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1. Introduction. In this paper we shall indicate how to generalise the concept of a
cofinite group (see [7]). We recall that any residually finite group can be made into a
topological group by taking as a basis of neighbourhoods of the identity precisely the
normal subgroups of finite index. The class of compact cofinite groups is then easily seen
to be the class of profinite groups, where a group is profinite if and only if it is an inverse
limit of finite groups. It turns out that every cofinite group can be embedded as a dense
subgroup of a profinite group. This has important consequences for the class of countable
locally finite-soluble groups with finite Sylow p-subgroups for all primes p, as shown in [7]
and [14].

Our generalisation is as follows. By a separating filter base Jf of a group G we shall
mean a set of normal subgroups satisfying:

(i) if NeJf, G/N is a Cernikov group;
(ii) if L,MeJf there exists NeJf such that N^LDM;
(iii) n{N:NeJf}=\.
Thus G possesses a separating filter base if and only if G is a residually Cernikov

group. We shall call G a co-Cemikov group relative to Jf and regard G as a topological
space with

{Hx :xeG and there exists Ne Jf such that N<H<G}

as a closed sub-base. Thus the closed subsets of G are intersections of finite unions of
certain cosets of G. We shall let (G, Jf) denote that G is a co-Cernikov group relative to
Jf and the topology determined by Jf will be called a co-Cernikov topology. Of course, G
will possess many such topologies, depending on Jf. By a pro-Cernikov group we shall
simply mean an inverse limit of Cernikov groups.

Thus, it is straightforward to show that a cofinite group with any of its cofinite
topologies is a co-Cernikov group with that topology. However we shall show that, in
general, co-Cernikov groups need not be topological groups.

In Section 2 we give many of the elementary properties of co-Cernikov groups. We
show that if G is a Cernikov group then G (with its unique co-Cernikov topology) is a
compact T,-space. (By a Tr-space we mean a space in which points are closed.) Many
properties of cofinite groups have their analogue in the study of co-Cernikov groups, and
we exploit the very similar nature of these two classes of groups as often as possible. In
particular, in 2.8 we prove that the compact co-Cernikov groups are precisely the
pro-Cernikov groups. It is then easily seen that any co-Cernikdv group can be embedded
as a dense subgroup of a compact co-Cernikov group.

In Section 3 we study more closely the Sylow theory of compact co-Cernikov groups.
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By using the methods of [7] it is relatively easy to show that the well known results of
Sylow and Hall extend to the class of compact co-Cernikov groups. However the idea of a
Sylow p-subgroup is modified so that we no longer characterise them as being the
maximal p-subgroups. Instead we define most of the new concepts via the Cernikov factor
groups.

Our proofs are fairly standard generalisations of those that occur in the analogous
case for cofinite groups. However we have been forced, much of the time, to use the
following generalisation of the theorem of Kuros [11] concerning the inverse limit of a
system of non-empty finite sets.

THEOREM 1.1. Let {Si; c^ : i, j e J, i</} be an inverse system of non-empty compact
topological Ti-spaces and closed, continuous maps. Then:

(a) S = limS^0;

(b) S = lup /3j(S) and the restriction o/afj:|3,(S)-» ft(S) is surjective;

(c) the image of the canonical projection /3, : S —» S( is /3f(S)= f) a^iSj);

(d) ifT^S then f = limft(T) and ifT^cS then T = lim ft(T) = lirn ft(T);
(e) S is compact.

The proof of this result can be found in [16, Theorem 2.1].

The study of the class of co-Cernikov groups is also of interest because of some of the
group classes it contains. It is straightforward to show (from 3.13 and 3.17 of [9]) that the
class 3£ of countable locally finite-soluble groups satisfying min-p for all primes p is a
sub-class of the class of co-Cernikov groups. No applications of the results we present
here are given, but we mention some results that appear in [3]. There it was shown that
the Sylow generating bases of an X-group are locally conjugate, thus generalising a result
of Baer [1]. (Our terminology is as in [4].) However our method of proof was similar to
that of [7], where the full force of the topological arguments is seen. In [4], a more
straightforward proof of this result is given.

Furthermore, we also showed in [3] that the Carter subgroups of an 3£-group are
isomorphic and one way of doing this is by use of the topological methods established
here. Actually our result could be deduced from a theorem of Massey [12], but we think
the method used in [3] is of some interest.

Our notation and terminology is mostly standard. If G is a Cernikov group, G° will
denote the unique minimal subgroup of finite index in G and will be called the radicable
part of G. If K<(G, JV), a co-Cernikov group, then we shall write K<CG, K<OG and
K <d G to denote that K is a closed subgroup of G, K is an open subgroup of G and K is
a dense subgroup of G respectively. If U is a subset of a set V then ^U will denote the
complement of U in V.

This paper is part of my Ph.D. thesis, and the results were obtained whilst I was a
student at the University of Warwick. I should like to thank my supervisor, Dr. S. E.
Stonehewer, for all his help and suggestions. I would also like to thank Professor B.
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Hartley for his many suggestions which made this paper possible. Finally, I should like to
thank the Science Research Council for its financial support.

2. Elementary properties of co-Cernikov groups. In this section we shall give the
basic definitions and elementary properties of co-Cernikov groups. Many of our results
are analogous to those obtained for arbitrary topological groups. However we shall give a
straightforward example to show that co-Cernikov groups are not, in general, topological
groups.

If G is a Cernikov group then we can regard G as a topological space with
{Hx:xeG,H<G} as a closed sub-base. Thus G is a co-Cernikov group relative to {1}
and every co-Cernikov topology on G gives rise to this topology. The topology defined on
G will be called the coset topology of G. It is analogous to the W-topology, a subtopology
of the Zariski topology of an affine algebraic group, defined in [16, p. 188]. We shall show
that G, together with the coset topology, is a compact Tj-space. A topological space T is
said to be Noetherian if every ascending chain of open subsets of T terminates in finitely
many steps or, equivalently, if every descending chain of closed subsets of T terminates in
finitely many steps.

LEMMA 2.1. Let G be a Cemikov group with coset topology. Then:
(i) G is a Noetherian, compact, T^-space;
(ii) every closed subset of G is a finite union of cosets of G.

Proof, (i) Let Sf = {Hx : x e G , H < G } , a closed sub-base for the coset topology.
Clearly y is closed under finite intersections and since G satisfies the minimum condition,
y has the minimum condition also. By a result of R. Bryant [2, Lemma 3.2], the coset
topology of G is a Noetherian topology. Hence G is compact and, from the definition, G
is a Trspace.

(ii) This follows from (i) and the laws of set theory.
This completes the proof.

I am indebted to both Professor Hartley and the referee for bringing R. Bryant's
result to my attention.

We can now obtain some information concerning the continuity properties of
homomorphisms of Cernikov groups.

LEMMA 2.2. Let G, H be Cemikov groups with coset topologies.
(i) // K < G then xK s c G, for all xeG.

(ii) If 4>:G-^G is defined by <j>(x) = x~\ for all xeG, then </> is closed and
continuous.

(iii) If 0: G - »H is a homomorphism then 0 is closed and continuous.
(iv) If yeG and ay, (}y:G—>G are defined by ay(x) = xy, /3y(x) = yx, for all xeG,

then ay and /3y are both closed and continuous.

Since (iii) can be handled by using 2.1 (ii), the proof of the above result is
straightforward and is omitted.
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One might hope that a Cernikov group G with coset topology was Hausdorff also,
but even the most straightforward example shows that this is generally not the case. For
let G = Cp->, the Priifer p-group, and suppose x, y e G with xj= y. Suppose there exist open
sets U,V^0 such that x e U, ye V and UH V = 0 . Then c6UUc6V = G. Since W , <gV
are closed they are finite unions of cosets by 2.1 (ii). It follows from [13, (4.4)] that G has
a subgroup of finite index. Hence G = ̂ U or G = ^V, a contradiction. This example also
shows that Cernikov groups with coset topology need not be topological groups in this
topology. For, every co-Cernikov group with a co-Cernikov topology is evidently Tx; but
the above example cannot be a topological group since this would contradict the
equivalence of (i) and (v) in Proposition 3(?TC&) of [8]. However in applications it is the
compactness that will turn out to be important.

PROPOSITION 2.3. Let (G, JV) be a co-Cemikov group and let 2F be the dosed sub-base
determined by JV. If H<G then

H=n{HN:NeJf}=n{HK:Ke& and K<G}.

In particular H <CG and if H < G then H<CG.

Proof. If NeJf, N<NH<G; so H/V<CG by definition of (G,Jf). Hence H <
Pi{HN:NeJf}<cG; so

Conversely, H is closed and hence

W=f1 UKiiXii,
i e f j = l

for some index set /, elements xfj e G, subgroups Ktj of G with Ntj < Ki( (for some Ntj e Jf)
" i

and n, eN0. Put Af = U K^. Since Jf is a separating filter base, it follows that for each

i G / there exists N{ e N such that Nt < Ktj for / = 1 , . . . , n(.
Now

H= U ( H f l ^ ) = U (HnXj,)yi,
j = l J = l

say. Here the KfJ have been renumbered, if necessary, n^ ̂  n{ is the number of non-empty
intersections H D K^ and ŷ  e H n KyX;,. Hence

HNf = U ( H n ^ J V i ^ c U K^y^A,
J=I i = i

for all i. Therefore n { H N : N e / } c f\ At=H and the result follows. It is now clear from
.ieJ

the definitions that H= D{HK:KeSF,K<G}. This completes the proof.

The next corollary is an easy consequence.
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COROLLARY 2.4. // (G, JV) is a co-Cernikov group then H<dG if and only if G = NH
for all NeJf.

The following extension of 2.2 is easily established.

LEMMA 2.5. Let (G, Jf) and (H, M) be co-Cemikov groups.
(i) If K<G and there exists NeJf such that N<K then, for all xeG,xK is a dosed

set.
(ii) If <f> :G —* G denotes inversion then <f> is closed and continuous.

(iii) If ay, j3y: G —» G are defined by ay(x) = xy and fiy(x) = yx, for x,yeG, then ay

and fiy are both closed and continuous.

Our immediate aim is to show that pro-Cernikov groups and compact co-Cernikov
groups are the same thing. We shall fix the following notation for the rest of this section.
Let {Gf, 0;,: i, j e 1} be an inverse system of Cernikov groups, with coset topologies, and
group homomorphisms indexed by a set /. So if i £ / > fc there exist homomorphisms
0j,: G, —» G, such, that 6ki = 6kj ° fy and 6^ is the identity map on Gf. Let G = lim Gh a
pro-Cernikov group, and let H = Cr Gh the cartesian product of the G(. Give G and H

their usual topologies. Let a.G^H denote the inclusion map, PJ:H—»Gf the ith
projection map and yt = ft ° a. Put M{ = ker ft, N{ = ker 7f and Jf = {Nf: i e I}.

The following properties are easily verified.

LEMMA 2.6. (i) Mf s=Cr G,- for all i e I.

(ii)

(iii)

(iv)

MjHG

i s l

= JV,

1-

1.

for all iel.

(v) N^Njifi^j.

LEMMA 2.7. (i) The maps a, ft, 7f, 0jj are continuous for i,jel.
(ii) Trie fe/i and right translation maps in G and H are continuous.
(iii) For each i > /, fy is a closed map.
(iv) // Mj < L < H then L <c H /or each i e /.
(v) 7/ Nf < L < G rhen L <c G /or each i e I.

Proof. Parts (i), (ii) and (iii) are trivial to prove using elementary topology (see [15],
for example) and 2.2.

(iv) With the usual identifications, H = MiXGf; so L = MiX(GjnL) by Dedekind's
law. Since Gf has the coset topology and H has its usual topology, L is a cartesian product
of closed sets and so is closed.

(v) If N; < L < G then Mf <MjL < H ; so MtL <CH by (iv). Since G has the subspace
topology, MjLnGs c G. By the Dedekind law and 2.6(ii), MjLnG = L and the result
follows.
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To prove the equivalence that we seek, we shall require the theorem concerning
inverse limits of topological spaces mentioned in the introduction.

THEOREM 2.8. A group K is a pro-Cemikov group if and only if, for some separating
filter base M, (K, M) is a compact co-Cernikov group.

Proof. (4>) With the notation introduced after 2.5, we may write K = G =lim Gf. By
2.1(i) and 2.2(iii), the hypotheses of 1.1 are satisfied and by l.l(b) and (c) we may assume
that the yt are surjective.

Let T be the co-Cernikov topology induced on G by M~ and let a denote the natural
subspace topology on G. Then, by l.l(e), (G, a) is a compact space. To prove the result it
now suffices to show a = r. By 2.7(v), if N j < L < G then L<c(G,<r). Hence sub-basic
closed sets in T are closed in cr; so T C J . On the other hand if L^G{ and ge G; then
(Lg x Mj) n G is a sub-basic closed set in a and

N£ = Mf n G <(L x Mf) n G.

Thus (LxMi)nG<c(G, T). Since yt is surjective, 2.5(iii) implies that (LgxMj)nG
c c (G, T) and hence cr = T as required.

(<£=) Our proof is similar to that given in [8] for profinite groups.
Let (K, M) be a compact co-Cernikov group, for some separating filter base M. Put

M = {Ht: i e J}, for some index set /, and order / via:

/ < i O Hf < Hj.

Thus for / < i there is a map </»,;: K/H, -^ K/Hj and {K/Hh ^ :i,je J} is an inverse system of
Cernikov groups and group homomorphisms. Put L = lim KIHt and define 4>:K—>L by:

^>(g) = (gHi)eL, for each geK.

The map 4> is clearly a monomorphism since M is a filter base. It now suffices to show
that </> is a surjection; so let (&.H;) e L. If {H;.: 1 <j < r} is any finite set of elements of M,
there exists HkeM such that

H t < H i i n . . . f l H i r ;

whence iu...,ir<k. Also ^(aHj) = &H, = gf l if j < i; so gkHk c g. Hti for / = 1 , . . . , r.
Hence the set {gjHf: i e J} has the finite intersection property and since (K, M) is compact
it follows that

If g is an element of this intersection then it is clear that < (̂g) = (g,Hj). Also <j> is a
homeomorphism since 4>(Hj) = L DCr GIHit which is in the filter base for L. This proves
the result. ' '

We now show that a co-Cernikov group can always be embedded as a dense
subgroup of a compact co-Cernikov group.
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COROLLARY 2.9. Let (K, M) be a co-Cemikov group. Then K can be embedded as a
dense subgroup of a pro-Cemikov group.

Proof. Let M = {H,: i e J} and let J be an index set ordered by

/ < i «> Hi<Hj for i,jeJ.

Put L = lim K/Hj. By 2.8, L together with a suitable separating filter base (which can
easily be written down) is a compact co-Cernikov group when, for each i, K/Ht is given its
coset topology and L is given its natural topology. The map <f>:K—>L given by
<Mg)= (gWj) (f°r g e K) ^ certainly an embedding of K in L, since M is a separating filter
base; so it suffices to prove <(>(K) is dense in L.

Let U be a basic open subset of L so that U = L DCr X{ with Xt £oKyH; and, for all
ieJ

but finitely many /, Xf = K/Ht. T o show that <t>(K) is dense in L, we need to show that
U n <I>(K) = Cr Xj n ^ ( i f ) ^ (Z). If (gjHj) e Cr X; n L and iu ...,ir are the indices for which

ieJ ieJ

Xf f K/Hh there exists k e / such that

Then, for this k, (gkHf)e (/>(K)nCr Xf. Finally note that </>(«,) = ^(K) n Cr G/Hf; so 4> is

closed and continuous. The result follows.

Using the notation of 2.9, let cfo : L —» X/Hf be the natural projection map. If <j) is the
embedding defined in 2.9, we can prove the following lemma in a similar manner to the
proof of that corollary.

LEMMA 2.10. For each i e J, <MH;) = ker fa.

A compact co-Cernikov group (L, &) containing a subgroup (K, M) as a dense
subspace will be called a completion of (K, M). We shall prove in 2.20 a result analogous
to Theorem 2.1 of [7]. Before doing this we give some further elementary properties of
co-Cernikov groups. We first give two obvious methods of constructing co-Cernikov
groups from a given co-Cernikov group (K,M). If L<K let L DM ={LDM:MeM} and
if L ^ K let MLIL = {ML/L :MeM}.

PROPOSITION 2.11. Suppose (K,M) is a co-Cemikov group and L < K Then
(L,MC\L) is a co-Cemikov group and the co-Cemikov topology induced by MDL is the
subspace topology.

The proof is trivial and is omitted.

PROPOSITION 2.12. // (K, M) is a co-Cemikov group andL<z CK then (K/L, MLIL) is a
co-Cemikov group.

Proof. This follows since ML/L is a separating filter base for KjL by 2.3. The

https://doi.org/10.1017/S0017089500004791 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004791


72 M. R. DIXON

co-Cernikov topology defined on K/L then has as a closed sub-base the set

{(F/L) • Lx :there exists MeM such that ML <F}.

This completes the proof.

It is easy see that the co-Cernikov topology defined on K/L in 2.12 is the quotient
topology. Because of 2.11 and 2.12 one might ask whether the product topology on a
cartesian product of co-Cernikov groups yields a co-Cernikov topology. An affirmative
answer would give, together with 2.11, a direct proof of the necessity of 2.8. However the
following easy example shows this is not true.

Let K = CP", the unique infinite locally cyclic p-group. Let T denote the product
topology on KxK, induced by the coset topology on K and let a be the coset topology on
KxK. Then T^=a. For let A ={(a, a):aeK}. A is certainly <j-closed but is not T-closed.
If that were the case there would exist subgroups Bt, C{ of K and elements Xj, y, e K such
that

= nf(u
I Minite

It follows from [13, 4.4] that there exists i such that either \A : A n(B; xfQ|<co or
|A : A D (K x Q)\ <oo. Since A is radicable it follows that either A < B; x K or A < K x Q,
for this i, and hence A = KXK, a contradiction.

The following three results, although straightforward, are very important for the
applications in Section 3 and [3].

LEMMA 2.13. Let (K,M) be a co-Cemikov group and suppose L<CK with K/L a
Cemikov group. Then there exists MeM such that M<L.

Proof. \iM= {Hf: i e J} then by 2.3

L=f]LH,

But KjL has the minimal condition on subgroups and so there are subgroups
n

H j , . . . ,HneM such that L= f] LHt. Since M is a separating filter base there is an
MeM such that i=1

as required.

COROLLARY 2.14. // (K,M) is a co-Cemikov group, L<CK with K/L Cemikov and
L^M^Kthen M<CK.

Proof. The proof is clear from 2.13 and the definition of the co-Cernikov topology
induced on K by M.
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LEMMA 2.15. Let {K,M) be a co-Cemikov group and L<K. If (L, L C\M) is compact
then L<CK.

Proof. By 2.3, £ = C\{LM:MeM}. If xsL then xeLM for each M e l Hence
L C\xMj= 0 and L C\xM^cL since L has the subspace topology. Moreover, since M is a
separating filter base, {L C\xM:MeM} has the finite intersection property. Hence by the
compactness of L,

So we must have xeL and L is closed, as required.

Thus in a compact co-Cernikov group, closed subgroups and compact subgroups are
the same thing.

We shall now prove our generalisation of 2.1 of [7]. We give some preliminary results
first, all of which are well known in the cofinite case.

LEMMA 2.16. Let (K,M) be a co-Cemikov group and L^CK. Then NK(L)scK.

Proof. If M e l , define NJM = NK/M(LM/M). We shall show

N K ( L ) = n { N M : M e l } < K

If xe n{N M :Me^}then LXM = LM for all MeM. Since L, Lx <CK, 2.3 implies LX = L.
Thus x 6 NK(L). The reverse inclusion is obvious.

LEMMA 2.17. Suppose (K,M) is a co-Cemikov group.
(i) If N<icK then the natural map a:(K,M)^>(K/N,MNIN) is continuous.

(ii) // (L, i?) is a co-Cemikov group and <x:{K,M)^>{L,££) is a continuous
epimorphism then given M<CL with L/M Cemikov there exists N<CK with KIN Cemikov
anda(N) = M.

Proof, (i) This is clear from the definitions.
(ii) Let <x~1(M) = N. Since a is continuous, N<CK. Since a is an epimorphism,

a(JV) = M and clearly K/N is a Cernikov group.

LEMMA 2.18. Suppose {K,M) is a co-Cemikov group and A, B are subsets of K. Then
ABgAB.

Proof. For each beB, Ab^AB and AfccAB. Thus ABcAB. Hence AB^AB.
Applying the first part of the argument to B and A now gives the result.

LEMMA 2.19. Let (K,M) be a co-Cemikov group and (K,Z£) a completion of K (thus
induces the same topology on K as M does).

(i) If 9= {M<c K: KIM is Cemikov} then

{M<cK: KIM is Cemikov}.

(ii) IfMeP then M = MHK.

Proof, (i) Let ^ = {Lt:ieJ} be the separating filter base. If M<CK and KIM is
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Cernikov there exists Lk<M by 2.13. Let S ={Lf ei?:L, <M}. Then £ is a separating
filter base for M. For if L,ei?, L,nLk contains some L{e<£. Thus Lfe£. If xe
n {Lm : Lm e £} then x e L; and hence x e L,. Thus x e D {Lm : Lm e i?} = 1 and hence £ is a
filter base.

Now N = MflX<lcK and K/N is Cernikov. Also N<M. We show N = M. For each
Lj€&, K = KLt by 2.4; so by the Dedekind law

M = Li(MnK) = LiN. (1)

Since £ is a separating filter base for M,N<dM and hence M = N.
Suppose now N<icK and K/JV is Cernikov. Since N<CK, N K ( N ) < C K Also if ge/C

then N = N*<Ng. Hence JV = iV8 and K<NR(N). It follows, since K<dl<C, that N<CK.
Moreover, K has the subspace topology; so there exists i eJ such that L; f l K < N by 2.13.
It follows from the argument used in showing (1) that

Thus K/N is a Cernikov group since K/Lt is, and (i) follows.
(ii) Clearly N<NC\K. However K has the subspace topology; so there exists C^CK

such that CnK = N. Hence N < C and AfnJC<CnK = N. The result follows.

We can now prove the result we have been seeking. Our proof, as with much that has
gone before, is similar to that of Hartley [7].

THEOREM 2.20. Let (K, M) be a co-Cernikov group contained as a dense subgroup of
the compact co-Cemikov group (K, 0*). Let (L, S£) be any compact co-Cemikov group and
a : (K, M) —» (L, if) a continuous homomorphism. Then:

(i) a can be uniquely extended to a continuous homomorphism a :(K, £?)—» (L, J£);
(ii) ^
(iii) a is injective if and only if a is an algebraic and topological embedding and in that

case a is an algebraic and topological isomorphism between K and a(K).

Proof. To begin we prove that if d is any continuous extension of a to K then
a(K) = a(K). K is compact; so a(K) is compact and hence is closed by 2.15. Thus
a(K)<a(K). Conversely, note that_K_s= d^ia(K))_and_since a(K) is closed and a is
continuous, it follows that K^d~\a(K)). Thus d(K)<a(K) and a(K) = a(K). Thus (ii)
is established and we may clearly also assume a (K) = L, so a (K) is dense in L.

We now show the existence of at most one continuous extension a of a from K to K.
Let 2, be the set of closed normal subgroups M of K such that KIM is Cernikov. If g e K,
d(g)ed{gM) for all M e l Thus

{a(g)}£ PI «(gM)- ' (2)
MeSL

We show the right hand side of (2) has just a single point. For, if x e f] d(gM) then
Mea

https://doi.org/10.1017/S0017089500004791 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004791


RESIDUALLY CERNIKOV GROUPS 75

ge Pi a~l(x)M. Since d is continuous and L is a Tj-space, 2.3 and 2.19 imply
Mea

ged~'(x). Hence x = d(g); so the right hand side of (2) has a single point.
Since K = KM, gM D Kj= 0 and if x e gM n K,

by 2.19(ii). Thus xM = (gMflK). Also g ( M f l K ) £ d ~ ' ( a ( g M n K ) ) and as shown below
a(gMDK) has a single point. Since d(gM) = d(gMDK)^ a(gMC\K), it follows that

Mea

{d(g)} = n a(gMDK). (3)
Mea

We have now determined d uniquely in terms of a. To show d exists, we shall show
that the right hand side of (3) is a single point for all g e K

_If M e 2 then 2.19(i) and K < d K imply gMDK^0 for each g e K The set
therefore has the finite intersection property and hence so does the set

{a(gMr\K):Me2.}. It follows, by the compactness of L, that

Suppose x, ye fl a(gMC\K). Since g M n i C ^ 0 , there exists heK such that
Mea

Thus x,yeo(fiM) = a(h)a(M), since a is a homomorphism. Hence xy ^eaiM) for all
M e l However fl <*(M) = 1 by 2.17(ii) and 2.1?(i). Hence x = y; so f| a(gMn/C)has

Mea • MeS

exactly one point, as required. Thus we define d :(K, ^)-»(L, i?) by d(g) = fl a
for each geK. M e 2

If geK then a(gMnJ() = a(gM) = a(g)a(M). Thus a(g)e fl a(gMnK); so
a(g) = d(g) and d extends a. _ M e a

We now show d is a homomorphism. Suppose g, h e K and Me2.. Since a is a
homomorphism, it is clear that

Hence, by 2.18,

Intersecting over all M e S gives {d(g)} • {d(h)}s{d(gh)} and hence d(gh) = d(g)d(h) as
required.

Now we show a is continuous. Since d is a homomorphism and because of 2.17(ii),
2.19(i) and the definition of the co-Cernikov topology on L, it is sufficient to show

a(M)<a(M) for all M e l (4)
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Suppose geM, N G S and JV<M. Then

by 2.19(ii). Intersecting over all such N, we obtain a(g)ea(M). Hence (4) follows.
If a is an injection, it is a closed continuous bijection between the compact spaces K

and a(K) by (ii), and hence is a topological and algebraic isomorphism. Hence a is an
algebraic and topological embedding.

Finally we suppose a is an algebraic and topological embedding. Let g 6 ker a. Then
by definition of a,

for all M e l

Since a determines a topological isomorphism between K and a(K), a(gMC\K)
gca(K). Thus

for each M e l

Hence l e a (gM n K) and since a is injective, 1 e gM D K. Thus g € M for each M e Si; so,
intersecting over all such M and using 2.19(i), we find that g = 1 and d is injective. This
completes the proof.

3. Sylow theory in pro-Cernikov groups. In this section we shall show that the
classical theorems of Sylow and Hall in finite group theory can be extended to the class of
pro-Cernikov groups. Our approach uses many of the methods of J. Parker [14] and B.
Hartley [7]. The main difference is that instead of using the theorem of Kuros [11] on
inverse limits of finite sets, we have been forced to use 1.1. This involves some
technicalities in ensuring that the correct topologies are induced, but these are easily
overcome.

To begin, we generalise the idea of a ir-group. Let IT be a set of primes. A
co-Cernikov group (G, Jf) will be called a generalised tr-group if GIN is a ir-group (in the
usual sense) for all N<CG with G/N Cernikov. This is analogous to the concept used in
[7], although there the term "generalised" is omitted.

LEMMA 3.1. Let (G,Jf) be a co-Cernikov group. Then (G,Jf) is a generalised ir-group
if and only if GIN is a ir-group for all NeJf.

Proof. This follows from the definitions and 2.13.

The idea of a generalised ir-group certainly depends on the filter base involved. For
example, if (g) is the infinite cyclic group it has the filter bases M ={(g2'):i^l} and
jV = {(g3'):' — 1}- However, ((g),M) is a generalised 2-group and ((g), Jf) is a generalised
3-group. We give several elementary properties of generalised ir-groups. A generalised
TT-group (H, M) that is a subgroup (with subspace topology) of a co-Cernikov group
(G, J{) will be called a generalised Tr-subgroup of (G, Jf).
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LEMMA 3.2. Let (G, Jf) be a co-Cernikov group and TT a set of primes.
(i) / / (G,Jf) is a generalised ir-group and H<G then (H,HC\Jf) is a generalised

TT-group.
(ii) If (G,Jf) is a generalised tr-group andK<cH<G then (H/K,(HnJf)K/K) is a

generalised TT-group.
(iii) / / {(Hi, H, C\Jf): i e /} is a set of generalised v-subgroups of (G, Jf) totally ordered

by inclusion, then \\J Ht, \{J HAnJf) is a generalised ir-subgroup of (G,Jf).
Vie/ Mel I I

(iv) / / (H,HDJf) is a generalised ir-subgroup of (G,Jf) then so is (H,HDJf).
(v) The product of every set of normal generalised tr-subgroups of (G, Jf) is a normal

generalised ir-subgroup of (G, Jf).

Proof, (i) If NeJf then H/Hr\N = HN/N<GIN, a 7r-group by hypothesis. Hence,
since (H,HC\Jf) is a co-Cernikov group, it is a generalised ir-group by 3.1.

(ii) The proof is similar to (i) using 2.12 and 3.1.
(iii) Suppose L <c U H( = M say, with MIL a Cernikov group. For each i e 7,

is/
LDHi <cHj by 2.11. Moreover, HJH, DL is a Cernikov ir-group by hypothesis. Hence
MIL is the union of the ascending chain of 77-subgroups i-ffL/L and so is a w-group. Thus

( U #i, I U HAP\M) is a generalised TT -subgroup of (G, Jf).
Vie/ Mel ' _ I

(iv) By 2.3, H < G. Suppose N<CH and H/N is a Cernikov group. Then HnN<cH
and HIHDN is a Cernikov ir-group by hypothesis. Since the closure of H in H is
precisely H, 2.4 and 2.13 imply H = HN; so H/N is a ir-group. Hence (H,HC\Jf) is a
generalised ir-subgroup of (G, Jf).

(v) It suffices to show that if (L, L(~)N) and (M,MC\Jf) are normal generalised
77-subgroups of (G,Jf) then so is {LM,LMf\J{). UN&M then L/LDN and M/MPiN
are -rr-groups. Hence (LMC\LN)/LMnN and {LMC\MN)ILMC\N are ir-groups. Thus
their product, LM/LMHN, is also a 7r-group and the result follows by 3.1.

A subgroup P of a co-Cernikov group (G, Jf) will be called a generalised Sylow
TT-subgroup of (G, Jf) if

(0 P^cG,
(ii) PN/NeSyl,G/N for all N<1CG with G/N Cernikov.
We shall denote the set of generalised Sylow TT -subgroups of (G, N) by Sylir(G, Jf). It

is not immediately clear that a co-Cernikov group possesses even generalised Sylow
p-subgroups. However we shall show that a pro-Cernikov group does possess them.

By 3.2(iii) and Zorn's lemma, the co-Cernikov group (G, Jf) contains maximal
generalised TT -subgroups and these subgroups are closed by 3.2(iv). Let Max^(G, Jf)
denote the set of maximal generalised 7r-subgroups of (G, Jf). In prosoluble groups the
concept of a generalised Sylow TT -subgroup and a maximal generalised 7r-subgroup are
the same [7, Lemma 6.1]. We at least have the following lemma.

LEMMA 3.3. Let (G,Jf) be a co-Cemikov group. Then Sy\7r(G,Jf)ciMa\v(G,Jf).
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Proof. Suppose PeSylJCAO and P^QeMax^G,J{) . Then P,Q<CG and PN<
QN for all NeN. Since PN/N e Syl^G/N and QN/N is a ir-group, we must have
PN=QN for all NeJf. Hence, by 2.3.

P= n{PN:N€JV}=n{QN:N€jV} = Q,

and the result holds.
Equality does not generally hold in 3.3. For an example of this, the reader should

consult [10, Theorem 2.1]. The example constructed there is a countable, metabelian,
residually finite group G with a normal Sylow 3-subgroup T and a Sylow 2-subgroup S
with the property that \G: ST\ = 2. Thus S is not a generalised Sylow 2-subgroup of G. A
similar example, due to B. Hartley, has occurred in [3, (4.13)]. As mentioned above, it has
been shown that Max^G, Jf) = SyL, (G, Jf) for prosoluble groups. Unfortunately the proof
of that result does not readily extend to our situation, even when all the Cernikov factor
groups are soluble.

A locally finite group G is Sylow ir-integrated (for some set of primes TT) if the Sylow
ir-subgroups of every subgroup of G are conjugate. For co-Cernikov groups whose
Cernikov factor groups are Sylow -IT -integrated it is easier to check that a given subgroup
is a generalised Sylow ir-subgroup, as the following result shows.

LEMMA 3.4. Suppose (G,Jf) is a co-Cemikov group and IT is a set of primes. Suppose
that for each NeJf, GIN is Sylow -n-integrated. Then PeSyL,(G,./0 if and only if

(0 P^cG,
(ii) PNINeSyl^G/JV for each NeJf.

Proof. We suppose (i) and (ii) hold and that M<CG with G/M a Cernikov group. By
2.13 there exists NeJf such that N<M; so, by (ii), PN = PN/NeSyl^G/N. Now GN =
GIN is Sylow ^-integrated and GM = GIM = GNIH, where H = MIN. Thus if Q/He
Syl^Gjv/H there exists geG N such that Q = HP% (by [6, Lemma 2.1], for example).
Hence PNHIHeSy\vGNIH and PM/M eSylwGM (since PNH/H = PMIM) as required. The
reverse implication is clear, so the result follows.

Of course, no restrictions are needed if ir = {p}, a single prime, since a Cernikov
group is always Sylow p-integrated.

To generalise the results of Sylow and Hall we require some preliminary results.

LEMMA 3.5. Suppose G is a Cemikov group and H^G. Let G have the coset topology
and let GIH denote the space of cosets of H in G with the quotient topology. Then the
natural map a:G^> G/H is closed and continuous.

Proof. The map a is certainly continuous from the definition of the quotient topology
on GIH. By 2.1 every closed set in G is a finite union of cosets of G; so we need only
show that if K < G then a(xK) is closed in GIH for each xeG.

Now a{xK) = {xkH:keK} and hence a-\a{xK)) = xKH. Of course, KH need not
be a subgroup but K and H possess radicable parts which we denote by K° and H°
respectively. Also K°H° is a subgroup since K°, H°<G°, the radicable part of G. If
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^ ! is a left transversal to K° in K and {y,},"=i is a right transversal to H° in H then
KH= U x,*:oHoy,.; so xKH = U x x ^ W y , , This set is closed in G by 2.2(iv) and the

i

definition of the coset topology. It follows from the definition of the quotient topology
that a is a closed map.

COROLLARY 3.6. Suppose G is a Cemikov group and H<K<G. If G/K and G/H
denote, respectively, the quotient spaces of cosets of K and H in G, induced by the coset
topology on G, then the natural map /3 : GIH —> GIK is closed and continuous.

Proof. Let aH:G^> GIH and aK:G^> G/K be the natural maps. By 3.5 these maps
are closed and continuous and since |3 ° aH = aK it follows that /3 is closed and continuous.

The following lemma is an extension of [7, Lemma 6.2] and is very useful in what
follows.

LEMMA 3.7. Let (G, Jf) be a compact co-Cemikov group and suppose that for each
NsJf, X(N) is a closed set with the property:

< N then X(M)N = X(N). (*)

Let X= D{X(N):NeJf}. Then, for all NeJf, XN = X{N).

Proof. It is clear that XN^X(N), for each NeJf. Let NeJf be fixed. If xeX(JV)
and MeJf is such that M < N then xeX(M)N by (*). Hence xJVnX(M)^0. If
Mu...,Mr<N with M; e Jf then there exists Mr+1 e N such that Mr+1 < M, n . . . n Mr.
By (*), X(Mr+1)Mf = X(Mf) for i = 1 , . . . , r. Therefore,

If M = {M e M: M < N} then {xN n X(M): M e M) is a set of closed subsets of (G, Jf)
with the finite intersection property. Since G is compact, there exists y e G such that

y e xN n ( n {X(M) : JVf s M}) = xN n ( n {X(M) : JVf e V̂}) = xTV n X.

Hence x e XN and this proves the result.

We now give our extension of Sylow's theorem.

THEOREM 3.8. Let (G, JV) be a compact co-Cemikov group. Then G possesses general-
ised Sylow p-subgroups for each prime p.

Proof. Let p be a fixed prime and for each NeJf let A(N) = {Sylow p-subgroups of
GIN}. Then A(N)j=0 and the elements of A(N) are conjugate since the Sylow
p-subgroups of a Cernikov group are conjugate.

For NeJf, let GN = G/N, give GN its coset topology and let PNeA(N). By the
previous remark, we may put the elements of A(N) in 1-1 correspondence with the cosets
of NCN(PN) in GN. Suppose N<M and N,MeJf. Since the Sylow p-subgroups of a
Cernikov group are homomorphism invariant, the natural map a ^ : GN —> GM induces a
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map PMNIACAO-^ACM). Suppose 0MN(PN) = P M and put G% = GN/NON(PN) as a top-
ological space with the quotient topology. We define a map P^N- G * - * G M by:

if g e G then

This map is well defined since (3MN(PN) = PM. If yN:GN—>G% is the natural map
then clearly 7M°aMN = 0MN°YN- Thus, as in 3.5, ($MN is closed and continuous. Hence,
if A(M) and A(N) are given the topologies induced from G£ and G* respectively, the
map j3MN is closed and continuous. Since GN is compact and T1; 3.5 implies that G* is
compact and Ta and hence A(N), with its induced topology, is compact and Tj for each
NeN. Our aim is to eventually use 1.1 applied to the sets A(N). However, it is first
necessary to check that we can choose the representatives PN s A(N) consistently and to
do this it suffices to show that if P, QeA(N) then the topologies induced on A(N) by
GNINON(P) and GN/NGN(Q) are the same. So let T and a be the topologies induced by
G N / N G N ( P ) and GNINGN(Q) on A(N), respectively. We identify an element Ph e (A(N), T)
with the right coset NGN(P)h (where heGN). Since P and Q are conjugate in GN, there
exists g e GN such that FK = Q.

Let {Ph>:ieJ} be a closed subset of (A(N), T) for some index set J. Then, by
definition, U NGN(P)hf ccGN. Hence, by 2.2(iv),

isJ

isJ xiej

Therefore {Q8~'h< :ieJ}cc(A(N),ar); whence {Ph> : ieJ} c c ( A (AT), cr) and TC<T. It fol-
lows by symmetry that r = a and consequently the topologies induced on A(N) are the
same.

The hypotheses of 1.1 are now satisfied for the inverse system {A(N), 0MN : M, N e JV};
so, by l.l(a), lim A(N)^O.

Let (PN) = (QN/N)elim A(N). If N<M, /3MN(PN) = PM and QNM=QM. Put P =

n{QN :NeJf}. Then P<C*G since ON<CG by definition. By 3.7, PN=QN for all Ne^V
and hence PN/NeSylpG/N. By 3.4 and the remark following it, PeSylp(G,,yV) and this
completes the proof.

Let 2B denote the class of co-Cernikov groups (G, JV) with the property that if NeJf
then G/N is soluble. The above proof then yields the next theorem.

THEOREM 3.9. Let (G,N) be a compact SB-group. Then G possesses generalised Sylow
TT-subgroups for all sets of primes TT.

We now obtain the conjugacy of the various generalised Sylow subgroups.

THEOREM 3.10. Let (G,Jf) be a compact co-Cemikov group. Then:
(i) the generalised Sylow p-subgroups of (G, Jf) are conjugate for all primes p;
(ii) if (G, Jf) e SB then the generalised Sylow ir-subgroups of (G, Jf) are conjugate, for

all sets of primes TT.
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Proof. Since the proofs of (i) and (ii) are essentially the same, we merely give the
proof of (i).

Let P, QeSylp(G,Jf) so that, for each NeJf, PN/N, QN/NeSy\pG/N. Put X(N) =
{gsG:PsN=QN}. Then X(N)j=0 since the Sylow p-subgroups of a Cernikov group
are conjugate. Now

g,heX(N) =$> PgN = PhN => g h ^ e NG(PJV).

Hence X(N) = Nc(PN)g and so X(N) is closed in (G,Jf) by 2.5(iii) and the definition of
the co-Cernikov topology induced by Jf. Moreover, if M,NeJf then X(M(~lN)s
X(M)nX(N) and so the set {X(N):NeJf} has the finite intersection property. Since
(G,Jf) is compact, (l{X(N):NeJf} contains an element g. Hence if NeJf, PRN =
and since P*,Q<CG, 2.3 implies

P g = D{PgiV:Are7V}= (l{QN:NeJf} = Q;

so P and Q are conjugate. This completes the proof.

The above method of proof is of course well known in the prosoluble group case.
By a generalised Sylow basis of a co-Cernikov group (G, Jf) we shall mean a complete

set of generalised Sylow p-subgroups, one for each prime p, with the property that if IT is
a set of primes then {Sp:pe IT) is a generalised 77-group. This is a somewhat more general
definition than that given by Parker [14], although in the prosoluble case our definition
and that of Parker coincide.

It is possible to prove the next theorem in a similar manner to 3.8.

THEOREM 3.11. Let {G,N) be a compact SB-group. Then (G,N) possesses generalised
Sylow bases.

The next theorem completes our survey of Hall's results.

THEOREM 3.12. Let {G,N) be a compact SB-group. Then the generalised Sylow bases
of (G, JV) are conjugate.

Proof. Let S = {SP} and T = {TP} be generalised Sylow bases and for NeJf set

X(N) = {geG: SpW = TPN for all primes p}.

Because (G, 7V)eSB, a result of Gol'berg [5] shows that the Sylow bases of GIN are
conjugate; so X(N)^0. Moreover if geX(N) then

X(N)= n NG(SpN)g;

so X(N) is closed in (G, Jf) and the sets X(N) are easily seen to have the finite
intersection property, as in the proof of 3.10. The result then follows easily.
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