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A SYSTEM OF OPERATOR EQUATIONS

BY
BOJAN MAGAINA

ABSTRACT. Let # be a separable Hilbert space, B(#) the algebra of all
bounded operators on # and A;, B, € B(H), i =1,..., r. It is shown that
if no nontrivial linear combination of the operators A, is compact, then there
exist X, Y € B(H) such that XA,Y = B, for all i. A related (but much
milder) result is discussed in other algebras with the unique maximal ideal
and an application to elementary operators is given.

1. Introduction and the main results. Let  be a separable Hilbert space and
9B(F) the algebra of all bounded linear operators on . The main result of this note is

THEOREM 1. Let A;, B; be elements of B(K), i = 1,...,r (where r is a positive
integer). If no nontrivial linear combination of the operators A; is compact, then there
exist X, Y € B(FH) such that

(1.1) XAY=B,i=1,...,r.

This theorem is a little surprising, since the system (l.1) can consist of many
equations with only two unknowns X and Y. In a much milder form this theorem holds
for more general algebras then RB(¥), as will be shown by the following algebraic
considerations.

Let o be a unital algebra over some field &. For each A € o the left and the right
multiplication by A are linear operators on & defined by L,(X) = AX and R,(X) = XA
respectively, forall X € . ForeachA = (A4,,...,A,)E A"and B = (B,,...,B,)
€ d’ the elementary operator E 45 is defined by

(1.2) Eqp = Z LA,RB,
i=1

(In the past such operators have been vigorously studied; see e.g. the bibliography in
[4].) The set of all elementary operators on &, é(HA), is obviously an F-algebra (often
called the multiplication algebra of o4 [8]). The algebra o itself can be regarded as an
‘€é(s4)-module in an obvious way, the submodules of which are precisely the two-sided
ideals of . Thus, if # contains only one maximal ideal ¥ (as is the case if 4 = B(¥)),
then J{ is the only maximal submodule of the €(s{)-module 4. For such modules the
following variant of the classical Jacobson density theorem can be proved.
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THEOREM 2. Let R be a ring and M an R-module. Suppose that M contains a proper
submodule X such that every proper submodule of M is contained in K and that
RUM/H) #0. Letx;, y, EM,i=1,...,r, and assume that the cosets x; + 5 € M/H
are linearly independent over the division ring Endy(M/XH). Then there exists an
a € R such that ax; =y, for all i.

Note that by the lemma of Schur [9] the ring Endy, (M/X) is indeed a division ring,
since M /¥ is a simple module (does not contain any proper non-zero submodule). The
Jacobson density theorem for simple modules is a special case of theorem 2, when
J = 0. The proof of theorem 2 is essentially the same as the proof of the classical
Jacobson density theorem (see [9, p. 221, Exercise 1]) and will be given in the appendix
only for the sake of completeness. Here we state a consequence of theorem 2, which
is closely related to theorem 1.

COROLLARY 1. Let s be an algebra with unit over some field %. Suppose that K is
the only maximal ideal of A and let % be the centre of the algebra A/K. Let A;,
B,ed,i=1,...,r. Ifthe cosets A, + K € A/K are linearly independent over ¥,
then there exists a positive integer m and X;, Y, € d for j = 1,...,m, such that

DXAY, =B, i=1,...r
i=1

To prove the corollary, just apply theorem 2 to the €(sd)-module ${ and note that the
division ring End(s4/¥) can be naturally identified with the commutative ring ¥.
(Indeed, it is well known and easy to see that the map End(d/H) — /3, N — \(1),
induces an isomorphism of End(s{/¥) onto the centre % of oA /¥.)

Note that if o is a complex normed algebra satisfying the hypothesis of corollary 1,
then ¥ = C- 1, since C is (up to an isomorphism) the only complex normed division
algebra [3, p. 23].

Several important operator algebras satisfy the hypothesis of corollary 1; for ex-
ample, the algebras of all bounded operators on the Banach spaces ¢, and [” (1 = p
< ) [3, p. 95], the algebra JB(¥) where ¥ is not necessarily separable Hilbert space
[7], and the von Neumann factors [10, p. 350].

Corollary 1 can be used to generalize some results of [6] and [1] about elementary
operators.

COROLLARY 2. Suppose that A, ¥, ¥ are as in corollary 1. Let A = (A,,...,A,)
e A,B=(B,,...,B,) € A and let E 15 be the elementary operator on A (defined
by (1.2)). Assume that the elements A; + ¥ of A /K are linearly independent over the
centre % of /K. Then: (i) For arbitrary two sided ideal $ of A the range of the
elementary operator E sp is a subset of § if and only if B, € $ foralli = 1,...,r.

(ii) If Ep is an element of some proper ideal $ of the algebra €(HA), then B, € X
foralli=1,...,r.

ProoF. (i) If B; € $ for all i, then clearly the range of E,5 is a subset of $, since
$ is an ideal in . To prove the converse, note first that by corollary 1 there exist X,
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Y, € o such that

2XAY, =80, 0i= 1,

j—=1

Now we have

B, = Z (Z XinYj)Bi = E X_,‘( 2 AinBi) = 2 XJEAB(Yj)
i=1 j=1 j=1 i=1 ji=1
From this we see that B, € $ if the range of £ ,; is a subset of $. The proof that
B, € $fori=2,...,ris the same.

(i) Suppose that £,z € ¢ for some proper ideal § of €(s4) and let X;, ¥; € A,
j=1,...,m, be chosen as in the proof of (i). Then an easy computation shows that

2 LXJEABLYJ = Ry,

i=1
This implies that R, € $. If B, were not an element of J{, then the same argument (but
with the right multiplications instead of the left ones) would show that the identity
operator / is an element of $. Since $ is a proper ideal, I & ¢, hence B, € K. In the
same way it can be shown that B, € X fori = 2,...,r. //

REMARKS. In the case A = B(H) and H = H(H) (= the ideal of compact operators
on ¥) corollary 2(i) was proved by Fong and Sourour in [6]. Apostol and Fialkow
proved in [1] corollary 2(i) for the general ideal $ in %B(#). The general question, when
is the range of an elementary operator contained in a fixed ideal of B(¥) (if A, are not
linearly independent modulo J(¥)), seems to be still open, except in some special
cases considered in [4].

Corollary 2(ii) shows in particular that for a simple algebra & the algebra €(s) is
also simple (since J{ = 0 in this case). This observation applies for example to the
Calkin algebra [2]. In particular there are no non-zero compact elementary operators on
the Calkin algebra. This last statement was conjectured in [6] and proved in (1] using
the well known theorem of Voiculescu.

Theorem 1 will be proved in section 3, while section 2 contains the necessary
preliminary result.

2. Linear independence modulo compact operators. From now on let ¥, £ be
separable Hilbert spaces, B(Z, ) the vector space of all bounded linear operators from
L to K, B(H) = B(H, H), H(HK) the ideal of compact operators in B(H) and
G(H) = B(H)/H(H) the Calkin algebra [2], [3].

For every A € B(L, K) the minimum modulus m(A) is defined by

m(A) = inflAx[; x € L, x| = 1}

Foreach A = (\,,...,\,) EC andeachA = (A,,...,A,) € B(L, ) denote

NA =D NA,
i=1

i=
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The unit sphere in C’ is denoted by S,. For each compact subset S of C" and each
A=A,...,A) € B, ) let
d(A;S) = min{m(A-A); X € §}

In the case S = §, we shall write simply d(A) instead of d(A; S,). Finally, if &£ is a
subspace of # and A = (A,,...,A,) € B(HK)', we denote

Al =@A2L,... A9

(Thus A|¥ € B(E, #)'.) The next proposition will be needed in the proof of
theorem 1.

PROPOSITION 1. IfA = (A,,...,A,) € B(K) is such that \-A & H(H) holds for
every N € C" — {0}, then there exists a closed infinite dimensional subspace & of ¥
such that d(A| %) > 0.

REMARK. If A+A & JH(H), then it is well known that there exists an infinite dimen-
sional subspace ¥, of J such that the operator A-A | &, is bounded below. But the
proposition claims more: there is a subspace £ of ¥ such that all the operators \*A | £
are bounded below for A € C" — {0}.

In the proof of proposition 1 a few facts that are either well known or easy to see will
be used several times. For the convenience of the reader we now state this facts as
lemmas.

Recall that an operator A € B(L, ) is left Fredholm iff there exists B € B(H, L)
such that / — BA is a compact operator (where / is the identity operator on ¥).

LEMMA 1. An operator A € B(EL, K) is not left Fredholm if and only if there exists
an infinite dimensional closed subspace M of & such that the restriction A| M is a
compact operator.

LEMMA 2. Let A € B(L, K)'. Suppose that S is a compact subset of C" such that
0 & S and such that S intersects every line through 0 € C". Then d(A; S) > 0 if and
only if m(A+A) > 0 for every N\ € C" — {0}.

Lemma | is well known [3, p. 70]; lemma 2 follows by an obvious compactness
argument from the continuity of the function A — m(\-A).

LEMMA 3. Let A € B(L, H)'. If the operator \-A is left Fredholm for every
N € S,, then there exists a subspace M of finite codimension in £ such that
dA| M) > 0.

PROOF. Since A+ A is a left Fredholm operator, there exists a subspace J, of finite
codimension in & such that the operator A-A | A, is bounded below [5]. Then each
\ € S, has an open neighborhood U, such that the operator p.- A | M, is bounded below
for every p € U,. If {U,,, ..., U,,} is a finite covering of S, by such neighborhoods,
then the subspace

M=N M,
j=1

J=
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is of finite codimension in & and m(\-A|M) > O for all A € S,. The lemma now
follows from lemma 2. //

For a subset S of some Banach space let \/S denote the closed linear span
of S. As usual, the symbol ~ will indicate the non-present term (for example,
A VTUUIS VRS W T 0 WWURIDE VIS VERUURINS ¥ )3

PROOF OF PROPOSITION 1. In this proof by a subspace of a Hilbert space we always
mean an infinite dimensional closed subspace. The proof is by an induction on r. In
the case r = 1 the proposition reduces to the well known fact that a noncompact
operator is bounded below on some subspace. Suppose inductively that the proposition
holds for arbitrary B € %B() ~'. Then we will show that the assumption

(@) d(A|¥) = 0 for all subspaces & of ¥
leads to a contradiction. The proof is divided in three steps.

Step 1. We shall prove that there exist operators A|,...,A; on ¥ and subspaces
£, ..., %, of ¥ such that:

(1) The sets {A{,...,A/}and {A,, ..., A,} have the same linear span in B(¥),
2) Al |.§£,~ is a compact operator for eachi = 1,...,r;

/\
3)d;:=dA L, ... AI|S, ... A L) >0foreachi = 1,...,r.

Assume inductively that for some i € {1, ..., r} the operators A; and the subspaces
&, _ | « have been found for all k = 1,...,i— 1, such that:

(1,_,) The sets {A},..., A, \,A,,...,A,}and {A,, ..., A,} have the same linear
span in B(J);
2i-1) A,’(|§£,-_,,,( is a compact operator for all k = 1,...,i—I;

/\
Gi-1) d(AHe(Bi—l,kn-~,Auggi—l.k,-~-,A;—||<§£,—Lk»Ai|§£i—1,k,---) > 0 for all
k=1,...,i—1.

We shall then find an operator A] € \/{A,,...,A,} and subspaces ¥, of ¥ for
k=1, ...,1i,such that the corresponding conditions (1;) — (3,) will be satisfied. Then,
putting £, = £,,, k= 1,...,r, we see, that the conditions (1)—(3) will be satisfied.

Since the proposition holds for any (r — 1)-tuple of operators, there exists a subspace
M of K such that

Q2.1 dATM, AL MA M AL M) >0

Note that for at least one a € S, the operator a+A | M is not left Fredholm. (If X+ A | M
were a left Fredholm operator for all A € S,, then by lemm 3 there would exist a
subspace N of M such that d(A | N) > 0, but this would contradict the assumption (a).)
Thus (by lemma 1) there exists a subspace &;; of M such that a+A |§£,i is a compact
operator. Put A = a+A. By (1,_) we can write A/ as

(2.2) Al = BlAf + A+ BiA HBA A+ BA,, Bj eC

https://doi.org/10.4153/CMB-1987-029-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1987-029-2

19871 OPERATOR EQUATIONS 205

Observe that B; # 0. (If B, were 0, then the operator A/|M would be left
Fredholm, since (2.1) would imply that m(A/|AM) > 0.) Therefore the sets
{Al, .. ,ALA,, ... A and{Al, ... A]_|,A;, ..., A} have the same linear span
in B(%), hence the condition (1) is satisfied. The fact that A/ | £, is a compact operator
and (2;_,) imply that the conditions (2;) are satisfied if &£, is any subspace of ¥;_, ;
fork=1,...,i— . It remains to show that the subspaces &, C ¥, , can be chosen
in such a way that (3,) is satisfied, that is, &; must be such that

(23) d(Al |*§£ik7' .. ’Akjgiln CE ’Ai }‘ggik’AiJrllu(Bik?- .- 7Ar|°(£ik) > 0

forallk=1,...,i.
Observe that for k = i (2.3) hold§ by (2.1),since £, C M. Letk=1,...,i—1be
fixed and for every A=ON,...,Ny...,N)ES,_, put

- /N\
B(}\):)\]A; +"’+)\kA[£+"'+)\,'A,', +)\,‘+|A,‘+, +"‘+)\,A,
By lemma 2 the condition (2.3) is equivalent to the requirement
(2.4) mBM)| L) > 0forallk € C' — {0}

Thus, it suffices to prove the existence of a subspace &, in &;_, ; such that (2.4) is
satisfied. Now inserting the expression (2.2) for A/ into the expression for B (N) we
obtain

(2.5) B(X) = WA+ Al A+ A,

where p; = N;B;, pe = NBrand p; = N; + \B; forj # i, k. Let S be the image of the
sphere S,_, under the non-degenerate linear map (A;,..., A ...,\) —

W5 os P, ..., ). The condition (3;-,) and lemma 2 imply that
PAN
& = d(A] |§£i~l,k, . aAlilgifl,k’ oA |«§£i—|,k,Ai|§£i~|,k, c38)

>

satisfy
5 >0

Since A;| <%, -, is a compact operator by (2;_,), there exists a subspace L in &£, _ &
such that ||A; | L] Bc] < 8. With such a subspace &£, we have by (2.5)

mBMX)| L) = ml(uA] + -+ + u/kz\‘li toee AL

+ A+ WA L] = Al L
& — INBelAc| Ll

=& — |BelllAk] Lull

>0

%

for all A € S,_,, hence for all A € C'~' — {0}. Thus (2.4) is established and this
concludes the proof of step 1.

Step 2. LetA], Landd;,i=1,...,r, beasinstep 1, so that conditions (1)—(3)
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are satisfied. Then, there exist subspaces M; of &, fori = 1,...,r, such that

(2.6) if i # j, then M; L M; and \{A; M k # i, k= 1,...,r} L\AAM;;
k#j,k=1,...,r}

and
(2.7) A/l M| <ei=1,....r
where
€= ZL\/;min{dl,...,d,}
To see this, construct first a sequence of unit vectors Xy, ..., X, ,Xp2,...,X.,
Xi3,...,%m,... as follows. Choose any x,, € ¥, such that ||x,,|| = 1. Assume

inductively that x;, € ¥; have been already chosen for all (j, m) € N,,, where
i€{l,...,r}and n € N are fixed integers and where

No,=d1,...,r}x{l,...,n—=1Hh U({l,....i—1} x {n}

(ifi = 1, the set {I,...,i— 1} is to be interpreted as empty.) Then choose x;, € &,
so that x;, is orthogonal to the finite set

{-x_/nn A;}:Aq-xjm; ps q = l, B (J? m) € Ni.n}
This choice of x;, is possible, since &; is an infinite dimensional space. Now the
subspaces
M = \xisn=1,2,.. ., i=1,...,r

clearly satisfy (2.6). Since M, C ¥, the operators A/ | M are compact by (2), hence
there exists for each i a subspace M; of M/ such that (2.7) holds.

Step 3. Let U;: % — M, be arbitrary unitary operators for i = 1,...,r and let
M={Ux+ -+ Ux;x €K}

We shall show that m(A-A" | M) > 0 forevery N €S,, where A’ = (A{,...,A}). Since
the sets {A},...,A,;}and {A,,...,A,) have the same linear span, this will imply that
m(N-A|M)>0forall\ €S,, hence d(A | M) > 0 by lemma 2. But this will contradict
the assumption (a), so the proof of the proposition will be completed.

Now for any N = (Ay,...,\,) € S,and any z = U;x + *+- + U,x € M with
Izl = 1 we have

[n-ANzf| = | 2 (E )x,»A,-’)U,»x
1 i#j

i=

= 2 InIAj Ul
j=1

-2

271/2 r
|(2 NADU x ] = 2 INIAj U] by 2.6)
i#j =1

<

v

] = 2 a1

J

(by (3), since M; C £))
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v

r 1/2
(min ¢)[2 10aP]" = relxl oy @7
=j=r j=1
H

( min d,-) |z|| — re —=  (since M,’s are orthogonal by (2.6))
l<j<r \/; ’

=€Vr  (by the definition of €, since ||z|| = 1)

It follows that m(\-A) = € \/ r > 0, as required. //

3. PROOF OF THEOREM 1. By proposition | there exists an infinite dimensional closed
subspace & of ¥ such that

d:=dA|%) >0

Let (f,),_, be an orthogonal sequence of vectors in &£ such that the subspaces
#, = A S, AL = 1,2,

of ¥ are orthogonal. (Such a sequence (f,), -, can be constructed inductively as in the
proof of step 2 of proposition 1.) Let {g,,, ..., g,.} be an orthonormal basis of ¥, for
each n and define T, € %B(¥,) by

Tn(Aifn) = giru l = ]7' o r

Since d = d(A |§£) > 0, the operators T, are well defined. Moreover, the sequence of
their norms is bounded, ||T,|| < 1/d for all n = 1,2, . ... (To see this, it suffices to
verify that ||T, 'x|| = d for every unit vector x € ¥,. If x = N, g1, + *** + \,g,., where
(A,...,\) ES,, then ||T, 'x|P = | NALf, + -+ + NA, S|P = @ by the definition
of d.) It follows that the orthogonal sum T =T, @ T, @ -- is a bounded operator on
the subspace

% =@ %,

n=1
of ¥. Note that {g,,; i = 1,...,r,n=1,2,...} is an orthonormal basis of ¥’. Let
(e.), -, be any orthonormal basis of #. Define U:H' — H = H @ --- @ ¥ by

Ugin = (09"’7()”707"-70)

where e, is on the i-th position. Let B: #"— ¥ be defined by B(x,,...,x,) = B x,
+ -+ + B,x, (where the operators B, are as in the statement of the theorem). Then the
composite BUT is a bounded operator from ¥’ to ¥, hence it can be extended to an
operator X € B(¥), With so defined X we have

XA[,fn = BUTAifn = BUgin = B(Oa e ,6’,,70, CE 70) = Bien

foralli=1,...,randalln=1,2,.... Finally, let Y: ¥ — % be an isometry defined
by

Ye,=f,,n=12,...
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Then XA,Ye, = Be, for all n, hence XA;Y = B, foralli = 1,...,r (since (e,) is an
orthonormal basis of #). //

REMARK. Theorem I holds also for a non-separable Hilbert space ¥, but the hypoth-
esis “If no nontrivial linear combination of the operators A; is compact” must be
replaced by “If no nontrivial linear combination of the operators A, is contained in the
maximal ideal of %B(F)”. The proof is essentially the same as for a separable space,
except that transfinite induction has to be used.

4. Appendix. Since the author couldn’t find any reference for the proof of theorem
2, a sketch of the proof will be given here, although it is essentially the same as the
proof of the Jacobson density theorem [8].

PROOF OF THEOREM 2. Denote by /M’ the direct sum of r copies of M and by
mw:M — M/ the natural map. It has to be shown that R(x,,...,x,) = M (where
R(xy,...,x,) ={cx,,...,cx,); c €R}), and this can be done by an induction on r.
For r = 1 the theorem clearly holds (by definition of J{), so assume inductively that
it holds for r — 1, where r is a fixed positive integer. It suffices to prove that for each
i = 1,...,r there exists an element z; € M — I such that (0,...,z,,...,0) €
R(x,,...,x,), since z; € K implies that Rz, = M. To this end assume without loss
of generality that i = r. Consider the homomorphisms &: R — M~ ' and §: R — M /K
defined by &(c) = (cx,,...,cx,-) and ¥(c) = w(cx,), repectively. The existence of
the element z, is obviously equivalent to the condition Ker ¢ ¢ Ker . It will be shown
that the assumption Ker & C Ker s leads to a contradiction.

Note that the maps ¢ and s are onto by the inductive hypothesis and the simplicity
of the module M/K respectively, hence they induce the isomorphisms ¢': %R /Ker
b — M and O :R/Ker ¢ — M/H. If Ker & C Ker ¢, then we have the
natural epimorphism 6:%R/Ker & — %R /Ker {, which induces an epimorphism
N — M/H, N = '8¢ ! Let N M — M/H be the components of A, that is,
Ny, .o i) =Ny F o+ N (w2 ) forall (uy, ..., u,_,) € M " Since the
module /¥ is simple, Ker A; is either M or the only maximal submodule ¥ of M. In
any case \, induces an endomorphism A/ € End,, (A/¥). By the definition of X we now
have

Na(ex,) + -+ N_ymw(ex, ) = mw(ex,)
for all c € R. The last equality implies in particular that Njmw(x,) + +=- + N/ _7w(x, )
= w(x,), but this is a contradiction, since the elements m(x;) are linearly independent
over the division ring Endy, (M/H). //

ACKNOWLEDGEMENT. The results here are closely related to the author’s Ph.D. thesis
written under the direction of Professor 1. Vidav. The author would like to express his
gratitude to Professor Vidav for his guidance during the preparation of the thesis.

REFERENCES

1. C. Apostol, L. Fialkow, Structure properties of elementary operators, Preprint.

https://doi.org/10.4153/CMB-1987-029-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1987-029-2

1987] OPERATOR EQUATIONS 209

2. W. Calkin, Two sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann.
of Math. 42 (1941), 839-873.

3. S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin algebras and algebras of operators on Banach
spaces, Marcel Dekker, Inc., New York, 1974.

4. L. Fialkow, R. Loebl, Elementary mappings into ideals of operators, lllinois J. Math. 28 (1984),
555—578.

5. P. A. Fillmore, J. G. Stampfli, J. P. Williams, On the essential numerical range, the essential spectrum,
and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179—192.

6. C. K. Fong, A. R. Sourour, On the operator identity ZA, XB, = 0, Can. J. Math. 31 (1979), 845—857.

7. B. Gramsh, Eine Idealstruktur Banachscher Operator-algebren, J. Reine Angew. Math. 225 (1967),
97—115.

8. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. 37, Providence, Rhode Island, 1956.

9. R. S. Pierce, Associative algebras, Graduate Texts in Math. 88, Springer, New York, 1982.

10. M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LJUBLJANA
JADRANSKA 19, LiuBLIANA 61000
YUGOSLAVIA

https://doi.org/10.4153/CMB-1987-029-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1987-029-2

