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On the computation of the determinant of vector-valued
Siegel modular forms

Sho Takemori

Abstract
Let A0(Γ2) denote the ring of scalar-valued Siegel modular forms of degree two, level 1 and even
weights. In this paper, we prove the determinant of a basis of the module of vector-valued Siegel
modular forms

⊕
k≡ε mod 2Adetk ⊗Sym(j)(Γ2) over A0(Γ2) is equal to a power of the cusp form

of degree two and weight 35 up to a constant. Here j = 4, 6 and ε = 0, 1. The main result in
this paper was conjectured by Ibukiyama (Comment. Math. Univ. St. Pauli 61 (2012) 51–75).

1. Introduction

Let Sym(j) be the symmetric tensor representation of GL2(C) of degree j and Γ2 the full
Siegel modular group of degree two. We denote by Ak,j(Γ2) the space of vector-valued Siegel
modular forms of degree two, level 1 and weight detk ⊗Sym(j). When j = 0, we simply denote
Ak(Γ2) = Ak,0(Γ2). We put

A0
Sym(j)(Γ2) =

⊕
k≡0 mod 2

Ak,j(Γ2), A1
Sym(j)(Γ2) =

⊕
k≡1 mod 2

Ak,j(Γ2).

When j = 0, we denote A0(Γ2) = A0
Sym(0)(Γ2). Then A0

Sym(j)(Γ2) and A1
Sym(j)(Γ2) become

A0(Γ2) modules. As is well known, Igusa [8] gave explicit generators and the structure of the
ring of Siegel modular forms of degree two:

A0(Γ2) = C[φ4, φ6, χ10, χ12];

the modular forms φ4, φ6, χ10, χ12 are algebraically independent over C;⊕
k

Ak(Γ2) = A0(Γ2)⊕ χ35A
0(Γ2).

Here φk is the Siegel–Eisenstein series of weight k (for k = 4, 6) and χk is a cusp form weight
k (for k = 10, 12, 35). It is known that there exists a unique irreducible polynomial P of four
variables which satisfies χ2

35 = χ10P (φ4, φ6, χ10, χ12). Thus we also have⊕
k

Ak(Γ2) ∼= C[t4, t6, t10, t12, t35]/(t235 − t10P (t4, t6, t10, t12)),

where ti (i = 4, 6, 10, 12, 35) are variables.
The generators of the modules A0

Sym(j)(Γ2) and A1
Sym(j)(Γ2) and the fundamental relations

among them have been examined by several authors. Satoh [11] proved the structure theorem
for A0

Sym(2)(Γ2). To prove the linear independence of some functions over A0(Γ2), he showed
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the nonvanishing of the following generalized Wronskian:

det


4φ4 6φ6 10χ10 12χ12

∂1φ4 ∂1φ6 ∂1χ10 ∂1χ12

∂2φ4 ∂2φ6 ∂2χ10 ∂2χ12

∂3φ4 ∂3φ6 ∂3χ10 ∂3χ12

. (1.1)

Here Z =
(
z11 z12
z12 z22

)
is the parameter of the Siegel upper half space H2 of degree two and

∂1 =
∂

∂z11
, ∂2 =

∂

∂z12
, ∂3 =

∂

∂z22
.

Aoki and Ibukiyama [1] proved the Wronskian (1.1) is a non-zero constant multiple of χ35.
The Wronskian (1.1) can be interpreted as follows. Let

∧j+1
Sym(j) be the j + 1th exterior

product of Sym(j). Then as representations of GL2(C), we have
∧j+1

Sym(j) ∼= det1/2j(j+1).
Take j+1 non-negative integers k1, . . . , kj+1 and j+1 vector-valued Siegel modular forms fi ∈
Aki,j(Γ2) for 1 6 i 6 j+1. We define det(f1, . . . , fj+1) by f1∧. . .∧fj+1. Then det(f1, . . . , fj+1)

is a vector-valued Siegel modular of weight detk1+...+kj+1 ⊗
∧j+1

Sym(j). We fix a basis of the
one-dimensional space

∧j+1
Sym(j) and consider det(f1, . . . , fj+1) as an element of Ak(Γ2),

where k =
∑j+1
i=1 ki + 1/2j(j + 1). Let f1 = [φ4, φ6], f2 = [φ4, χ10] and f3 = [φ4, χ12] be the

first three generators of A0
Sym(2)(Γ2) given by Satoh [11]. Then, it is easy to see that (1.1) is a

non-zero constant multiple of φ−24 det(f1, f2, f3). Thus we see that det(f1, f2, f3) is a non-zero
constant multiple of φ24χ35.
ForV =A0

Sym(j)(Γ2) (respectively A1
Sym(j)(Γ2)),we put j(V ) = j and ε(V ) = 0 (respectively 1).

Define sets S and T by

S = {A0
Sym(4)(Γ2), A1

Sym(4)(Γ2), A0
Sym(6)(Γ2)},

T = {A1
Sym(6)(Γ2), A0

Sym(8)(Γ2), A1
Sym(8)(Γ2)}.

In [7], Ibukiyama gave generators and fundamental relations for V = A1
Sym(2)(Γ2) and V ∈ S.

He proved V is a free A0(Γ2) module of rank j(V ) + 1 for V ∈ S (in § 3, we shall prove that if
AεSym(j)(Γ2) is a free A0(Γ2) module then its rank is equal to j+ 1). It is proved that V is also
free of rank j(V ) + 1 for V ∈ T. This work was done by van Dorp [14] for V = A1

Sym(6)(Γ2)

and by Kiyuna [9] for V = A0
Sym(8)(Γ2) and A1

Sym(8)(Γ2). To prove the linear independence
of generators, Ibukiyama proved the nonvanishing of the determinant of generators of V ∈ S.
By the calculation of weights and Fourier–Jacobi expansion, he conjectured the following
statement.

Conjecture 1.1 (Ibukiyama). For V ∈ S ∪ T, let f1, . . . , fj+1 be the basis of V over
A0(Γ2). Then the determinant det(f1, . . . , fj+1) is a non-zero constant multiple of χj(V )/2+ε(V )

35 .

In this paper, we prove the following statement.

Theorem 1.2. With the notation above, the determinant det(f1, . . . , fj+1) is a non-zero
constant multiple of χj(V )/2+ε(V )

35 if (j(V ), ε(V )) = (4, 0), (4, 1), (6, 0) or (6, 1).

To prove the main result, we use Sage [12] and a Sage package for Siegel modular forms of
degree two written by the author. The package can be found at https://github.com/stakemori/
degree2.
C. Citro, A. Ghitza, N.-P. Skoruppa, M. Raum, N. Ryan and G. Tornarìa also wrote a Sage

package for Siegel modular forms of degree two (see http://trac.sagemath.org/ticket/8701).
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They implemented a function that computes the multiplication of two Fourier expansions of
Siegel modular forms. But it seems that they did not implement a function that computes
the multiplication of two Fourier expansions that are not necessarily Siegel modular forms.
In this paper, we have to compute many Rankin–Cohen type differential operators. And this
computation needs a function that computes the multiplication of derivatives of Siegel modular
forms. Since it is not safe to modify such a low-level function as computes the multiplication
of Fourier expansions, the author wrote his own package.

2. Definition

We review the definition of vector-valued Siegel modular forms of degree two. Define the
symplectic group of degree two by

Sp2(R) = {g ∈ GL4(R)
∣∣ tgw2g = w2},

where w2 =
(
02 −12
12 02

)
. Put Γ2 = Sp2(R) ∩ GL4(Z). We denote by (Sym(j), Vj) the symmetric

tensor representation of GL2(C). We identify Vj with the space of homogeneous polynomials
P (u1, u2) in u1, u2 of degree j. The action of g ∈ GL2(C) is given by (Sym(j)(g)P )(u) = P (ug)
where u = (u1, u2). For a Vj-valued function F on the Siegel upper half space H2 of degree
two, non-negative integer k and g =

(
a b
c d

)
∈ GL2(C), we put

(F |k,j [g])(Z) = det(cZ + d)−kSym(j)(cZ + d)−1F (gZ) for Z ∈ H2.

A Vj-valued holomorphic function F on H2 is said to be a vector-valued Siegel modular form
of weight detk ⊗ Sym(j) if and only if F |k,j [γ] = F for all γ ∈ Γ2. We call k the determinant
weight of F . It is easy to see that Ak,j(Γ2) = 0 if j is odd.

3. Hilbert–Poincaré series

In this section, we prove that the rank of AεSym(j)(Γ2) is equal to j + 1 if AεSym(j)(Γ2) is a free
A0(Γ2) module for ε = 0, 1. And we compute the weight of the determinant of the basis.
For ε = 0, 1, let hj,ε(t) be the Hilbert–Poincaré series of AεSym(j)(Γ2)

hj,ε(t) =
∑

k≡ε mod 2

dimCAk,j(Γ2)tk.

We put

fj,ε(t) = (1− t4)(1− t6)(1− t10)(1− t12)hj,ε(t).

Then by the Hilbert–Serre theorem, we have fj,ε(t) ∈ Z[t].
We can compute the values of fj,ε and its differential f ′j,ε at t = 1.

Proposition 3.1. For j ∈ 2Z>0, we have

fj,ε(1) = j + 1, f ′j,ε(1) + 1/2j(j + 1) = 35×

{
j/2 if ε = 0,

j/2 + 1 if ε = 1.

Proof. For k, j ∈ Z>0, we put ak,j = 0 if j is odd and let ak,2j be the value given by Tsushima
[13, Theorem 4]. Then we have ak,j = dimC Sk,j(Γ2) if k > 5. Here Sk,j(Γ2) is the cuspidal
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subspace of Ak,j(Γ2). By [13, Theorem 4], there exists a polynomial g(t, s) ∈ C[t, s] such that

∞∑
k,j=0

ak,jt
ksj =

g(t, s)

q(t)r(s)
.

Here q(t) and r(s) are defined by

q(t) = (1− t4)(1− t6)(1− t10)(1− t12),

r(s) = (1− s6)(1− s8)(1− s10)(1− s12).

The polynomial g(t, s) is of degree 31 with respect to t, of degree 34 with respect to s and has
354 terms. Let g(t, s) =

∑
i,j cijt

isj with cij ∈ Z. For ε = 0, 1, we define a polynomial gε(t, s)
by gε(t, s) =

∑
i≡ε mod 2 cijt

isj . Then gε(t, s) satisfies the equations

gε(1, s)

r(s)
=

1 + s2

(1− s2)2
=

∑
j∈2Z>0

(j + 1)sj , for ε = 0, 1, (3.1)

∂gε
∂t

(1, s)/r(s) +
∑

j∈2Z>0

1/2j(j + 1)sj =
35s2(1−ε)

(1− s2)2

= 35×


∑

j∈2Z>0

j/2sj if ε = 0,∑
j∈2Z>0

(j/2 + 1)sj if ε = 1.
(3.2)

Suppose k > 4 is even. Then by Klingen [10] and Arakawa [2], we have

Ak,j(Γ2) ∼=

{
Cφk ⊕ Sk,0(Γ2)⊕ Sk(Γ1) if j = 0,

Sk,j(Γ2)⊕ Sk+j(Γ1) if j > 0.

Here Sk+j(Γ1) is the space of elliptic cusp forms of level 1 and we put φk = 0 if k is odd. Since
the denominator of the Hilbert–Poincaré series of {Sk+j(Γ1)}k is equal to (1− t4)(1− t6), we
have

gε(t, s)

q(t)r(s)
=

∞∑
j=0

(
fj,ε(t)

q(t)
+

Pj(t)

(1− t4)(1− t6)
+

Qj(t)

(1− t2)

)
sj ,

where Pj(t) and Qj(t) are polynomials. Therefore by equations (3.1) and (3.2), we obtain the
assertion of the proposition.

By Hilbert’s syzygy theorem, we have the following corollary (see [5, Exercise 19.14]).

Corollary 3.2. Assume AεSym(j)(Γ2) is a finitely generated A0(Γ2)-module. Put
K = FracA0(Γ2). Then the following statements hold:
(i) dimK A

ε
Sym(j)(Γ2)⊗K = j + 1 for ε = 0, 1;

(ii) if AεSym(j)(Γ2) is free and {f1, . . . , fj+1} is its basis then det(f1, . . . , fj+1) ∈ A35n(Γ2),
where

n =

{
j/2 if ε = 0,

j/2 + 1 if ε = 1.
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4. The structure of the modules in the case of Sym(4) and Sym(6)

We recall the results of Ibukiyama [7] and van Dorp [14] on the structure of the modules of
AεSym(j)(Γ2) (j = 4, 6, ε = 0, 1).

4.1. General theory of Rankin–Cohen differential operators

For the construction of vector-valued Siegel modular forms, Ibukiyama used Rankin–Cohen
type differential operators. In this subsection, we recall the theory of Rankin–Cohen type
differential operators in the degree two case.
Let t be a positive integer and r(i)11 , r

(i)
12 , r

(i)
22 variables for 1 6 i 6 t. We put Ri =

(r(i)11 r
(i)
12

r
(i)
12 r

(i)
22

)
.

Let H(1)
2 , . . . ,H(t)

2 be t copies of H2 and put Zi =
(z(i)11 z

(i)
12

z
(i)
12 z

(i)
22

)
∈ H(i)

2 . Let Q(R1, . . . , Rt, u) be a

C-coefficient polynomial of the components of Ri and u such that Q is homogeneous of degree
j in u. For such Q and holomorphic functions fi(Zi) on H(i)

2 (1 6 i 6 t), we define a function
on H2 by

{f1, . . . , ft}Q(Z) =

(
Q(∂Z1

, . . . , ∂Zt
, u)

( t∏
i=1

Fi(Zi)

))∣∣∣∣
Zi=Z

.

Here
∂Z =

(
1 + δij
2(2πi)

∂

∂zij

)
and |Zi=Z means substituting Zi by Z for all 1 6 i 6 t.

Theorem 4.1 (Ibukiyama [6]). Fix k1, . . . , kt ∈ Z>1 and a ∈ Z>0. Then Q satisfies

{f1|k1 [g], . . . , ft|kt [g]}Q = {f1, . . . , ft}Q|k1+...+kt+a,j [g]

for any holomorphic functions fi (1 6 i 6 t) and for any g ∈ Sp2(R) if and only if Q satisfies
the following two conditions.
(i) For all A ∈ GL2, Q satisfies

Q(AR1
tA, . . . , ARt

tA, u) = (detA)aQ(R1, . . . , Rt, uA).

(ii) Let Xi (for 1 6 i 6 t) be 2 × 2ki matrix variables. Then Q(X1
tX1, . . . , Xt

tXt) is pluri-
harmonic with respect to X = (xij), that is

2(k1+...+kr)∑
ν=1

∂2Q

∂xiν∂xjν
= 0, for 1 6 i, j 6 2.

We shall give examples for Q satisfying the conditions (i) and (ii) in Theorem 4.1.

4.2. Examples in the case of t = 2

Let t = 2. We write R = R1 = (rij), S = R2 = (sij), k1 = k and k2 = l. Eholzer and
Ibukiyama [4] gave polynomials satisfying the conditions (i) and (ii) in Theorem 4.1 for a = 0
and a = 2. We introduce these polynomials.
For k, l,m ∈ Z>0, we put

Gk,l,m(x, y) =

m∑
i=0

(−1)i
(
m+ l − 1

i

)(
m+ k − 1

m− i

)
xiym−i.
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For an even j, we put Qk,l,j(R,S) = Gk,l,j/2(r, s), where r = r11u
2
1 + 2r12u1u2 + r22u

2
2 and

s = s11u
2
1 + 2s12u1u2 + s22u

2
2. Then the polynomial Qk,l,j satisfies the conditions (i) and (ii)

in Theorem 4.1 for a = 0. For F ∈ Ak(Γ2) and G ∈ Al(Γ2), we put

{F,G}Sym(j) = {F,G}Qk,l,j
.

Then we have {F,G}Sym(j) ∈ Ak+l,j(Γ2). If j = 2, this differential operator was defined by
Satoh [11].
We define a polynomial Qk,l,(2,j)(R,S, u) by

4−1G2(R,S)Gk+1,l+1,j/2(r, s) + 2−1((2l − 1) det(R)s− (2k − 1) det(S)r)

×
(
∂Gk+1,l+1,j/2

∂x
(r, s)−

∂Gk+1,l+1,j/2

∂y
(r, s)

)
.

Here G2(R,S) is defined by

G2(R,S) = (2k − 1)(2l − 1) det(R+ S)− (2k − 1)(2k + 2l − 1) det(S)

− (2l − 1)(2k + 2l − 1) det(R).

Then the polynomial Qk,l,(2,j) satisfies the conditions (i) and (ii) in Theorem 4.1 for a = 2.
For F ∈ Ak(Γ2) and G ∈ Al(Γ2), we put

{F,G}det2 Sym(j) = {F,G}Qk,l,(2,j)
.

Then we have {F,G}det2 Sym(j) ∈ Ak+l+2,j(Γ2).

4.3. Example in the case of t = 3 and j = 4

Let t = 3 and j = 4. We put R = (rij)16i,j62, S = (sij)16i,j62 and T = (tij)16i,j62.
We define Qdet Sym(4)(R,S, T, u) =

∑4
i=0Qi(R,S, T )u4−i1 ui2. Here Q0(R,S, T ) is defined by

Q0(R,S, T ) = (k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r11 k2 k3

r211 s11 t11
r11r12 s12 t12

∣∣∣∣∣∣− (k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s11 k3
r11 s211 t11
r12 s11s12 t12

∣∣∣∣∣∣ .
We omit the definition of Qi(R,S, T ) if i > 0. The polynomial Qdet Sym(4) was given by
Ibukiyama [7] and satisfies conditions (i) and (ii) in Theorem 4.1 for a = 1 and j = 4.
For fi ∈ Aki(Γ2) (i = 1, 2, 3), we put

{f1, f2, f3}det Sym(4) = {f1, f2, f3}Qdet Sym(4)
.

Then we have {f1, f2, f3}Qdet Sym(4)
∈ Ak1+k2+k3+1,4(Γ2).

4.4. The structure of A0
Sym(4)(Γ2), A1

Sym(4)(Γ2) and A0
Sym(6)(Γ2)

In this subsection, we recall the result of Ibukiyama [7].

Theorem 4.2 (Ibukiyama).
(1) The module A0

Sym(4)(Γ2) is free over A0(Γ2) of rank 5 and is generated by the elements

{φ4, φ4}Sym(4), {φ4, φ6}Sym(4), {φ4, φ6}det2 Sym(4),

{φ4, χ10}Sym(4), {φ6, χ10}Sym(4).
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(2) The module A1
Sym(4)(Γ2) is free over A0(Γ2) of rank 5 and is generated by the elements

{φ4, φ4, φ6}det Sym(4), {φ4, φ6, φ6}det Sym(4), {φ4, φ4, χ10}det Sym(4),

{φ4, φ4, χ12}det Sym(4), {φ4, φ6, φ12}det Sym(4).

(3) The module A0
Sym(6)(Γ2) is free over A0(Γ2) of rank 7 and is generated by the elements

E6,6, X8,6, X10,6, {φ4, φ6}det2 Sym(6), {φ4, χ10}Sym(6),

{φ4, χ12}Sym(6), {φ6, χ12}Sym(6).

Here E6,6 ∈ A6,6(Γ2) is the Klingen–Eisenstein series associated with the Ramanujan
Delta function ∆, which Arakawa [2] defined in the general case. The modular forms
X8,6 ∈ A8,6(Γ2) and X10,6 ∈ A10,6(Γ2) are theta series defined in [7, § 6].

Remark 4.3. Generators with small determinant weights often cannot be constructed by
differential operators.

4.5. The structure of A1
Sym(6)(Γ2)

We briefly recall the result of van Dorp [14].
As mentioned in the introduction, van Dorp [14] proved the module A0

Sym(6)(Γ2) is free of
rank 7 and gave generators explicitly. He made a recipe for constructing a polynomial satisfying
the conditions (i) and (ii) in Theorem 4.1 for t = 3, a = 1 and for all even j > 2. And he
constructed polynomials satisfying the conditions (i) and (ii) in Theorem 4.1 for t = 3, j = 6
and a = 1.
He also constructed a Rankin–Cohen differential operator on vector-valued Siegel modular

forms, that is, for f ∈ Ak,j(Γ2) and g ∈ Ak(Γ2), he defined a Rankin–Cohen differential
operator {f, g} ∈ Ak+l+1,j(Γ2).
He constructed five of the seven generators by Rankin–Cohen type differential operators

(on scalar-valued Siegel modular forms) and the remaining two generators by {E6,6, φ4} and
{X8,6, φ4}. Here modular forms E6,6 and X8,6 are given in Theorem 4.2.

5. Proof of the main result

We prove our main result by numerical computation. We use Sage [12] and a Sage package for
Siegel modular forms of degree two written by the author. With this package, we can compute
generators φ4, φ6, χ10, χ12 and χ35 of the ring of scalar-valued Siegel modular forms and
a basis of the space of scalar-valued Siegel modular forms Ak(Γ2). We can also compute the
action of Hecke operators on vector valued Siegel modular forms and the differential operators
introduced in § 4 from given Siegel modular forms.
Put V = AεSym(j)(Γ2). By Ibukiyama [7], van Dorp [14] and Kiyuna [9], if j(V ) = 4, 6 or 8,

then V is free of rank j(V ) + 1 over A0(Γ2). Therefore by Corollary 3.2 if f1, . . . , fj(V )+1 is its
basis, then det(f1, . . . , fj(V )+1) ∈ Ak(V )(Γ2), where k(V ) = 35(j(V )/2 + ε(V )). We define an
element det(V ) of Ak(V )(Γ2)/C× by

det(V ) = [det(f1, . . . , fj(V )+1)].

Here C× acts on Ak(V )(Γ2) by ordinary multiplication and [det(f1, . . . , fj(V )+1)] is the class
represented by det(f1, . . . , fj(V )+1).
In order to prove det(V ) = [χ

j(V )/2+ε(V )
35 ], it is enough to calculate a finite number of Fourier

coefficients.
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Lemma 5.1. Let k be a non-negative integer and f ∈ Ak(Γ2) a scalar-valued Siegel modular
form. For (n, r,m) ∈ Z3 with n, m, 4nm− r2 > 0, we denote by a((n, r,m), f) the (n, r,m)th
Fourier coefficient

f(Z) =
∑

(n,r,m)

a((n, r,m), f)e(nz11 + rz12 +mz22).

Here Z =
(
z11 z12
z12 z22

)
∈ H2 and e(z) = exp(2πiz). Assume that a((n, r,m), f) = 0 if n 6 [k/10]

and m 6 [k/10], where [x] is the Gauss symbol. Then we have f = 0.

Proof. Igusa [8] proves that Ak(Γ2) has a basis of forms with integral coefficients. Therefore
we may assume a((n, r,m), f) ∈ Z for all (n, r,m). Applying the Sturm type theorem [3] for
all primes p > 5, we obtain the assertion of the lemma.

5.1. Proof in the case of A0
Sym(4)(Γ2) and A1

Sym(4)(Γ2)

Since the proof is the same, we consider only the case of A0
Sym(4)(Γ2). By Lemma 5.1, we

need to compute the Fourier coefficients of a representative of det(ASym(4)(Γ2)) and χ2
35 at

(n, r,m) for 0 6 n,m 6 7 and r2 − 4nm 6 0. For the computation of χ35, we use the
result of Aoki and Ibukiyama [1], which we mentioned in § 1. We can easily compute the
other generators φ4, φ6, χ10 and χ12 because they are Siegel–Eisenstein series or written as
polynomials of Siegel–Eisenstein series. The Fourier coefficients of {F1, . . . , Fr}Q can be written
by a polynomial of the Fourier coefficients of F1, . . . , Fr and the polynomial is determined by
Q. Here we use the notation in § 4. Thus we can confirm our statement in this case if we use
the package. The following code checks Theorem 1.2 in the case when V = A0

Sym(4)(Γ2).

1 from degree2.utils import naive_det as det
2 from degree2.all import (

rankin_cohen_pair_sym , eisenstein_series_degree2 ,
4 x10_with_prec , x12_with_prec , x35_with_prec ,

rankin_cohen_pair_det2_sym)
6

prec = 7
8

phi4 = eisenstein_series_degree2 (4, prec)
10 phi6 = eisenstein_series_degree2 (6, prec)

x10 = x10_with_prec(prec)
12 x12 = x12_with_prec(prec)

x35 = x35_with_prec(prec)
14

f1 = rankin_cohen_pair_sym (4, phi4 , phi4)
16 f2 = rankin_cohen_pair_sym (4, phi4 , phi6)

f3 = rankin_cohen_pair_det2_sym (4, phi4 , phi6)
18 f4 = rankin_cohen_pair_sym (4, phi4 , x10)

f5 = rankin_cohen_pair_sym (4, phi6 , x10)
20

x70 = det([f.forms for f in [f1 , f2, f3, f4 , f5]])
22 y70 = -19945421021123916595200000^( -1) * x70

assert y70 == x35^2

https://doi.org/10.1112/S146115701400028X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701400028X


determinant of vector-valued siegel modular forms 255

We explain the code above. In the first five lines, we load the functions used in this
computation. In the seventh line, we define the variable prec, whose value is 7. This means
we compute the Fourier coefficients of Siegel modular forms for (n, r,m) with n,m 6 7. From
the ninth line to the thirteenth line, we calculate φ4, φ6, χ10, χ12 and χ35. From the fifteenth
line to the nineteenth line, we calculate the bases given in Theorem 4.2 and denote them
by f1, . . . , f5 respectively. In the 21st line, we compute det(f1, . . . , f5) and denote by x70 the
determinant. In the 22nd line, we calculate −19945421021123916595200000−1x70 and denote
it by y70. In the last line, we check whether y70 is equal to χ2

35.
We can run this code if we install Sage [12] and the package ‘degree2’. Running this code

returns nothing. It means the main result for V = A0
Sym(4)(Γ2) is true. If the main result for

this case were false, then the last line of the code would cause an error.

5.2. Proof in the case of A0
Sym(6)(Γ2) and A1

Sym(6)(Γ2)

Since the proof is the same, we consider only the case of A0
Sym(6)(Γ2). Let E6,6 and X8,6 be

the vector-valued Klingen–Eisenstein series and the theta series that appeared in Theorem
4.2. Since the computation of theta series is slow and we do not know the Fourier coefficients
of vector-valued Klingen–Eisenstein series explicitly, we compute φ6E6,6 and φ4X8,6 instead.
By Theorem 4.2, {φ6E6,6, φ4X8,6, F12} is a basis of A12,6(Γ2) over C. Here we put F12 =
{φ4, φ6}det2 Sym(6). We give another computable basis of A12,6(Γ2) by F12, F12|T (2) and a
vector modular form constructed by a differential operator, where T (2) is the Hecke operator.
This method was already used by van Dorp [14].
Define Fk ∈ Ak,6(Γ2) for k = 10, 14, 16, 18 as follows:

F10 = {φ4, φ6}Sym(6), F14 = {φ4, χ10}Sym(6),

F16= {φ4, χ12}Sym(6), F18 = {φ6, χ12}Sym(6).

Then by Theorem 4.2, {E6,6, X8,6, X10,6, F12, F14, F16, F18} is a basis of A0
Sym(6)(Γ2) over

A0(Γ2). We define G12, H12 ∈ A12,6(Γ2) by

G12 = F12|T (2), H12 = {φ4, φ24}Sym(8).

Here T (2) is the Hecke operator. As mentioned above, {φ6E6,6, φ4X8,6, F12} is a basis of
A12,6(Γ2) over C. It can be checked that {F12, G12, H12} is also a basis. By Theorem 4.2,
dimCA10,6(Γ2) = 2 and {φ4E6,6, X10,6} is a basis. It can be checked that {φ4E6,6, F10} is also
a basis. Therefore we have

φ4φ6 det(A0
Sym(6)(Γ2)) = [det(F10, F12, G12, H12, F14, F16, F18)],

in A115(Γ2)/C×. Thus in order to prove the main result for this case, it is enough to prove
that

[det(F10, F12, G12, H12, F14, F16, F18)] = [φ4φ6χ
3
35]. (5.1)

Since F10, F12, H12, F14, F16 and F18 are constructed by differential operators, we can compute
these vector-valued Siegel modular forms. We can compute G12 by [2, (2.5)] if we compute
Fourier coefficients of F12. Since the computation of the Fourier coefficient of G12 at (n, r,m)
requires the computation of the Fourier coefficient of F12 at (2n, 2r, 2m), we need to compute
more Fourier coefficients of F12 than the other vector-valued Siegel modular forms. We can
prove (5.1) in the same way as the case where V = A0

Sym(4)(Γ2). The source code to check
(5.1) is slightly too long to show here. The source code can be found at https://github.com/
stakemori/det_vec_vald_SMFs.
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