­
ponding real honeycombs are the ''rectangular products" 

{oo }» = ôn+1, {4, 4}* = ô2n+u J3, 6 p , {6, 3}* 

(7, pp. 353-354; 14, pp. 123-124). 

Returning to unitary 3-space, let us investigate the polyhedron 

(i i h4)4, 

for which 9.6 yields the line £i = £2 = 0 again. To avoid fractions, we now 
take P to be (0, 0, 2), whose images are the 6 + 12 + 24 = 42 permutations 
of 

(0, 0, ±2) , (±c, ±c, 0), ( ± 1 , dbl, ±c), 

where c is given by 9.4. Since each of these 42 vertices belongs to 8 edges, 
there are altogether 168 edges and 112 triangular faces. This polyhedron 
(1 1 li4)4 is the vertex figure of the honeycomb 
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(1 1 22
4)4, 

whose group [1 1 24]4 is derived from [1 1 l4]4 by adjoining the fourth 
reflection 

£i = £i> £2 = £2, 3̂ = 2 — £3. 

Applying this group to the origin, we obtain the points whose coordinates 
£i, £2, ?3 satisfy the congruences 

10.2 fi = £2 = £3 (mod c), £i + £2 + 6 = 0 (mod c) 

in the domain of algebraic integers generated by the roots (c and c) of the 
equation 9.5. From the nature of this prescription, we see that the vertices of 
(1 1 22

4)4, like those of (2 1 44)3 (18, p. 386), form a lattice. 
The polyhedron (li 1 l4)4 (see Table III) is less interesting than (1 1 li4)4 

because it is not regular but only "quasi-regular" (14, p. 18). In fact, the 
graph shows that each of its 336/6 = 56 vertices is surrounded by three 
triangles and three squares, arranged alternately. 

11. The symmetry group of the polyhedron (1 1 11')"'. The group 3.3 
has an involutory automorphism which interchanges Ri and R2. Adjoining a 
new element T which transforms the group in this manner (so that T2 = E, 
Ri = TR 2T and TR3 = R3T), we obtain the larger group 

11.1 T2 = R2
2 = R3

2 = (R2R3)3 = (TR2)2 ' = (TR3)2 = (TR2R3)2wl = E, 

which is G3'2l,2m in the notation of (12, pp. 104-105). As a transformation of 
the contravariant coordinates, leaving 3.1 invariant, we may take T to be 

(x1, x2, xd) —> (x2, x1, xz). 

Although this is not a unitary reflection but an "anti-projectivity", its effect 
on the polyhedron 10.1 is like that of reflecting in the common edge PQ of 
two adjacent faces. Since the fundamental region of the symmetry group of 
the polyhedron is one-sixth of a face (shaded in Fig. 1), this symmetry group 
is precisely G's'2l'2m, and (1 1 li*)m is the regular skew polyhedron 

(3, 2/J 2m 

(12, p. 127) or {3, 2/ |, m) (11, p. 59). In particular, we see again that the 
polyhedron 

(1 1 h 4 ) 4 = {3, 8} 8 = {3 ,8 | , 4} 

has 42 vertices, 168 edges, and 112 triangular faces. 
Setting / = \n and m = \p in 3.7, we deduce that the even values of n 

and p for which the group G3,n,p is finite are given by 
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4 7T "i 7T 
11.2 cos h c o s — < i, 

n p 
in agreement with (12, p. 120, Fig. 3) , where, however, the locus drawn is 
not 

4ir . 4TT , . 2w . 2w 3 
cos h cos — = f but cos h cos -— = 2 • 

n p n p 
One is tempted to conjecture t ha t the new criterion 11.2 will remain valid 
when n and p are not both even. I t is satisfied by all the known finite groups 
G*,n'v, including 

G3.9.9 ^ LF(2,19), G3'8-11 ~ PGL(2,23) , G3-7-15 ~ LF(2,29) . 

The only unknown group tha t should be finite, according to 11.2, is G3,7,16, 
whose subgroup (2, 3, 7; 8), of index 2, is defined by 

S 3 = T 2 = ( S T )7 = ( s - i T S T ) 8 = E. 

Perhaps some enterprising reader will test this with an electronic computer . 

12. Barnes's new extreme senary form. Finally, we will show how, when 
the complex 3-space is regarded as a real 6-space, the vertices of the honey­
comb (1 1 22

4)4 yield the lattice representing Barnes's new quadrat ic form. 
As a basis for the lattice 10.2, where c = J ( —1 + iy/1), we may use the 

six complex vectors 

t i = (1, c, 1), t 2 = ( 2 , 0 , 0 ) , 
ta = (1, 1, c), U = ( 0 , 2 , 0 ) , 
t 5 = (c, 1, 1), t 6 = ( 0 , 0 , 2 ) 

(cf. 18, p. 397), which combine to yield 

(c, c,0) = - t i - t 5 + t6 , 
(c, -c, 0) - t i - t 2 + U - t6 , 

and so on. T h u s the general vector of the lattice is 

Z = £ Uj tj 

= (ui + 2u2 + u* + eus, cui + u<s + 2UA + u&, wi + cu% + W5 + 2UQ), 

where the w's are real integers; and its norm is 
zz = (u\ + 2w2 + Uz + eu?) (u\ + 2uo + Uz + cut) 

+ (cui + Uz + 2ui + uh) (cu\ + u% + 2w4 + W5) 
+ (U\ + C^3 + Ub + 2^6) («1 + <^3 + ^5 + 2^6) 

= 4(^ i 2 + W2
2 + W32 + Ui2 + W52 + ^62 

12.1 + U1U0 + W2W3 + Uzlli + W4M5 + U'0UQ + ^6^l) 
— 2(UIUA + W2W5 + ^.3^6) 

= (2u\ + Mo — è^4 + Ue)2 + (2^3 + w4 — | ^6 + W2)2 

+ (2w5 + u& — \U<L + U4)2 + \(u>->} + ^42 + u/). 
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Since this definite senary form represents 4 and has determinant 73, one 
naturally looks to see whether it is equivalent to the new form 4<£6 discovered 
by Barnes (4). To establish this equivalence, we note that Barnes represented 
his form by a real six-dimensional lattice consisting of the points in Euclidean 
7-space whose coordinates 

yo, yu 3>2, y*, y^ y&, y* 

are integers satisfying 

Zyj = o, Zjy^o (mod 7). 
0 0 

In terms of unit vectors e ; along the seven orthogonal axes, he observed that 
the minimal vectors are 

ea ~r 66 — ec — ed, 

with distinct suffixes satisfying 

a + b = c + d (mod 7) 

(5, §7), and that this set of 42 vectors J^ yfi$ is transformed into itself by 
the permutations 

yj - » yj+i a n d yj - > y*j, 

where the suffixes are reduced modulo 7. The latter permutation (of period 
6), applied repeatedly to the vector 

t i = - e 0 + ei + e5 - e6, 

yields 
U = - e 0 + e3 + d - e4, 
t3 = - e 0 + e2 + e3 — e5, 
t4 = — e0 + e6 + e2 — ei, 
t5 = — e0 + e4 + e6 — e3, 
t6 = - e 0 + e5 + e4 - e2. 

The six t 's, being independent, constitute a basis for the lattice, and enable 
us to construct the form 
/ 6 \ 2 6 

( 2D Uj tj) = {— 2D UJ eo + («i + u2 — u4)ei + {uz + Ui — u6)e2 

4- (u2 + u3 — u5)ez + (ut> + ue — u2)e* 

+ («6 + ui — w3)e5 + («4 + u5 — ui)eQ}2 

/ 6 \ 2 6 

= I 2D UJ) + 2D (UJ + UJ+I - uJ+*)2 

6 6 3 

= 4 2D # / + 4 2) «, My+i — 2 2D ^* «*+3, 

which is 12.1. 
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We observe that this form (equivalent to Barnes's has the elegant matrix 

( 4 2 0 - 1 0 
2 4 2 0 - 1 
0 2 4 2 0 

- 1 0 2 4 2 

1 ° - 1 0 2 4 
\ 2 0 - 1 0 2 

Barnes (4, p. 240) has shown that its group of automorphs is 

S2 XPGL(2,7). 

In view of §11, we now recognize this as the symmetry group G3,8,8 of the 
complex polyhedron (1 1 li4)4. 

TABLE I 

T H E COMPUTATION OF C FOR [ 1 1 1 l]m (see 3.5) 

/ m 2 cos -
7T 

2 cos - 2 c o s -
5 

c 

3 m 1 2 cos x/m 2 cos 2x/m g2iri/m 

/ 3 2 cos x/ / 1 —2 cos x/7 - 1 - e-™/1 

4 4 V 2 V2 - 1 / V 2 ( - l + * V 7 ) / 2 
4 5 V 2 r - T - 7 V 2 — 1 — rw 
5 4 r •v/2 - 1 TO) 

4 6 V2 V3 0 * V 2 
6 4 V3 \ / 2 - 2 / V 3 - l + n / 2 
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*o TJ 's- "tf t ^ Ci CO Th 
T3 r>H CS (N CS CO CO 
O PC i*<r 

>> H N ^ •> 6 6 6 6 6 c/5 H 
G' £ £ £ & £ 

x) 
T? i i ÏT es1 cô" 

a <N 1 1 >̂  <v N-*» r-4 rH rH rH 

m ~a rH 21 21 21 
(/) 

" ~ 
rH ^ 

- se i •J£ 1 8 i > i a i O C i i > 

- < » l 

u 
u 

•Ho 
u 

^ "sT (M o ^ es o 

o » 

Ç} 
a 
G + "s O 

CO 
o 
CD 

CD 

CS 

C 5 

oo 
o CO CD 1> o 

o 5» 
(M 

u en 
<v G 

s ̂  .2 § ci (N (M 
*0 O CD 

es 3 0> w £ 
u 

H ^ 

en i i^ O» 
l ^ 

es 
"G es ^ CO (N 

(M 
H co~ 

<u es ^ o 7 + iO ^ ^ cT i>T 
a ^ i>T 
X s 

s 
rH ? 

CO i O 
co~ co~ 

ni 

ÇS, 
t= i ^ 

4-> 

T3 

G rH K es T~< 

m 

*-< G 
QJ O es 

| - o G s + CO CO ^ *o CD | - o 
<D *». 

£ 
j5_ ^ — — — 

a ^p 
G G 
O *>. ] rH r-{ r-< y—i 7-H es CO 

O r-i r-4 rH r-4 i-i T-{ 1-4 J—i rH O 
1-4 T-i CS ( N es es 

https://doi.org/10.4153/CJM-1957-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-032-2


UNITARY REFLECTION GROUPS 271 

TABLE III 

SOME COMPLEX POLYTOPES 

Symbol 
defined 

Number 
of 

Number 
of 

Symbol of Shephard (29) 
or of Coxeter (11; 12) Reference 

in §10 dimensions vertices 

(1 1 rrV n = r + 2 In ( 1 1 ; r r ) ' = (3in (29, p. 377) 

( l i 1 rlY n = r + 2 / n - l ( l i l ; r ) ' - J yl
n (29, p. 378) 

( l i l . - . l ) 1 n ln-l — p. 251 
(1 1 l i4)4 3 42 {3,8 | ,4} = {3, 8}8 p. 265 
(l i 1 l4)4 3 56 — p. 266 
(1 1 li5)4 3 216 {3, 10|,4} = {3, 10}8 (11, p. 61) 
(1 1 li4)5 3 270 {3,8 | ,5} = {3, 8}1 0 (11, p. 61) 
( l i 1 l5)4 3 360 — — 
(l i 1 l4)5 3 360 _ — 
(22 1 l 4) 3 4 80 (2 2 1 ;1 ) 4 = QT

4
3)+i (29, p. 382) 

(22 1 l ) 4 4 80 — — 
(2 1 l i 4) 3 4 160 (2 1 ; l i ) 4 p. 261 
(2 1 l i ) 4 4 320 __ — 
(2 1 22)3 5 80 (2 1 ;2 2 ) 3 = ( l 7 y + i (29, p. 381) 
(2 1 i2 ) 3 5 432 (2 l i ; 2)3 (29, p. 381) 
(2 1 33)3 6 756 (2 1 ;3 3 ) 3 = ( h 3 ^ (18, p. 391) 
(22 1 3)3 6 4032 ( 2 2 1 ; 3 ) 3 = ( h 3

6 ) + 1 (18, p. 391) 
(2 1 i3 ) 3 6 54432 (2 1x ;3)3 — 
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