FINITE TOPOLOGICAL SPACES AND QUASI-UNIFORM STRUCTURES

P. Fletcher

(received March 28, 1969)

1. <u>Introduction</u>. In [6], H. Sharp gives a matrix characterization of each topology on a finite set $X = \{x_1, x_2, \ldots, x_n\}$. The study of quasi-uniform spaces provides a more natural and obviously equivalent characterization of finite topological spaces. With this alternate characterization, results of quasi-uniform theory can be used to obtain simple proofs of some of the major theorems of [1], [3] and [6]. Moreover, the class of finite topological spaces has a quasi-uniform property which is of interest in its own right. All facts concerning quasi-uniform spaces which are used in this paper can be found in [4].

2. Preliminaries.

DEFINITION. Let X be a non-empty set and let $\mathcal U$ be a filter base on $X\times X$ such that

- i) each element of \mathcal{U} is a reflexive relation on X;
- ii) if $U \in \mathcal{U}$ there exists $W \in \mathcal{U}$ such that $W \circ W \subset U$.

Then ${\bf u}$ is a quasi-uniformity on X . If ${\bf u}$ is a filter, then ${\bf u}$ is called a quasi-uniform structure.

DEFINITION. Let X be a set and let $\mathcal U$ be a quasi-uniformity on X. Let $\mathcal I_{\mathcal U} = \{A \subset X \colon \text{if } a \in A \text{ then there exists } U \in \mathcal U \text{ such that } U(a) \subset A\}$. Then $\mathcal I_{\mathcal I}$ is the quasi-uniform topology on X generated by $\mathcal U$.

DEFINITION. Let (X, \mathbb{J}) be a topological space and let \mathcal{U} be a quasi-uniformity on X. Then \mathcal{U} is compatible if $\mathbb{J} = \mathbb{J}_{11}$.

It is shown in [5] that if (X, \mathcal{J}) is a topological space, then there exists a compatible quasi-uniformity u on X.

3. Finite topological spaces. It is clear that every finite topological space has a finite compatible quasi-uniformity. Let (X, \mathfrak{I}) be a topological

Canad. Math. Bull. vol. 12, no. 6, 1969

space with a finite compatible quasi-uniformity \mathcal{U}' and let \mathcal{U} be the quasi-uniform structure generated by \mathcal{U}' . Let $U = \bigcap \{V : V \in \mathcal{U}\}$. Then $U \in \mathcal{U}$. Thus there exists $W \in \mathcal{U}$ such that $W \circ W \subset U$. But $U \subset U \circ U \subset W \circ W \subset U$. Thus U is a reflexive and transitive relation, and since U is exactly the collection of all supersets of U, $\{U\}$ is a compatible quasi-uniformity.

DEFINITION. Let (X, \mathbb{J}) be a topological space with a finite compatible quasi-uniformity U. Let $U = \bigcap \{V : V \in \mathcal{U}\}$. Then $\{U\}$ is called the <u>fundamental quasi-uniformity of</u> (X, \mathbb{J}) with respect to \mathcal{U} .

THEOREM 3.1. Let (X, \mathcal{I}) be a topological space with a finite compatible quasi-uniformity and let $u = \{u\}$ be a compatible fundamental quasi-uniformity. Then for each $x \in X$, u(x) is the smallest open set which contains x.

<u>Proof.</u> Let $x \in X$. For any quasi-uniform space it is true that $x \in [U(x)]^0$. Hence $U(x) \subset [U(x)]^0$. Moreover, if $x \in A \in \mathcal{T} = \mathcal{T}_{u}$, then $U(x) \in A$ by definition.

THEOREM 3.2. Let (X, \mathbb{J}) be a topological space with a finite compatible quasi-uniformity and let $u = \{u\}$ be a compatible fundamental quasi-uniformity. Let $x, y \in X$ with $x \neq y$. Then $(x, y) \in U$ if and only if $u(y) \subset u(x)$.

<u>Proof.</u> Suppose $(x,y) \in U$. Then $y \in U(x)$ so that $U(y) \subset U \circ U(x) = U(x)$. The reverse implication follows from the fact that $y \in U(y)$.

COROLLARY. Let $x, y \in X$ with $x \neq y$. Then U(x) = U(y) if and only if $y \in U(x)$ and $x \in U(y)$.

THEOREM 3.3. Let (X,3) be a topological space and suppose there exists a finite compatible quasi-uniformity u. Then the quasi-uniform structure u generated by u is the largest compatible quasi-uniform structure on u.

<u>Proof.</u> Let V be the universal quasi-uniform structure for (X, \mathcal{I}) . By definition $\mathcal{U} \subset V$, and Y is the largest compatible quasi-uniform structure on X. Let $V \in Y$ and let $U = \bigcap \{W : W \in \mathcal{U}'\}$. Let $x \in X$. Since U(x) is a subset of any open set which contains $x, U(x) \subset [V(x)]^{\circ} \subset V(x)$. Thus $U \subset V$ so that $V \in \mathcal{U}$. Hence $\mathcal{U} = Y$.

COROLLARY. Let (X, \mathcal{I}) be a finite topological space. Then there exists exactly one quasi-uniform structure which is compatible with (X, \mathcal{I}) .

COROLLARY. Each topological space with a finite compatible quasi-uniformity has exactly one compatible fundamental quasi-uniformity.

COROLLARY [6]. Let X be a finite set. There is a one-to-one correspondence between the collection of all topologies on X and the collection of all reflexive, transitive relations on X.

COROLLARY [3]. The number of topologies on a finite set X with exactly n elements is less than or equal to $2^{n(n-1)}$.

 $\underline{\text{Proof}}$. There are $2^{n(n-1)}$ subsets of $X \times X$ - Δ . Hence there are at most $2^{n(n-1)}$ fundamental quasi-uniformities on X.

4. Topological properties of finite topological spaces.

THEOREM 4.1. Let (X, \Im) be a finite topological space and let $\mathcal{U} = \{U\}$ be the compatible fundamental quasi-uniformity. Then $(X, \Im_{\mathcal{U}})$ is connected if and only if $\{X, \Im_{\mathcal{U}}\}$ is connected.

 $\frac{\text{Proof.}}{\{a\}} = \bigcap \{U(a): U^{-1} \in \mathcal{U}\} = U^{-1}(a). \text{ Thus every } \mathcal{T}_{u^{-1}} \text{ - open set is } \mathcal{T}_{u} \text{ - closed and the theorem follows.}$

COROLLARY [6]. If X is a finite set there are an even number of non-trivial connected topologies on X.

The following theorem originally proved in [1] illustrates the force of quasi-uniform theory on finite topological spaces. All of the equivalences of this theorem are immediate consequences of basic theorems about quasi-uniform spaces.

THEOREM 4.2. [1]. Let (X, J) be a finite topological space and let $u = \{U\}$ be the compatible fundamental quasi-uniformity. The following are equivalent.

- (a) U is symmetric;
- (b) (X, J) is regular;
- (c) (X, J) is completely regular;
- (d) (X, 3) is 0-dimensional;
- (e) (X, I) is R,
- (f) (X, \Im) is \Re_0 .

<u>Proof.</u> It is well known that $a \Rightarrow c$, $c \Rightarrow d$, and $e \Rightarrow f$.

 $b \Rightarrow a$: [4, Theorem 3.17 ii].

$$a \Rightarrow e: U(a) = U^{-1}(a) = \bigcap \{U^{-1}(a) : U \in U\} = \{\overline{a}\}.$$

 $\underline{f} \Rightarrow \underline{a}$: [4, Theorem 3.8].

 $d \Rightarrow b$: If U(a) is closed, then by [4, Theorem 1.15], U(a) = $U^{-1} \circ U(a)$. By [4, Theorem 3.17 iii], (X,3) is regular.

Perhaps the most important separation axiom in finite topological spaces is the T_o separation axiom. By [4, Theorem 3.1], a finite topological space (X,3) is T_o if and only if the member of its fundamental quasi-uniformity is anti-symmetric.

5. A quasi-uniform property of finite topological spaces.

Finite topological spaces have a noteworthy quasi-uniform property: namely, if (X, \mathbb{J}) is a finite topological space then (X, \mathbb{J}) has a unique compatible quasi-uniform structure. Uniform spaces having a unique compatible uniform structure have been characterized by R. Doss [2], and it is well known that the unique compatible uniform structure of a compact Hausdorff space is the collection of all neighborhoods of the diagonal in $X \times X$. On the other hand, it is not difficult to find compact Hausdorff spaces which have two distinct compatible quasi-uniform structures. Such an example is given in [5]. I conjecture that a topological space (X, \mathbb{J}) admits exactly one compatible quasi-uniform structure if and only if \mathbb{J} is finite. The following theorem supports this conjecture.

THEOREM 5.1. If (X, J) is a Tychonoff space with a unique compatible quasi-uniform structure, then (X, J) is a finite topological space.

<u>Proof.</u> The unique quasi-uniform structure u is the Pervin quasi-uniform structure. Since $u = u_{u-1}$ is $u = u_{u-1}$ is the discrete topology and since $u = u_{u-1}$ is uniformizable $u = u_{u-1}$. Thus $u = u_{u-1}$ is discrete and hence metrizable. It follows that u is complete and since u is the Pervin quasi-uniform structure, u is totally bounded. Then $u = u_{u-1}$ is compact and discrete. Hence $u = u_{u-1}$ is finite.

The author wishes to thank the referee for his many helpful suggestions.

REFERENCES

- 1. D.A. Bonnet and J.R. Porter, Matrix characterizations of topological properties. Canad. Math. Bull. 11 (1968) 95-105.
- 2. R. Doss, On uniform spaces with a unique structure. Amer. J. Math. 71 (1949) 19-23.
- 3. V. Krishnamurthy, On the number of topologies on a finite set. Amer. Math. Monthly 73 (1966) 154-157.
- 4. M.G. Murdeshwar and S.A. Naimpally, Quasi-uniform topological spaces. (Noordhoff, 1966.)
- 5. W.J. Pervin, Quasi-uniformization of topological spaces. Math. Ann. 147 (1962) 316-317.
- 6. H. Sharp, Quasi-orderings and topologies on finite sets. Proc. Amer. Math. Soc. 17 (1966) 1344-1349.

Virginia Polytechnic Institute Blacksburg Virginia 24061