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APPROXIMATE CONVERSION OF BEZIER CURVES

YUNGEOM PARK, U JIN CHOI AND HA-JINE KIMN

The methods for generating a polynomial Bezier approximation of degree n — 1 to
an nth degree Bezier curve, and error analysis, are presented. The methods are
based on observations of the geometric properties of Bezier curves. The approx-
imation agrees at the two endpoints up to a preselected smoothness order. The

' methods allow a detailed error analysis, providing a priori bounds of the point-
wise approximation error. The error analysis for other authors' methods is also
presented.

1. INTRODUCTION

The process for generating a polynomial Bezier approximation of degree n — 1 to
an nth degree Bezier curve is called degree reduction. In general degree reduction of
Bezier curves addresses the following problem.

PROBLEM 1. Let {bi}^=0 C R' be a given set of (control) points which define
the Bezier curve

bn(t)= n

»=o

in terms of Bernstein polynomials B?(t) = (")(l - t)n V of degree n. Then find
another point set {<fc}£lo C R* defining tie (approximating) Bezier curve

t=0

of lower degree m < n so that a suitable distance function d(bn,qm) between bn and
qm is minimised on the interval [0,1].

The necessity to determine the degree reduced curve by approximation is manifest,
since degree reduction is not exactly possible in general, in contrast to the reverse
question of degree elevation. In so doing, the degree reduction can be accomplished in
a number of ways. Forrest [6] proposed a geometrical algorithm preserving the tangent

Received 4th May, 1994
This work was partially supported by KOSEF under the giant number 91-08-00-01.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 $A2.00+0.00.

153

https://doi.org/10.1017/S0004972700013988 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013988


154 Y. Park, U.J. Choi and H-J. Kimn [2]

at two endpoints. Farin's degree reduction scheme [4] is compared with the rational
Bezier curves case. Forrest's and Farin's method are presented without error analysis.
Watkins and Worsey [9] and Lachance [7] suggested that Chebyshev polynomials be
used in the degree reduction process. Eck [2] generalised Forrest's method by using
constrained Chebyshev polynomials.

Now, the approximation qm depends critically on the chosen distance or error func-
tion d(bn, qm) to be minimised. Here, the most appropriate metric in geometrical terms
would be the Hausdorff distance; see Degen [1] for a detailed discussion. It measures
a special kind of geometrical distance between the two compact sets {bn(t) : t £ [0,1]}
and {qm(t) '• t £ [0,1]} by ignoring the respective parametrisations. The consequent
approximation process is explained in Degen [1] and Eisele [3], where nonlinear theory
is used to determine the curve qm numerically.

On the other hand, we are always interested in explicit formulas for the approxi-
mation qm. Therefore, we shall use the much simpler distance function

(1.1) d(b», qm) = max{||6"(<) - qm(t)\\ : t G [0,1]}

which measures the maximal distance with respect to the parametrisation. An immedi-

ate consequence of this error metric d(bn, qm) is that the geometry of bn is approximated

as well as its parametrisation.

The main advantage of using (1.1) is the decomposition of the original Problem 1

into s subproblems. Each subproblem consists of minimising the componentwise error

function

d{b^q?) = m«{|67(<) -qf{t)\ : t 6 [0,1]}, (j = 1 , . . . , -)

where we introduce the notation f(t) = (fi(t),... ,f.(t))T. Then the minimal distance

(1.1) is determined by d(bn,qm) =

Hence, it suffices from now on to investigate the single-valued or functional case
only. Furthermore, we shall restrict ourselves to the very special case m — n — 1 since
explicit solutions are known only for this exceptional case. This is carried out in the
next section where the following reformulated problem is solved.

PROBLEM 2 . Let {6»}JL0 be a. given set of real coefficients which define the Bezier

function

Then find another set of real coefficients { g ; } ^ 1 defining the approximation

i=0
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by minimising the uniform error function d(bn,qn~1) = max{|&"(<) — 9™~1(<)|} on the
interval [0,1].

In the second section of the paper, the methods for degree reduction are presented
with an investigation of the geometric property of Bezier curves that was needed to
develop the scheme. Section 3 then discusses how to extend this construction so that
boundary constraints can be involved. The authors aim to develop a geometric method
for generating lower degree approximations which, in the uniform norm, are within some
preset error tolerance of the prescribed Bezier curve. This means that the scheme for
approximation must be combined with a subdivision algorithm. This question is also
addressed in the third section. The techniques used in the approximation algorithms
admit a detailed error analysis for the other authors' methods. The error analyses for
the methods developed by Forrest [6], Farin [4] and Eck [2] are presented in Section 4.

2. APPROXIMATION

Let us consider first the reverse problem. For given Bezier curve g""1 with n

coefficients qo,q1,... ,qn-i, one might want to add another coefficient yet leave the
shape of the curve unchanged - this corresponds to raising the degree of the Bezier
curve by one (this process is called degree elevation) The new coefficients 6; must
satisfy (see Farin [5])

(2.1) * ^ ^ (i 0 )
n n

Equation (2.1) can be used to derive two different recursive extrapolation formulas

for the generation of the coefficients <fc from the {&<}:

(2.2) ql
0=b0, , { = - n _ k - _ i - 7 g » _ 1 > (i = i , . . . , „ - ! )

or

(2.3) <£_!= in, £-1 = % " ^ t f , (i = n - l , . . . , l ) .

If j^bn{t) = 0 or equivalently An60 = 0 where the r th forward difference of the
coefficients is defined explicitly by

(2-4) A ' f c ^

then bn is an artificially degree elevated function and we have g' = gj" for all i meaning

that the degree reduction scheme reproduces the original function exactly.
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For a function bn with Anb0 ^ 0, let V = \Anb0\ = £ (-1)'(?)&,. Then

t=0

where

(2.5)

n ^ ^

and 53 a,- = 1. The function bn(t) with coefficients &j (i = 0, . . . ,n) is an artificially
i=0

degree elevated function. Now, in order to be able to construct approximations we
introduce additional degrees of freedom, namely real weighting factors ati. The function
qn~1(t) with coefficients gi (i — 0, . . . ,n - 1) which are obtained from (2.2) or (2.3) is
degree reduced.

Since the functions ~bn(t) and q"'1^) are the same and we set q"'1^) = qn~1(t),
the approximation error is

(2.6)

where

i=0

In order to obtain the factors c*j which minimise the error we first consider the
Chebyshev polynomial Tn(x) of degree n which may be written as

Tn(x) = cos(n • arccos(x)), x £ [—1,1].

Alternatively, it can be computed in monomial form by a simple recurrence formula. In
contrast to that the following representation in Bernstein form is not so familiar (see
Eck [2]):

Tn(2t - 1) = f^i-iy^^-B^t), t 6 [0,1].

0)
Now, we set E(t) = Tn(2t — 1),- and then we find the factors a* by

(2-7) a i = 2 ^

https://doi.org/10.1017/S0004972700013988 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013988


[5] Bezier curves 157

n
such that 53 a» = 1 • Since max{|T'Ti(x)| : x £ [—1,1]} = 1, the approximation error is

«=o

For convenience of computation of (2.5) we choose the factors at by

(2.8) a i = _

n
such that 53 â  = 1. Then the approximation error is

«=o

3. APPROXIMATION WITH SMOOTHNESS

The function bn and the approximation qn~1 do not coincide in general at the two
boundaries. We introduce new n factors ft (i = 0,. . . ,n — 1) in order to overcome this
problem. The function qn~1(t) defined by the coefficients

is also an approximation for the function 6n. In Watkins and Worsey's work [9], C°
continuity at the endpoints is obtained by changing the first and last coefficient of qn~1

so that interpolation holds. In our case, this procedure corresponds to simply defining
0o — «o and /3n-i — (~l)nt*n, whereas the remaining factors are zero.

Generally, to solve Problem 2 with the additional constraints

for t0 — 0 and to = 1, we obtain the factors ft

(3.1) /So =7o, ^ ^A ^ 7 i
n — i n — t

and

(3.2) /?„_!= 7n,

by using the forward difference formula (2.4). Equations (3.1) and (3.2) are rewritten
as

(3-3) ft=i=
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and

7r
^ i I j=i+\

Since the functions bn(t) and gn~1(<) are the same and

the approximation error is

(3.5)

where

t = 0

In order to obtain the relation Et(t) and E{t) in (2.6), we use equations (3.3) and
(3.4). Hence

>=0 i=n-0

If the factors | 7 j | have a symmetric property, that is | 7 j | = | 7 n - i | for i = 0,1, . . . ,n,
we have

max|£,(i)| = max|.E(i)|+4(0 + 1) max | 7 i | .

In the case that the a,- are chosen as in (2.7), the approximation error is

where C ^ 4 Q ( » ) - 1 .

Also, in the case that the aj are chosen as in (2.8), the approximation error is

The a priori estimated error (2.6) and (3.5) are useful together with the following
observation: if we subdivide a function bn of degree n A;-fold at equidistant parameter
values U = (i/(k + 1)) (t = 1 , . . . ,k), then the n th forward difference of the coefficients
in each of the k + 1 segments arising is l/(k + 1)™ times the original difference An60

of the function 6n.
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Therefore, to satisfy a preset tolerance e we have firstly to subdivide bn(t) A;-fold
at U and afterwards to degree reduce each of the k + 1 pieces. The number k of
subdivisions is calculated immediately from (2.6) and (3.5) by

k =

where [J denotes the floor function and the constant C is max|i?(<)| or max.\E,(t)\.
Obviously, k = 0 means that no subdivision is necessary to satisfy the error tolerance.

4. ERROR ANALYSIS FOR OTHER METHODS

In this section, error analyses for other authors' methods are presented. The error
as in Farin [4] and Forrest's [6] methods are computed. A part of Eck's [2] method is
also considered.

We consider first the degree reduction method of Forrest. Both formulas (2.2) and
(2.3) only represent approximations and one observes immediately that (2.2) produces
reasonable approximations near to bo and (2.3) behaves decently near bn. Therefore,
Forrest [6] proposed combining both formulas by taking the left half of the coefficients
from (2.2) and right half of the coefficients from (2.3), so

* = <?!, (» = 0 , l , . . . ) ,

For odd n, the midpoint appearing is defined by qi — (g' + it) ft with i = (n — l)/2.
The coefficients ((n — i)/n)</j + (i/rc)g,-_i of the artificially degree elevated function

qn~1 are obtained from

and
, (-1)* . n - 1 Ti (n odd);

otherwise fc,- where the coefficients g_i and qn are negligible.
Thus we have for even n,
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and for odd n ,

(n-l/2)

By comparison of these formulas with the scheme presented in the previous section,
we have the factor an/2 — 1 for even n and a(n_i)/2 = a(n+i)/2 = 1/2 for odd n;
otherwise ai — 0 and the all /?j 's equal zero.

For computation of error bounds, we substitute these factors into (3.5). Since the
Bernstein polynomial B? has only one maximum and attains it at t — i/n,

( - 1 |V| n is even

| n»odd.

Some different error bounds for Forrest's method were explained in full detail in

Park and Choi [8].

In order to be able to construct an approximation, Farin [4] extended Forrest's

construction by introducing a weighted average of the form

In Farin's method, the approximation is defined by

n - l ..
• n — 1 - l , i

«=o

We obtain by solving the recurrence relation (2.2) and (2.3) that

n - l

t = 0

where Vt = £ (-1)'Qbj.
3=0

If we artificially elevate the degree of qn~x, then
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Thus, we have

and the factor cto — an = 0, a j = l / ( n — 1) for t = 1 , . . . ,n — 1 and the all Pi's equal
zero. The error bound is

Eck [2] extended Farin's method by introducing additional degrees of freedom,
namely real weighting factors Xi which blend the coefficients q? and q\ together. In
more detail, to define the new coefficients q,, the following linear interpolation formula
is used:

9i = (1 — ^i/Qi "I" ̂ «9i» (* = 0 , . . . ,71 — 1) ,

where

Then the approximation error is (see Eck [2, Theorem 1])

(4.1) d^",?""1) ^ -^—^ \V\.

Applying the same method as in Farin's case, we obtain the coefficients of the
approximation by

9. =

If we artificially elevate the degree of qn 1, then

(0
From these, we have

2 2n- l

and all the /3< are zero, and also the error bound is given by (4.1).
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