
A CLASS OF NON-DESARGUESIAN PROJECTIVE 
PLANES 

I). R. HUGHES 

1. Introduction. In (7), Veblen and Wedclerburn gave an example of a 
non-Desarguesian projective plane of order 9; we shall show that this plane 
is self-dual and can be characterized by a collineation group of order 78, 
somewhat like the planes associated with difference sets. Furthermore, the 
technique used in (7) will be generalized and we will construct a new non-
Desarguesian plane of order ptn for every positive integer n and every odd 
prime p. To do this, we need a result due to Zassenhaus (8) that there exists 
a near-field which is not a field of every order p2n, p an odd prime, whose 
center is a field of order pn. However there are some significant differences 
between the case p'ln — 9 and all other cases, and these lead to some unsolved 
problems. 

Furthermore, we shall show that none of the planes constructed in this 
fashion can be coordinatized by Veblen-Wedderburn systems (with either 
distributive law) and that each such plane possesses a (non-linear) planar 
ternary ring whose additive loop is an elementary abelian group. 

2. Construction of planes. A finite left Veblen-Wedderburn system (left 
V-W system) is a finite set R containing at least the two distinct elements 0 
(zero) and 1 (one), together with two binary operations, addition ( + ) and 
multiplication (•) (where we often write ab for a • b), all satisfying: 

(1) R is a group under addition, with "identity" 0; 
(2) The non-zero elements of R form a loop under multiplication, with 

identity 1 ; 
(3) Ox = xO = 0, a l l * € R; 
(4) The left distributive law is valid in R: 

a(b + c) = ab + ac, a, b, c f R. 

Similarly, a right V-W system satisfies the right distributive law, in place 
of (4). A left (right) V-W system with associative multiplication is a left 
{right) near-field. Throughout this paper we shall omit the term "finite," as 
all V-W systems considered will be finite; it has been shown that the addition 
of any V-W system (indeed, even the infinite ones) is commutative, and 
(for the finite case only) is elementary abelian. Hence R always has order 
equal to a power of a prime. (See (4) for proofs.) 
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NON-DESARGUESIAN PROJECTIVE PLANES 379 

Any (left or right) V-W system is a linear planar ternary ring (2; 3) . If R 
is a (left or right) V-W system which is not a field then the plane w coordina­
t e d by R is non-Desarguesian and contains a distinguished line or point 
(depending on which distr ibutive law is present) which is moved by no 
collineation; a pair of anti-isomorphic V-W systems coordinatize planes which 
are duals. In (8) Zassenhaus has determined all (finite) near-fields, as well 
as their automorphism groups, and in particular, has shown t h a t for any 
odd prime p and any positive integer n there is a near-field R (which is not 
a field) of order p2n whose center is a field of order pn. (By "cen te r" we mean 
here the set of all elements z Ç R such tha t zx = xz for all x Ç R.) 

Let R be a left near-field (which is not a field) of order p2n containing a 
field F of order pn as its center; let q = p2n + pn + 1. For the sake of sim­
plicity in the argument , we introduce the set V of all ordered triples (x, y, z) 
where x, y, z are in R, and let F 0 be the subset of V consisting of all triples 
all of whose entries are in F. Then V is a left vector space over R (or over F) , 
and Vo is a left vector space over F. Suppose i is a (non-singular) linear 
transformation of F, as a vector space over R, with the following additional 
properties : 

(i) VoA = F0 , 
(ii) if v is in V, then vAq = kv for some k in R, k ^ 0, 

(iii) if Vo is in F0 , Vo ^ (0, 0, 0), and if VoAm = kv, where k is in F, k ^ 0, 
then m = 0 (mod q). 

Then, using (i), if x, y, z are in R, we can wri te : 

(1) (x, y, z)Am = ( an* + a12y + auz, a2Xx + a22y + arizy anx + any + auz) ' 

where the atj are in F (and the a^ depend only on m, of course). Fu r the rmore ' 
if A has the form given by (1), as a linear transformation only of F() over F, 
and if A satisfies (ii) and (iii) (as they apply to F 0 and F), then certainly 
A is a linear transformation of V over R and satisfies (i), (ii), and (iii). So 
the existence of A depends only on the existence of a linear transformation 
Ao of Vo over F satisfying: 

(iv) if ^o is in F0 , ^o 9e (0, 0, 0), then VoAom = kvo, where k is in F, k 9e 0, 
if and only if m = 0 (mod q). 

We shall re turn to the question of the existence of Ao after some discussion 
of the use of A. 

Given R, F, and A as above, let us construct a set -K of points and lines, 
with an incidence relation (i.e., point on line or line contains point, etc.) , as 
follows. The points of ir will be the elements of F, excepting the element 
( 0 , 0 , 0 ) , with the identification {x,y,z) = (kx, ky, kz), for any non-zero k 
in R. T h e lines of ir are the formal symbols LtA

m, where either t = 1 or / is 
in R, t not in F, and where the only identifications will be LtA

}c = LtA
m if 

k = m (mod q). Incidence is as follows: v = (x, y, z) is on Lt if x + yt + z = 0, 
while LtA

m contains jus t those points vAm such tha t v is on Lt. By simple 
counting, it is seen tha t w contains pxn + P2" + 1 points and the same number 

https://doi.org/10.4153/CJM-1957-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-045-0


380 D. R. HUGHES 

ot lines, and that each line is incident with p2n + 1 distinct points (we have 
not yet shown, of course, that an arbitrary pair of distinct lines differ at all 
as sets of points). Thus, from (5), if we can show that each two distinct lines 
have exactly one point in common, then w will be a projective plane of 
order p2n. 

Now the existence of A0 is assured by the work of Singer (6), since the 
cyclic collineation given by him is easily seen to be nothing but a linear 
transformation of the vector space Vih and to satisfy (iv). Indeed, Singer 
states as much, since he represents his projective plane by "homogeneous" 
coordinates from the field F (i.e., ordered triples with the identification we 
have used above), and then, without explicitly making use of the vector 
space, shows the existence of a linear transformation Ao whose ath power 
(and no smaller positive power) maps an element (x, y, z) onto an element 
(kx, ky, kz), k T* 0. 

Thus if we succeed in showing that the set -w constructed above is a pro­
jective plane, it will even contain a subplane 7r0 of order pn, consisting exactly 
of those points (x, y, z) for which x, y, z are in F, and of the lines L\Am. (Thus 
7T0 will be Desarguesian.) Furthermore, whether T is a projective plane or 
not, each mapping Am is a collineation of w: if the point F is on the line L, 
then PAm is on LAm. From this last remark, to show that any pair of distinct 
lines intersect in exactly one point, it will be sufficient to show that any pair 
of distinct lines LtA

m and Ls intersect in exactly one point. In what follows, 
we assume that equation (1) takes the following form for A~m: 

(2) (x, y, z)A~m = (aux + aV2y + auz, a2hx + a22y + ariz, anx + civiy + a-sté). 

Let us consider the intersection of the distinct lines LtA
m and Ls; if (x, y, z) 

is on both lines, then (x, y, z)A~m is on Lt, so we have: 

(3) (anx + ai2y + aViz) + (a2ix + a22y + a2-iz)t + (aux + a^y + a^z) =0 , 
(4) x + ys + z = 0, 

where each atJ is in F. Solving equation (4) for x and substituting in (3), we 
have : 
(5) y it + za + (yv + zb)t = 0, 

where: 
(6) u = avl + a3a - (an + a-n)s, v = a22 — a2is, 

a = au + an — (an + a ;u), b = a2s — a2i-

Note that a, b are in F. We now have several cases. 

Case I; b 9e 0. Then equation (5) can be written : 

(yv + zb)b~la + y {it — vb~la) + (yv + zb)t = 0, 

utilizing the fact that a, b~l are in the center. This becomes: 

(7) (yv + zb) (b~la + t) + y(u - vb~la) = 0. 
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It is easy to see that if / = 1 then (5) and (4) have a unique common solution 
for the point (x, y, z). So we assume / ^ 1, and thus in (7), / is not in F, and 
hence w = b~la + t ^ 0. So (7) becomes (yv + zh)w = — y(u — vb~la), or, 
multiplying through by w~l and collecting terms, 

(8) y[v + (u - vb-la)w-1} + zb = 0. 

Since not both the coefficients in (8) can be zero (i.e., ô ^ 0), (8) and (4) 
have a unique common solution for the point (#, y, z). 

Case I I ; b = 0, a ^ 0. Then (5) becomes: 

(9) y(w + <> + za = 0. 

But since a ^ 0, (9) and (4) have also a unique common point. 

Case I I I ; a = & = 0. That is to say: 

(10) aU + 033 = a H + a31» ^23 = ^21. 

But now consider the element v0 = (1,0, — 1); from (10) it is immediate 
that voA~m — cvo, where c = an — aVè. Necessarily c ^ 0, since A~m is not 
singular. Thus m = 0 (mod g), so l^ i™ = Lt, and then it is easy to see that 
the distinct lines Lt and Ls have only the point (1,0, — 1) in common. 

We have thus completed the proof that ir is a projective plane of order 
p2n, and we note that w possesses a cyclic collineation group (generated by 
A) of order q = p2n + pn + 1. Furthermore, the collineation A fixes no point 
or line of T, SO if we succeed in showing that T is non-Desarguesian, then it 
even has the stronger property that it cannot be coordinatized by a V-W 
system, in any manner whatsoever. For use in § 4, we note that the line 
LtA

m of 7T can be represented by an equation: 

(11) xa + yb + zc+ (xaf + yV + zc')t = 0, 

where a, b, c} a', V, c', are all in F. 

3. Collineation groups. As pointed out above, TT possesses a cyclic group 
of collineations of order q — p2n + pn + 1. Furthermore, if 6 is any auto­
morphism of the near-field R, and if 6 fixes every element in F, then the 
mapping (x, y, z) —* (xd} yd, zd), LtA

m—>LteAm, is a collineation of TT. The near-
field of order 9 possesses the non-abelian group of order 6 as a group of auto­
morphisms (8) and this group necessarily fixes every element in the subfield 
of order three. Thus the plane has a group of collineations of order 78, which 
is the direct product of the cyclic group of order 13 and the non-abelian 
group of order 6. In (7) this collineation group is given explicitly, and it is 
pointed out that the group is transitive and regular on the points and lines 
of T which are not in the subplane wo of order three (TO is mapped into itself 
by all of the 78 collineations). We shall abstract from this situation before 
analysing the plane of order 9 in more detail. 
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Let 7T be a projective plane containing a proper subplane TO of finite order 
m. Suppose G is a group of collineations of T such t h a t TO is mapped into 
itself by every element of G, and such t h a t G is t ransi t ive and regular on the 
points and lines of T t h a t are not in TO. Since any line of TO contains a point 
P not in 7To, every point of T t h a t is not in TO is on exactly one line of 7ro; 
for any point of T, not in 7ro, is an image of P under some element of G. Let 
T have order n; as every point of T is on a t least one of the m2 + m + 1 lines 
of TO, n is finite, for no finite set of lines carries all of the points of an infinite 
plane. Each line of TO carries n — m points not in TO- S O there are 

(n — m)(m2 + rn + 1) + m2 + m + 1 = n2 + n + 1 

points in T. Solving this for n, and noting t h a t n ^ m, it is e lementary t h a t 
n — m2. If L\ and P 2 are lines of TO, containing the points P i and P 2 , res­
pectively, where P i , P 2 i TO, then since P\x — P 2 for some x £ G, we have 
LiX = L 2 since L2 is the only line of TO containing P 2 . T h u s G is t ransi t ive 
on the lines, and similarly on the points, of TO- T h e order of G is equal to 
the number of points of T which are not in 7r0; i.e., G has order mA + m2 + 1 
— (m2 + m + 1) = w 4 — ra. Let the points and lines of x t h a t are not in 
TO be called t angen t points and tangen t lines. Let Po be some fixed t angen t 
point and let J 0 be some fixed tangent line; we can assume t h a t P 0 is on JG. 
Let Ko be the unique line of TO which contains P 0 , and let Qo be the unique 
point of 7To which is on J0. Let D be the subset of G consisting of all x such 
t h a t Pox is on Jo, let E consist of all x such t h a t P0x is on K0, let F consist 
of all x such t ha t JQX contains Qo, and let D0 consist of all x such t h a t Qox 
is on Ko-

We observe t ha t E and P are subgroups of G. For if e is in P , then PQe is 
a point of Ko, and mus t lie on exactly one line of TO; hence this line mus t be 
Ko, so Koe — Ko, and E is the subgroup of G which fixes Ko. Similarly, F is 
the subgroup which fixes Qo- If K is any line of TO, then K is fixed by some 
conjugate (in G) of E, and if Q is any point of TO, then Q is fixed by some 
conjugate of P. Fur thermore , FD0E = Z)0; P and P have order m2 — m, D 
contains m2 elements and Do contains (m + l ) ( w 2 — m) elements. 

T H E O R E M 1. (i) / / a is not in P , then a = did2~
l for a unique di, d2 in D; if 

a is in P , a 9^ 1, //zew a ^ d\d2~
l for any di, d2 in D. 

(ii) The left cosets of F can all be represented as dF for a unique d in D, or 
as do~lF for do in D 0 , but not both. 

(iii) If a is not in P , then a = d\d2~
l for di, d2 in D0, where d\, d2 are uniquely 

determined up to a common right multiple by an element of E (i.e., die, d2e, where 
e is in E, are also in DQ and a = (die) (d2e)~\ but a only has representations 
of this form). 

(iv) PP>oP = D< 
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Proof, (i) If a is not in E, then P^-P^a is a line Job for a unique b. Hence 
b~l = d2 in D , a ô - 1 = d\ in J9, so a = d\d2~

l; since 5 is unique, it is easy to 
see t h a t du d2 are unique. Conversely, if a is in E, a 7e 1, then the impossibility 
of a = d\d<rl is easy to demonstra te . 

(ii) As in (i), consideration of the point R = Jo-Jod, where a is not in F, 
shows t ha t a = dx~

ld2 for a unique pair #\, d2 in D, and if a is in F, a ^ 1, 
then a =̂  di~~ld2 for any a\, d2 in P . Hence if du d2 are in Z> and diF = d 2F, 
then d\~ld2 is in F, so #\ = d2. Thus the m2 cosets dF, for d in D, are all 
distinct. 

Consider the points P 0 and Q0a; the line L = Po-Q0a is a line J0& if and 
only if b~l is in D and Ço^ = Qob; i.e., if and only if a~l is in b~lF, where b~~l 

is in D. On the other hand, if L = i l 0 6, then & is in £ and a £ - 1 is in J9 0 , SO a 
is in Dob C P0-fî = Do = FDQ. SO a - 1 is in do~lF, where <i0 is in D 0 . This 
proves (ii). 

(iii) Consider the line KQb = Qo-Qoa, where a is not in F. We have, as in 
(i), a — d\d2~

l, where dï} d2 are in D0 , bu t di} d2 are not unique: since 
K0b — Koeb for any e in E, it is easy to see t ha t die, d2e (both in DQ) also 
represent a as a = (rfie)(d2^)~1, and tha t all such representations are of this 
form. 

(iv) I t has already been pointed out tha t (iv) is satisfied. 
Now, wi thout giving the proofs (which are straightforward bu t t ime-

consuming), we remark tha t the existence of a group G of order w 4 — m, 
containing subgroups E and F of order m2 — m and two subsets D and DG, 
with m2 and (m + \){m2 — m) elements respectively, all satisfying (i)-(iv) 
of Theorem 1, implies the existence of the projective plane x. Points are 
designated by (a) for all a in G, and (Fa) for all cosets Fa of F\ lines are 
[Db] for all 6 in G, and [£Z>] for all cosets Eb of £ . Incidence is given by the 
rules: (a) is on [Db] if a is in Do; (a) is on [Eb] if a is in Eb; (Fa) is on [Db] 
if 6 is in Fa; (Fa) is on [Eb] if a is in D0b. 

Suppose such a group possesses an automorphism X with the properties 
E\ = £ , F\ = F, eMA is in Z> if d is in J9, d (f

 XA is in D0 if d0 is in D0. Then 
the mapping JH defined below is a dual i ty of the plane 7r, the simple proof of 
which s ta tement we omit. 

T: (a) - » [D • a\] [Db] - » (6X) 
(Fa) -> [£ • aX] [Eb] -> ( F • b\). 

In the case of the plane of order 9 given by Veblen and Wedderburn, G 
can be taken as the group of order 78 mentioned above, and E = F is the 
subgroup of order 6; note t ha t E is normal in G. The subsets D and D{) depend 
upon our choice of P 0 and Jo, so we reproduce the plane below. The points 
are the symbols Au Bu . . . , Gu i = 0, 1, . . . , 12, and we give seven of the 
lines; the remaining lines are found by successively adding one to the sub­
scripts, reducing modulo 13 (indeed, this operation corresponds to the 
collineation A) : 
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U : A0 Ax A, A, Bo C0 D0 E0 F0 Go 
Lj : Ao B\ Bg D$ D\\ E2 £5 £6 d d 
L2j : Ao C\ Cs Ei EQ F% F\\ G2 d GQ 

Li+j : Ao B7 B$ D\ D8 F2 Fb FQ d d i 
L2+2j ' Ao B2 B$ BQ C$ C11 Ei Es Fi Fa, 
L\+2j • Ao Ci C% D2 D$ DQ E% En Fi F% 
L2+j : Ao Bz Bu d d Ce D7 D9 Gi d . 

Then the group E = F corresponds to the permuta t ions : 

E = {1, (BDG)(CEF), (BGD)(CFE), (BC)(DF)(EG), 
(BE)(CD)(FG), (BF)(CG)(DE)\. 

Let us choose B2 as P 0 and L2+2j
 a s ^"0. Then K0 is L1A2, Qo is AQ, and : 

D = {1, A\ A\ (BC)(DF)(EG)A, {BC){DF)(EG)A\ (BE)(CD)(FG)A«, 
(BE)(CD)(FG)A12, (BF){CG){DE)A\ (BF)(CG)(DE)A7}, 

Do = {A2, AQ, A10, A11} • E. 

Every element of G can be represented in the form eAk, where e is in E. Let 
X be the automorphism eAk —» eA~k; then E\ = E, d _ 1 \ is in D if d is in D 
and ^o_1A is in Do if do is in Z>0- So (see above) the plane is self-dual. 

This plane has some further interesting properties, some of which we will 
mention. Each one of the following sets of three points is on a line, and it 
is easy to see t h a t the whole set of seven points, together with the seven 
lines joining them, forms a subplane of order two: 

AtA9Bo-, A2AZD2, A2A9G*', B0D2G6\ 4 3 . D u d ; A2B0Dn\ A,D2Dn. 

Since no element of G fixes all of the seven points , this means t h a t there 
are a t least 78 dist inct subplanes of order two and every point of the plane 
is in a t least four subplanes of order two. 

T h e dual i ty T given above has 22 absolute points (i.e., points on their 
image line): Au A8, A9, An, B2, B±, Bio, C2, d , d o , • • • > G2, d , d o - T h e 
line LiAh contains two absolute points A1, AS} while LjA contains four absolute 
points A1, B2, Di, G i0. T h u s the dual i ty is not " regular ," giving a negative 
answer to a question raised by Baer (1). 

Finally, w contains ''ovals"; i.e., sets of ten points , no three of which are 
on a line. An example of one is the set of poin ts : 

A0, Ai, A,, An, B2, d , d , £>8, D9, E2. 

T h e oval given above even has the s t rong proper ty t h a t there is another 
dual i ty of the plane (distinct from T) whose absolute points are exactly 
the points of the oval (the dual i ty can, in fact, be constructed from the oval) . 
Hence the collineation group of the plane consists of more than the 78 coll-
neations given above; for if 7 \ and T2 are dualit ies of any projective plane, 
then TiT2 is a collineation of the plane. T h e au thor has not been able to 
determine the full collineation group of the plane given above. 
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4. Coordinate rings. We shall use the planar ternary ring coordinatizing a 
projective plane to derive some more properties of the class of planes con­
structed in § 2; in particular, we shall show that these planes are all non-
Desarguesian, and cannot be coordinatized by Veblen-Wedderburn systems. 
The particular formulation of the ternary ring will follow the lines of (3), 
but we briefly review the basic idea, which differs a bit from Hall's technique 
in (2). In (4) will also be found a good deal of material on these ternary 
rings. R is a nonempty set containing at least the two distinct elements 0 
and 1, and points are symbols (x, y), (m), (oo), where ra, x, y £ R, and °° is 
a symbol not in R; lines are symbols [m, k], [oo, (k, 0)], Lœ, where m, k Ç i?. 
A ternary operation F is defined so that (x, y) is on [m, k] if and only if 
F(m,x,y) = k] the other rules of incidence are: (x, y) is on [oo, (x, 0)], 
(m) is on [m> k] and Lœ , (oo) is on [œ, (k,0)] and Lœ. Then the ternary 
function F satisfies certain axioms, which will be found in (2, 3; 4). Addition 
is defined by a + b = F(l, a, b) and multiplication by a • b — ab = F {a, b, 0) ; 
the ring is called linear if F(a, b, c) = ab + c for all a, b, c Ç R. It is well 
known that every planar ternary ring for a Desarguesian plane is an associative 
division ring, and, in particular, is linear. 

Throughout the rest of this section let w be a projective plane of order 
p2n, constructed from the left near-field R, as in § 2. We shall coordinatize ir 
so as to construct one of its planar ternary rings, and in what follows, the 
ordered triples have the same meaning as in § 2. Let (oo) be (0, 0, 1); (0) be 
(1 ,0 ,0) ; (0,0) be (0, 1,0); and let (1) be (1,0, - 1). The x-axis, ;y-axis, 
and La, are then all lines of the form LiAk, and, in particular, they are 
respectively z = 0, x = 0, and y = 0. The points on the ;y-axis are (in the 
old representation) all of the form (0, l,v), so let (0, 1, v) be (0, v) in our 
new coordinate system. Every line through (1), or (1,0, — 1), is a line of 
the form x + yt + z = 0. The point (v, 0) on the x-axis will be the point 
(uy 1, 0) which is collinear with (1, 0, — 1) and (0, 1, v); but (1, 0, — 1) and 
(0, 1, v) are on the line L_v if v $ F, whence u + 1(— v) + 0 = 0, or u = v. 
If v G F, then it is immediate that u = v. So (y, 0) is (z/, 1,0). 

The point (m) will be the point on Lœ which is collinear with (1, 1,0) and 
(0,1, m), and will be a point (1, 0, v). Let xa + yb + zc + (xa'+yb'+c'z)t = 0 
be the line joining (1, 1,0) and (0, 1, m). Then: 

(1) a + b + {a' + V)t = 0 
(2) b + rnc + (bf + mc')t = 0. 

Since a, a', b, b' G F, (1) implies that either t = 1 and a + a' = — (b + bf), 
or t j± 1 and a + b = a' + V = 0. If t = 1, then a + a' + v(c + c') = 0, 
and (2) becomes 

a + a' + ( - m)(c + c') = 0; 

thus ^ = — m. If / ^ 1, then a + vc -\- (af + z;c')2 = 0, and (2) becomes 
— a + mc + (— a' + rac')£ = 0, so again v = — m. Thus (m) is the point 
(1,0, - m). 
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Consider the point (u,v) which lies on the line J\ joining (0,0, .1) and 
(u, 1, 0) and on the line J2 joining (1, 0, 0) and (0, l,v). Then: 

(3) J i : xa + yb + zc + (xaf + yb' + zc')t = 0, 
J2 : xd + ye + zf + (xd' + ye' + zf)s = 0, 

where 

(4) c + c't = d + d's = ua + b + (ua' + b')t = e + vf + (ef + vf')s = 0. 

Thus as before, / = 1 and c = — c', or / ^ 1 and c — c' = 0; similarly, 
s = 1 and d = — d', or s 5̂  1 and d = d' = 0. 

There are four cases to check, but all of them are easy, li t 9^ 1, s 7^ 1, 
then it is a simple verification, using (4), that (u ,1, v) is on both of the lines 
J\ and J2. If J = 1, s 9^ 1, then /1 is 

A; (a + a') + 3/(6 + &0 = 0, 

where u(a + a') + & + &' = 0, so (w, 1, v) is on J±. The line J2 becomes 

ye + zf + {ye' + s/7)* = 0, 

where e + vf + (e' + i>/')s = 0, so (u, 1, v) is on J2. In all cases, we find 
that (u, 1, v) is on both J\ and 72, so (u, v) is (w, 1, v). 

So we have: 

THEOREM 2. 7/ x is coordinatized as above, then (u, v) is (u, l,v), (m) is 
(1,0, - m) and (00) is (0,0, 1). 

Now we shall investigate the ternary ring for 71-, where we use T(a, b, c) for 
the ternary operation, and let a © b = !T(1, a, &), a O ô = 7" (a, b, 0). In order 
to find the value of T(m, u, v), we consider the line L which contains (1,0, — m) 
and (u, 1, v), and let (0, 1, k) be the intersection of L with the ^-axis; then 
k = T(m, u, v). Let L be the line xa + yb + zc + (xa' + 3/6' + zc')/ = 0. 
Then: 
(5) a - w c + (a' — mc')/ = 0 
(6) ua + b + vc + {11a' + V + vc')t = 0. 

THEOREM 3. For all a and b, a ® b = a + b. 

Proof. Let m = 1 in (5). Then a — c + (a' — c')/ = 0. So if t = 1, we 
have a + a' = c + c', and (6) becomes w (a + a') + (6 + b') + y(c + c') = 0, 
or (u + v){a + a') + (b + b') = 0. But then the point (0, 1, u + v) is on 
L, so k = u © v — u + v. If / 7e 1, then a = c and a' = c', and (6) becomes 

(u + v)a + b+ [(u + v)a' + V]t = 0, 

whence again (0, 1, w + v) is on L, so u © v = w + v. 

THEOREM 4. 7"/?̂  ternary ring (R,T) is not linear. 

Proof. Referring to (5) and (6), let m and u be arbitrary, u 9^ 0, and let v 
be chosen so that k = T(m, u, v) = 0. Then (0, 1, 0) is on L, so b + &'/ = 0. 
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Suppose t = 1, whence b = — V. Then (5) is a + a' — m(c + c') = 0, and 
(6) is 

u(a + a') + v(c + cr) = 0, 

and this implies u~lv = — ra, or um + v — 0. Suppose / ^ 1, whence 
5 = V = 0. Then (5) is a — wc + (#' — wc')* = 0, and (6) can be written 

a + u~lvc + (a' + u~lvcf)t = 0, 

and so again u~lv — —• ra, or um + v = 0. 
Now assume that (R,T) is linear. For arbitrary m and u, u 9^ 0, let 

p = m Ou. Then m O M 0 {— P) = JT(W, U} — p) = 0, so by the above, 
«m + ( — £ ) = 0, or um = p = m Ou. Thus (i^,r) is anti-isomorphic to 
the near-field R, and so (R,T) is itself a near-field. As pointed out earlier, 
a (finite) near-field plane possessing a collineation moving every point and 
line is necessarily Desarguesian. But T does possess such a collineation; it is 
obvious that A fixes no point or line of w. Hence (R>T) is a field, so R is also 
a field, and this is contradictory; thus (R,T) cannot be linear. 

CORLLOARY. The plane w is non-Desarguesian. 

Proof. See the proof of Theorem 4. Or note that every ternary ring for a 
Desarguesian plane is linear, whence by Theorem 4, T is not Desarguesian. 

Besides the class of projective planes given in this paper, all finite planes 
known at the present time are coordinatizable by ternary rings which are 
(at least) V-W systems. So, in a sense, the class of planes given here are the 
"weakest" finite planes known. Aside from having prime-power order, these 
planes share a much stronger property with the V-W system planes however: 
they can be coordinatized by a planar ternary ring whose addition forms an 
elementary abelian group, or equivalently, there is a complete set of mutually 
orthogonal latin squares associated with the plane which contains among its 
squares the Cayley table of an elementary abelian group. 

Other questions about the class of planes, which are answered in § 3 for 
the plane of order 9, include: are the planes self-dual and does there exist 
a collineation group G with the properties discussed in § 3? The automorphism 
groups of the near-fields used in this paper, with the exception of the one of 
order 9, are always too small to yield enough collineations to construct the 
group G. The author has checked a plane of the class, of order 25, and it does 
not possess such a group G of collineations. Finally, what other finite planes 
possess such a collineation group G? 
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