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Different shear regimes in the dense granular
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The steady dense granular flow in a vertical channel bounded by flat frictional walls in
one horizontal direction and with periodic boundary conditions in the other horizontal
and vertical directions is studied using the discrete element method. The shape of the
scaled velocity profile is characterized quantitatively by a universal exponential function,
and the ratio of the maximum and slip velocities is independent of the average volume
fraction φ̄ and the channel width W. For sufficiently wide channels, the maximum and
slip velocities increase proportional to

√
W, and the thickness of the shearing zones

increases proportional to W. There are four zones in the flow, each with distinct dynamical
properties. There is no shear in the plug zone at the centre, but there is particle agitation,
and the volume fraction φ is lower than the random close packing volume fraction φrcp.
In the adjoining dense shearing zone, φ is greater than the volume fraction for arrested
dynamics φad = 0.587, and the granular temperature and shear rate depend on the particle
stiffness. Adjacent to the dense shearing zone is the loose shearing zone where φ < φad.
Here, the properties do not depend on the particle stiffness, and the constitutive relations
are well described by hard-particle models. The rheology in the loose shearing zone is
similar to the dense flow down an inclined plane. There is high shear and a sharp decrease
in φ in the wall shearing zone of thickness about two particle diameters, where the particle
angular velocity is different from the material rotation rate due to the presence of the wall.

Key words: dry granular material

1. Introduction

The flow of particles in a vertical channel of infinite length bounded by parallel walls
under the influence of gravity is one of the simplest examples of a granular flow. This is an
approximation for the flow in the central region of a long vertical bin away from the free
surface and the bottom exit. The flow is expected to be unidirectional and fully developed,
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and the velocity in the vertical direction is a function of only one cross-stream direction,
if we assume that the system is infinite in the second cross-stream direction. This flow
has been studied in experiments (Savage 1979; Nedderman & Laohakul 1980; Natarajan,
Hunt & Taylor 1995; Pouliquen & Gutfraind 1996; Ananda, Moka & Nott 2008) and using
theoretical models (Goodman & Cowin 1971; Savage 1979; Gutfraind & Pouliquen 1996;
Mohan, Nott & Rao 1997, 1999; Barker, Zhu & Sun 2022; Debnath, Kumaran & Rao
2022). There is consensus that the flow consists of a central plug zone, where the material
flows without shearing, and relatively thin layers close to the wall where there is shearing.
These flows are usually very dense, and the volume fraction is close to random close
packing, though there is a decrease in the volume fraction in the shearing zones close to
the wall. From the momentum balance, the normal stress in the cross-stream direction is a
constant. If the decrease in the volume fraction near the walls is neglected, then the shear
stress increases proportional to the distance from the centre of the channel. The precise
volume fraction is difficult to measure in experiments as it is near close packing, but the
flow velocities have been measured. Despite the simplicity of the configuration, there is as
yet no established model for the dependence of the velocity profile, volume fraction and
shear layer thickness on the system parameters such as the channel width, particle diameter
and average volume fraction.

In experimental configurations, the flow rate in the fully developed unidirectional flow
far from the exit depends on the width of the exit slot and the exit conditions. The discharge
rate at the exit is described by the Beverloo correlation (Beverloo, Leniger & Van de Velde
1961), where the velocity is proportional to the square root of the width of the exit slot.
The discharge rate at the exit slot determines the average flow velocity far upstream of
the exit slot, and the average volume fraction at that location is set by the flow velocity,
overburden, and the particle–particle and particle–wall interactions. If the width of the
channel is much smaller than the height, then the weight of the overburden at a given
depth from the free surface is balanced by the frictional force exerted by the side walls (the
Janssen effect; Janssen 1895), and the pressure is independent of depth; this is in contrast
to the linear increase of pressure with depth for normal fluids. For a steady unidirectional
flow, the total height of the channel does not affect the flow. Therefore, the flow profile in
the central region of the channel should be amenable to a description based on the average
volume fraction, the wall friction and the dimensions in that region, instead of the total
height or the discharge rate fixed at the exit.

To examine a steady fully developed unidirectional flow, we consider a simpler
configuration in simulations, where the channel is bounded by two flat frictional walls
in the cross-stream direction, and periodic boundary conditions are imposed in the flow
and spanwise directions. The average volume fraction of particles in the channel is fixed
by the initial loading before the onset of flow. If the average volume fraction is small, then
it is expected that the particles will accelerate continuously due to gravity, and no steady
state will be reached. If the average volume fraction is near random close packing, then
there will be a jammed state in which there is no flow. Here, we examine an intermediate
range of the average volume fractions where there is a steady fully developed flow.

The salient feature of the flow in a channel is the presence of a plug zone at the centre
where there is no shearing, and shear layers at the walls. Two possible states are predicted
by frictional models, a static state and a plug flow with an indeterminate velocity. This
is because frictional models do not have any rate dependence, and they do not contain
any intrinsic length scale. A microscopic length scale has been included in different ways
in models for dense granular flows. In the Cosserat models (Mohan et al. 1999; Mohan,
Rao & Nott 2002), the particle spin is incorporated as an additional field; the length scale
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in this model is the distance from the walls over which there is a difference between the
particle angular velocity and the material rotation rate due to the wall effect. Granular
fluidity models (Aranson & Tsimring 2001; Henann & Kamrin 2013) define an additional
field that is a measure of the extent of ‘fluidity’ of the material at a location. The fluidity
is determined from a conservation equation similar to a diffusion equation (Henann &
Kamrin 2013) or an order parameter equation describing the cross-over between flowing
and static states (Aranson & Tsimring 2001). A different approach was followed by Dsouza
& Nott (2020), where the flow rule was integrated over a representative volume with
an effective mesoscopic size, to obtain constitutive relations containing the Laplacian of
the rate of deformation tensor. However, these models require boundary conditions to be
specified, and these boundary conditions are not prescribed. There is ambiguity in how the
boundary conditions are to be imposed in different configurations. Some of these models
have third and higher derivatives of the velocity, hence additional boundary conditions are
required.

The incompressible μ(I) models (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006)
attempt to incorporate rate dependence in the constitutive relations through the inertia
parameter I. The friction coefficient μ, the ratio of the shear and normal stresses, is
expressed as a function of I, the shear rate non-dimensionalized by the square root of the
normal stress along with suitable powers of the particle diameter and density. Universal
relations, presented later in (B3) and (B4), have been proposed for the relation between
the stress, volume fraction and inertia parameter. While the μ(I) rheology has been
used widely for diverse applications, it is ill-posed in the sense that it is unstable to
small wavelength perturbations. Well-posed models have been proposed by incorporating
compressibility and inertia parameter in the flow rule and the yield function (Barker et al.
2017; Schaeffer et al. 2019).

Recently, Debnath et al. (2022) compared the predictions of some of these models
with simulation results. None of the models predict all the profiles well, and some of
the models could not be solved for some values of the parameters used. For example,
the model of Barker et al. (2017) predicts that the volume fraction is almost a constant
across the channel. The occurrence of negative fluidity in the model of Henann & Kamrin
(2013) in some cases is an unrealistic feature. The model of Dsouza & Nott (2020) predicts
thick shear layers and higher normal stress compared to results obtained using the discrete
element method (DEM).

Another issue in applying the non-local model of Kamrin & Koval (2012) is the
following. The vertical flow considered by Kamrin & Koval (2012) and Kim & Kamrin
(2020) is unusual, because the pressure exerted on the walls is specified, and not the
loading. Therefore, the width is permitted to vary, while the pressure is maintained as
constant. This is rather unrealistic, because in a practical realization, one of the walls
is not fixed, but is connected to springs that maintain a constant normal stress. This
configuration was used specifically because the μ(I) parameter can be calculated directly
from the known normal stress, and the shear stress can be determined from the body force
per unit volume. In contrast, we are examining a flow where the average volume fraction
is specified, but the normal stress is not.

The flow down an inclined plane is a configuration that has been studied widely using
particle-based simulations (Silbert et al. 2001; Mitarai & Nakanishi 2005; Brewster et
al. 2008; Reddy & Kumaran 2007, 2010). In three-dimensional simulations of particle
assemblies, there is no flow when the angle of inclination is below a minimum value of
about 20◦. There is steady flow over a relatively small range of angles, ∼20◦–24◦, and the
flow becomes unstable when the angle of inclination exceeds about 25◦. There are several
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intriguing features that are observed for a steady flow. From momentum balance, the ratio
of the normal and shear stresses is equal to the tangent of the angle of inclination. The
volume fraction is found to be independent of height, in contrast to the intuitive expectation
of greater compaction with increasing depth due to the higher overburden. The ‘Bagnold
law’ (Bagnold 1954, 1956) describes the relation between the stress and the velocity profile
in the bulk, and the ‘granular temperature’ (defined in (2.3)) increases linearly with depth.
A novel transition between an ordered and a disordered flow due to an increase in the base
roughness has also been reported (Kumaran & Maheshwari 2012; Kumaran & Bharathraj
2013; Bharathraj & Kumaran 2017; Silbert et al. 2002). The relation between the stress
and shear rate is found to obey the Bagnold law in both the ordered and disordered flows,
though the Bagnold coefficients are very different.

The Bagnold law, which states that the stress is proportional to the square of the shear
rate, follows from dimensional analysis if the inverse of the shear rate is the only time
scale in the problem. The assumption is that the particle interactions are instantaneous,
and this assumption is valid if the period of the interactions is much smaller than the
inverse of the shear rate. The instantaneous collision assumption is made in kinetic theory
of granular flows, where the particle velocity distribution function is defined in a manner
similar to the molecular distribution function in the kinetic theory of gases (Lun et al. 1984;
Jenkins & Richman 1985; Kumaran 1998). The mass, momentum and energy conservation
equations are derived from the Boltzmann equation for the velocity distribution function.
The energy conservation equation for the granular temperature contains an additional
dissipation term due to particle interactions which is not present for a molecular fluid.
In kinetic theory, it is also assumed that the system is dilute, and correlations between
colliding particles are neglected due to the ‘molecular chaos’ assumption. Constitutive
relations for dense granular flows have been derived using the Enskog procedure (Sela,
Goldhirsch & Noskowicz 1996; Sela & Goldhirsch 1998; Kumaran 2004, 2006), and
attempts have been made to go beyond the molecular chaos assumption and incorporate
correlations in the pre-collisional velocities of the particles (Goldhirsch & van Noije 2000;
Kumaran 2009a,b). With these refinements, it has been shown that the salient features of
a dense granular flow in an inclined channel are captured adequately by models based on
the hard-particle approximation (Kumaran 2008, 2014).

For an inclined plane flow, as the inclination angle is decreased, the maximum volume
fraction in the flowing state is about 0.585–0.59, which is denoted the volume fraction
for arrested dynamics, φad. The physical meaning of φad is that an assembly of perfectly
hard spheres (in which the repulsive force is zero when two particles are not in contact,
and infinite when they are in contact) cannot be sheared if the volume fraction φ exceeds
φad. For φ ≥ φad, shearing is possible only if the particles have finite stiffness. For φ <

φad, the Bagnold law based on the hard-particle model appears to apply even for dense
granular flows. Kinetic models have been modified by incorporating a mesoscopic length
scale representing particle chains to predict φad in a sheared dense granular flow (Jenkins
2006, 2007; Berzi & Jenkins 2015).

The change in the rheology at φ = φad is consistent with the simulation studies of
Kumaran (2009c,d). These showed that φad for a dense sheared inelastic hard-particle
fluid is a function of the coefficients of restitution (en, et) in the directions perpendicular
and parallel to the surfaces at contact. The value of φad is in the range 0.585–0.59 for
smooth (et = −1) inelastic particles with en less than 0.6, and 0.581–0.612 for perfectly
rough (et = 1) inelastic particles with en ≥ 0.6. It is significantly lower than the random
close packing volume fraction φrcp = 0.64 for an elastic hard-sphere fluid in the absence
of shear. In contrast, the volume fraction φ in the plug zone could be significantly higher
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than φad in the vertical channel. This raises the question of whether the nature of the
flow in a vertical channel is qualitatively different from the flow down an inclined plane,
or whether φ in the shearing zones is below φad and the hard-particle model can be
applied.

Berzi, Jenkins & Richard (2019, 2020) have separated the flow through an inclined chute
with bumpy base and frictional side walls into two regimes: (i) a dense erodible layer near
the bumpy base where φ ≥ φc, a critical volume fraction; and (ii) a loose collisional layer
above the erodible zone where φ < φc. The concept of φc can be linked to φad, which will
be discussed shortly. The material in the erodible layer moves very slowly with negligible
particle fluctuations compared to that in the collisional layer. The stress and dissipation
rate in the collisional flow are adapted from the kinetic theory of granular flows with
coefficients modified to incorporate the finite duration of contacts (Berzi & Jenkins 2015).
In the erodible region, the rate-independent stresses arise because of sustained contacts,
hence a rate-independent component is added to the pressure (Berzi et al. 2020). The form
of the rate-independent term in pressure is motivated from the plane shear studies done by
Chialvo, Sun & Sundaresan (2012). The latter have shown that the rate-independent effects
are dominant for φ ≥ φc in the limit of vanishing shear rate, and φc does not depend on
en. It varies with the coefficient of interparticle friction μp; for example, φc = 0.587 for
μp = 0.5, which Berzi et al. (2019, 2020) have adopted to mark the boundary between the
erodible and collisional layers.

It is interesting to note that the range of φc for μp varying between 0 and 1 in the plane
shear simulations of soft particles having finite stiffness (Chialvo et al. 2012; Berzi &
Vescovi 2015) is similar approximately to φad in plane shear simulations of hard inelastic
rough particles having infinite stiffness (Kumaran 2009c, d). Chialvo et al. (2012) state that
φc is similar to φad, and this volume fraction is an important parameter to explain arrested
dynamics or jamming. In the vertical channel flow, we examine whether the distinction into
different zones – collisional flow and erodible bed – in an inclined plane flow is similar to
that between the plug and shear layers for a vertical channel flow. The volume fraction for
arrested dynamics is considered to be φad = 0.587 in the channel flow for definiteness, as
we performed soft-sphere DEM simulations with μp = 0.5.

In the vertical channel flow, the simulations are carried out to examine the flow
mechanics at the particle scale, to examine which of the different approximations apply
in a vertical channel flow. An important issue is whether there are multiple zones with
distinct flow regimes, the nature of the rheology in these zones, and whether properties like
the volume fraction and the shear rate vary continuously across these zones. Of interest is
whether the relation between the friction coefficient and the shear rate varies in different
zones, and the nature of the variation. Also of interest is the effect of particle stiffness on
rheology in different zones. Another relevant quantity in the kinetic-theory-based models
is the granular temperature, which is the mean square of the fluctuating velocity of the
particles. We examine whether the variation of the granular temperature is continuous
across the channel, and whether the temperature is non-zero in the plug zone. The nature
of the velocity profile in the shearing zone is also examined here, to determine the
universality and scaling with respect to the channel width. The relation between the slip
velocity and the shear rate at the wall, and their variation with channel width, is also
determined.

The simulation methodology is summarized briefly in Appendix A, and the flow
configuration and preparation protocols are discussed in § 2. Appendix B summarizes
the theoretical formulations that are compared with simulations in § 3. The important
conclusions are summarized in § 4.
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Figure 1. The configuration and coordinate system for analysing the flow in a vertical channel bounded by two
flat frictional walls. The hatched surfaces are the flat frictional walls in the x direction, and periodic boundary
conditions are applied in the other two directions.

2. Flow configuration

Studies are carried out on the flow through a vertical channel of rectangular cross-section
with dimensions H × W × B, as shown in figure 1. The channel is bounded by two
flat frictional vertical walls in the x direction at x = 0 and x = W, and gravitational
acceleration acts in the vertical y direction. Periodic boundary conditions are applied
in the vertical y direction and in the z direction in the horizontal plane. Attention is
confined to steady fully developed flows that are symmetric about the central plane at
x = W/2, therefore results are shown only for 0 ≤ x ≤ W/2. The width of the channel
is varied in the range 60 dp ≤ W ≤ 150 dp, and the other two dimensions are B = 40 dp
and H = 60 dp + �H, where dp is the nominal particle diameter, and the choice of �H is
discussed shortly. The total number of particles is 1.7 × 105 for a system of width 60 dp,
and 4.1 × 105 for a system of width 150 dp. A polydisperse mixture of particles is used,
where 30 % of the particles have diameter 0.9 dp, 40 % have diameter dp, and 30 % have
diameter 1.1 dp.

The preparation protocol is shown in figure 2. Initially, a flat surface is placed at the
bottom of the channel. The channel is filled by raining the particles uniformly under
the effect of gravity up to a height H − �H. After the particles settle, the bottom is
removed and the periodic boundary conditions are imposed in the vertical y and spanwise z
directions. Here, the value of �H is chosen such that a desired value of the average volume
fraction φ̄, the ratio of the total volume of the particles to the volume of the channel, can
be obtained. For W = 60–150 dp, a final steady state is achieved for φ̄ in the range φ̄cr

to φ̄max. When φ̄ is greater than φ̄max = 0.62, the channel jams and there is no flow.
When φ̄ is decreased below φ̄cr, there is an oscillatory and then an accelerating flow

945 A25-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.482


Different shear regimes in the dense granular flow

�H

(b)(a)

Figure 2. Preparation protocol for the channel flow. An impenetrable surface is placed at the bottom (a), and
particles are filled in up to a height (H − �H). The bottom is removed (b), periodic boundary conditions are
applied in the y and z directions, and the flow is evolved to reach steady state.

(Debnath, Kumaran & Rao 2019). The value of φ̄cr is found to be 0.59 for
W = 100–150 dp. The present study is restricted to the steady fully developed
flows.

Raafat, Hulin & Herrmann (1996) studied the flow of sand grains in a capillary tube,
where the ratio of the particle size to the tube diameter was relatively small, in the range
6–30. The average volume fraction φ̄ was in between the dilute regime where there is
a free fall of grains, and the dense slow flow regime. At these intermediate average
volume fractions, density waves are observed in the channel, in the form of bubbles
and clogs. For the relative small size of the tube used, finite-size effects are likely to be
important. This is different from the present analysis, where the size ratio is in the range
60–150, and φ̄ is in the dense flow regime. Due to this, density waves are not observed
here.

The time required for the flow to attain a steady fully developed state is 2 × 103√dp/g,
and the averaging time for calculating the properties is 6 × 102√dp/g. To calculate the
variation of the properties in the cross-stream x direction, the channel is divided into bins
of width dp, except for the bin near the wall, which is set to 1.5 dp. The velocity, angular
velocity and granular temperature fields are calculated as

v =
∑N

i=1 mivi∑N
i=1 mi

, (2.1)

Ω =
∑N

i=1 IiΩ i∑N
i=1 Ii

, (2.2)

T = 1
6N

N∑
i=1

(
mi(vi − v)2 + Ii(Ω i − Ω)2

)
, (2.3)
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where N is the number of particles whose centres lie in the bin, mi and Ii = 1
10 mid2

i are
the mass and moment of inertia of particle i, and vi and Ω i are the linear and angular
velocities of that particle. The stress tensor σ is

σ = 1
V

N∑
i=1

⎡
⎣
⎛
⎝ncontacts∑

j /= i

F ij xij

2

⎞
⎠+ mi(vi − v)(vi − v)

⎤
⎦ . (2.4)

Here, V is the volume of the bin, and the summation j is carried out over all contacts
of particle i. The first term in (2.4) is the contribution to the stress due to interparticle
interactions, and the second term is the kinetic contribution due to the particle fluctuating
velocities. The rate of dissipation of energy per unit volume D is calculated as

D = 1
Vτ

N∑
i=1

ncontacts∑
j /= i

∫ τ

0
(F ij · vij) dt, (2.5)

where τ is the period of the simulation. The rate of dissipation of energy is also a local
quantity, evaluated for all the particles with centres within a bin.

The DEM and the simulation parameters are described in Appendix A. In the results,
the particle density is considered to be 1, so that the mass dimensions in all quantities are
scaled appropriately.

3. Results

3.1. Velocity and stress profiles
There is a steady flow for a small range of the average volume fraction φ̄ = 0.59–0.61.
The average velocity fluctuates in time for φ̄ = 0.62, and there is no flow when φ̄ exceeds
0.62. The typical time series for the velocity of the centre of mass ucm, scaled by its
time-averaged value ūcm, is shown in figure 3. It is observed that there are fluctuations
of 1–2 % for φ̄ = 0.62. In contrast, for 0.59 ≤ φ̄ ≤ 0.61, the variation in the velocity of
the centre of mass is less than 1 %, indicating that there is uniform steady flow.

The velocity profiles, shown as functions of cross-stream distance in figure 4(a), exhibit
a plug-like behaviour in the central region, a shear zone close to the wall and significant
slip at the wall. Both the slip velocity uslip and the maximum velocity umax increase as φ̄

decreases, and as the channel width W increases. Both uslip and umax increase by a factor
of 5 or more when φ̄ is decreased from 0.62 to 0.59. There is also a significant increase in
umax and uslip, by a factor of 3 when W is increased from 60 dp to 150 dp. From figure 4, it
is also evident that the length scale for the shearing region at the wall is also a function of
φ̄ and W.

In figure 4(b), the scaled velocity is defined as (uy − uslip)/(umax − uslip). This is plotted
as a function of the scaled distance from the wall, x/δ0.95, where δ0.95 is the distance at
which (uy − uslip)/(umax − uslip) = 0.95. Plotted in these scaled coordinates, the scaled
velocity follows a universal profile that is independent of φ̄ and W. Thus the scaled velocity
profile has a universal form, though uslip, umax and δ0.95 vary significantly with φ̄ and W.
The red dashed line in figure 4(b) is the fit

uy − uslip

umax − uslip
= 1 − exp(−3x/δ0.95). (3.1)

This exponential function provides an excellent fit for the scaled velocity profile for the
entire range of φ̄ and W examined here. The average velocity ū is then expressed in terms
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Figure 3. A typical time series of the centre of mass velocity ucm divided by its time-averaged value ūcm for a
channel of width 100 particle diameters and for average volume fraction φ̄ = 0.62 (◦), φ̄ = 0.61 (�), φ̄ = 0.6
(∇) and φ̄ = 0.59 (	).
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Figure 4. The velocity uy as a function of x/dp (a) and the scaled velocity (uy − uslip)/(umax − uslip) as a
function of x/δ0.95. Here, uslip is the slip velocity at the wall, umax is the maximum velocity at the centre and
δ0.95 is the distance at which (uy − uslip)/(umax − uslip) = 0.95. The average volume fractions are φ̄ = 0.62
(◦), φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	). The profiles are shown in black for W = 60 dp, blue for
W = 100 dp, green for W = 120 dp and brown for W = 150 dp. The red dashed line in (b) is the exponential fit
equation (3.1).

of umax, uslip and δ0.95 as

ū = umax − 2δ0.95(umax − uslip)(1 − exp(−3W/2δ0.95))

3W
. (3.2)

There are some granular flows for which the scaled velocity profiles are self-similar,
such as the Bagnold profile for the flow down an inclined plane, or the error function
profiles in shearing zones in split-bottom geometries (Fenistein & van Hecke 2003).
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Figure 5. Plotted as a function of φ̄: (a) uslip (black lines referenced to left ordinate) and (uslip/

√
W) (brown

lines referenced to right ordinate); (b) umax (black lines referenced to left ordinate) and (umax/
√

W) (brown
lines referenced to right ordinate); (c) the ratio of umax and uslip; and (d) the shear layer thickness δ0.95 (black
lines referenced to left ordinate ) and δ0.95/W (brown lines referenced to right ordinate). The channel widths
are 60 dp (◦), 100 dp (�), 120 dp (∇) and 150 dp (	).

A self-similar velocity profile has not been established in previous studies for the granular
flow in a vertical channel, though Pouliquen & Gutfraind (1996) fitted an exponential
profile for the velocity in the shearing zone. The exponential scaling in the latter resulted
from the assumption that the momentum transport is an activated process, where the
probability of yielding depends on the difference between the stress and a yield stress.
The shear stress and the velocity are then given by an exponential function.

In figures 5(a) and 5(b), uslip and umax are shown as functions of φ̄ for different values
of W. Both uslip and umax decrease by about one order of magnitude when φ̄ is increased
from 0.59 to 0.62. In these figures, uslip and umax scaled by

√
W are shown by the brown

lines referenced to the right ordinate. It is observed that there is an excellent collapse of
the data for uslip and umax when scaled by

√
W for W ≥ 100 dp, though the collapse is not

as good for W = 60 dp. This is expected if the Froude number for uslip and umax based on
W is a constant. The ratio umax/uslip is shown in figure 5(c). It is remarkable that this ratio
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Different shear regimes in the dense granular flow

is nearly a constant, varying by about 2 % in a very small range 1.37–1.40 for all values of
W and φ̄.

The thickness of the shear zone δ0.95 is shown as a function of φ̄ in figure 5(d). This
thickness decreases as φ̄ increases and as W decreases, indicating that δ0.95 is dependent
on φ̄ and W. Shown in brown lines in figure 5(d), referenced to the right ordinate, is
the ratio δ0.95/W. This ratio is independent of the channel width for W ≥ 100 dp, but
not for W = 60 dp. This indicates that δ0.95 increases approximately proportional to W
for the flow in the vertical channel. A consequence of these scaling relations is that the
average flow velocity in (3.2) is proportional to

√
W, provided that W is greater than about

100 dp. Thus the Froude numbers based on the average velocity, maximum velocity and
slip velocity are independent of the channel width, and they depend only on the average
volume fraction. This scaling law for the velocity is similar to the Beverloo correlation
(Beverloo et al. 1961), which postulates that the average velocity through an orifice of
width D is independent of dp for dp 
 D. From dimensional analysis, the flow velocity
has to be scaled by

√
gD.

Cawthorn (2011) has obtained an analytical solution of an incompressible μ(I) model
for the vertical channel flow. The assumptions used are linear variation of μ with I, no
variation in φ, and a no-slip boundary condition at the rough walls. This solution predicts
that the velocity in the plug is proportional to W3/2, and the scaled thickness of the shear
layer δ0.95/W is a constant for high flow rate. In contrast, Mohan et al. (1999) have used
an asymptotic analysis for purely rough walls, and their Cosserat model predicts that the
shearing zone thickness is proportional to W1/3 in the limit dp 
 W. Recently, Barker et
al. (2022) have obtained an analytical solution using a compressible μ(I) based model,
and compared it with their DEM results. They have performed simulations in a periodic
cell, where the gravitational acceleration is in opposite directions in the two halves of
the cell separated by the vertical mid-plane. This results in a zero-velocity condition at
the mid-plane and at the periodic boundaries, which is equivalent to a no-slip boundary
condition at the wall. Linear approximations for the dependence of μ and φ on I are used
in the model of Barker et al. (2022); this results in an exponential variation of φ with
distance from the wall. There is a difference between the exponential profiles predicted by
the model and simulation results. However, the model prediction for the velocity profile,
which is the sum of linear and exponential functions of the distance from the wall, is
in reasonable agreement with simulation results. The average velocity and shear layer
thickness are proportional to W3/2 and W, respectively, which are similar to the values
in Cawthorn (2011).

The average velocity is proportional to W3/2 for the following reason. The maximum
shear stress at the wall σxy is proportional to W from the momentum balance equation,
if the volume fraction variation in the shearing zones is neglected. If the wall friction
coefficient is a constant, then the normal stress σxx is also proportional to W. If a constant
friction constant is substituted in the linear μ(I) model, then the shear rate at the wall

scales as
√

σxx/ρd2
p ∼ g1/2W1/2/dp for large I, where dp is the particle diameter. The

shear layer thickness increases proportional to W in the models of Cawthorn (2011) and
Barker et al. (2022). Consequently, the maximum and average velocities are proportional
to g1/2W3/2/dp, where g is the acceleration due to gravity. It should be noted that this W3/2

scaling can be derived in the limit I � 1 only if a linear relation is postulated between μ

and I. If the nonlinear relationship is used where the friction coefficient asymptotes to
constants for large I, then the scaling is more complicated.

945 A25-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.482


B. Debnath, K. K. Rao and V. Kumaran

For fixed channel width, the velocity scaling g1/2W3/2/dp implies that the maximum
velocity increases as the particle diameter decreases, and it diverges as the inverse of
the particle diameter for W/dp � 1. In contrast, the Beverloo correlation (Beverloo et al.
1961) is based on the assumption that the particle diameter dp is not a relevant length scale
when it is small compared to the orifice diameter. If the channel width is substituted for the
orifice diameter in the Beverloo correlation, then the velocity scaling (gW)1/2 is obtained
in the limit W � dp. The Beverloo scaling is observed in the present study, where smooth
frictional walls are used and there is significant slip at the wall. If our results are found to
be robust, then they imply that the nature of the wall may not change the scaling for δ0.95,
but can change qualitatively the scaling of the velocity and the flow rate.

Another issue that needs to be examined is the ratio of the wall roughness scale and
the particle diameter. A standard procedure for generating rough walls is to use frozen
spherical particles at the wall, and the wall particle diameter is usually considered equal
to that for the flowing particles. In Barker et al. (2022), periodic boundary conditions
and a reverse flow were used for generating rough walls. One future avenue of research
is to transition from rough to smooth walls by decreasing successively the wall particle
diameter relative to the flowing particle diameter, and examining the scaling of the average
velocity separately with the flowing and wall particle diameters (Kumaran & Bharathraj
2013; Bharathraj & Kumaran 2017). This would provide some insight into whether the wall
roughness or the flowing particle diameter is the relevant length scale for the shear rate at
the wall.

The slip velocity uslip and umax − uslip are proportional to
√

W, and δ0.95 is proportional
to W, and the ratio uslip/(duy/dx) at the wall is proportional to W. Therefore, if the slip
boundary condition duy/dx = uslip/ls is used at the wall, and the velocity gradient is
calculated from (3.1), then the slip length ls increases proportional to W. This is different
from earlier studies of Mohan et al. (2002), where the slip length was considered a
constant.

The slip velocity defined in Shojaaee et al. (2012) is the relative velocity at the point
of contact between a particle and the wall. The contact velocity of the particle surface
includes the translational velocity of the particle centre and the cross-product of the
rotation velocity and the vector distance between the point of contact and particle centre.
However, in the current study, the slip velocity is assumed to be the velocity of the interval
closest to the wall, not the surface velocity of the particle at contact. The particle angular
velocity is also reported separately, and it is found that the angular velocity deviates from
one half of the vorticity close to the wall.

The normal and shear stress profiles are shown in figure 6. As required by the momentum
balance, the normal stress in the cross-stream direction, σxx, is a constant across the
channel. This constant value increases significantly as φ̄ increases. The shear stress σxy
is close to a linear function of distance from the centre; there is departure from linearity in
the shear zone due to the variation in φ. There is very little change in the slope of σxy as φ̄

is changed, because the variation in φ̄ is less than 5 %.
The cross-stream normal stress σxx is shown as a function of φ̄ for different channel

widths W in figure 7(a). There is a significant increase in σxx as W is increased, and as φ̄

is increased. However, the ratio of the normal stress to the channel width, (σxx/W), shown
by the brown lines referenced to the right ordinate in figure 7(a), varies very little as W is
varied for W > 60 dp. This implies that σxx increases approximately proportional to W. To
put this in perspective, recall that σxy at the wall increases proportional to W if the decrease
in φ close to the wall is neglected from the momentum balance. This is in agreement with
the finding of Barker et al. (2022). When both σxx and σxy at the wall are proportional
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Figure 6. The normal stress σxx (black, left vertical axis) and shear stress σxy (brown, right vertical axis) in the
flow of a granular material in a vertical chute of width 100 dp. The average volume fractions are φ̄ = 0.62 (◦),
φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	). The black vertical lines are boundaries between the plug and the
dense shearing zones, the blue vertical lines are the boundaries between dense and loose shearing zones, and
the red vertical line is the boundary between the loose shearing zone and the wall shearing zone.
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Figure 7. (a) The cross-stream normal stress σxx as a function of φ̄ is shown by the black lines referenced to
the left ordinate, and the ratio σxx/W is shown by the brown lines referenced to the right ordinate. (b) The
wall friction coefficient μwall as a function of φ̄. The channel widths are 60 dp (◦), 100 dp (�), 120 dp (∇) and
150 dp (	).

to W, the friction coefficient μwall at the wall should be independent of W. Figure 7(b)
shows that this is indeed the case. The wall friction coefficient is independent of W, but it
decreases as φ̄ increases. The latter trend may be understood by noting that small changes
in φ̄ affect σxy less strongly than σxx. Thus the value of σxx across the channel is determined
from the wall shear stress required to balance the weight of the material per unit area of the
wall and the wall friction coefficient that is a function of φ̄ for specific wall and particle
properties.
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Figure 8. (a) The volume fraction φ, (b) the shear rate duy/dx, (c) the granular temperature T , and (d) the
rates of shear production of energy (black) and dissipation (red) due to particle interactions for W = 100 dp.
The average volume fractions are φ̄ = 0.62 (◦), φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	). The black vertical
lines are boundaries between the plug and dense shearing zones; the blue vertical lines are boundaries between
the dense and loose shearing zones; and the red line is a boundary between the loose and wall shearing zones.

3.2. Comparison with kinetic models
The volume fraction φ as a function of cross-stream distance x/dp is shown in figure 8(a)
for channel width W = 100 dp. The region at the centre of the channel is the ‘plug’ zone
where φ is a constant. The boundary of the plug zone is indicated by the black vertical
lines for the four different values of φ̄. It is interesting to note that φ in the plug is ∼0.63,
which is discernibly lower than the random close packing volume fraction φrcp = 0.64
for a monodisperse system. This indicates that the plug zone is not a jammed assembly of
particles, but there is particle agitation even in this plug zone, and the granular temperature
T in this region is measurable, as shown in figure 8(c). When φ̄ is decreased, the volume
fraction in the plug zone is nearly a constant, but the thickness of the plug zone decreases.
At the lowest average volume fraction φ̄ = 0.59, the plug zone occupies less than half
of the channel width W. It should be noted that there is no layering in this region even
at φ̄ = 0.62. It is also verified that there is no crystallization; the Q6 order parameter
(Kumaran 2009c,d) in this region is below 0.4.
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Figure 9. The ratios of (a) Ωz to ωz, and (b) (duy/dx)/

√
T versus x/dp, for W = 100 dp and φ̄ = 0.62 (◦),

φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	).

There is a transition from the plug zone to a ‘dense shearing’ zone when φ decreases
below 0.63 at the black vertical lines in figure 8(a). A change in the slope of φ is evident
at the boundary of the plug and dense shearing zones, and φ decreases continuously
in the dense shearing zone. The blue vertical lines are drawn in figure 8(a) where
φ = φad = 0.587, where φad is the volume fraction for arrested dynamics. This is the
boundary between the dense and ‘loose shearing’ zones. Very close to the wall, within a
distance of about two particle diameters, there is a wall shearing layer with a steep decrease
in φ, marked by a red vertical line. The distinctions between the plug and dense shearing
zones (marked by black vertical lines) and the loose and wall shearing zones (marked by
a red vertical line) are clearer in figure 9, where clear breaks are seen in the profiles of the
ratios of the angular velocity to shear rate, and the shear rate to square root of the granular
temperature

√
T . For the highest average volume fraction φ̄ = 0.62, there appears to be no

loose shearing zone as φ decreases to φad = 0.587 in the wall shearing zone. For lower
values of φ̄, there is a clear distinction between the dense and loose shearing zones at
φ = φad, and the loose and wall shearing zones.

The velocity profiles shown in figure 4 do not exhibit any perceptible change between
the plug and shearing zones. However, the shear rate shown in figure 8(b) exhibits a clear
distinction between the dense shearing zone (between the black and blue vertical lines)
where there is a monotonic decrease in the shear rate, and the plug zone to the right of the
black vertical lines. In the plug zone, the standard deviations in the measurements, shown
by the error bars, are comparable to the mean values, indicating that the shear rate is zero
to within the simulation accuracy. In contrast, in the dense shearing zone, the error bars
are smaller than the mean values, and the profiles are continuous, even when the shear rate
is 4–5 orders of magnitude smaller than that at the wall. There is also a small but distinct
change in the curvature of the shear rate at the boundary (blue vertical lines) between the
dense and loose shearing zones. Whereas the shear rate profiles have negative curvature
in the dense shearing zone, they have positive curvature in the loose shearing zone. This
change in curvature is significant as it implies a change in the rheology of the flow as
φ → φad. From the momentum balance, the shear stress is approximately a linear function
of distance from the centre, if we neglect the variations in φ. If the shear rate profile is

945 A25-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.482


B. Debnath, K. K. Rao and V. Kumaran

concave upwards, then the fluid is shear thickening with power-law exponent greater than
1, whereas if it is concave downwards, then it is shear thinning with power-law exponent
less than 1. Therefore, an inflection point in the shear rate curve at φ = φad in figure 8(b)
implies a transition from shear thickening to shear thinning behaviour. Similarly, the plane
shear simulations in Chialvo et al. (2012) have captured a significant change in rheology,
where the flow is quasi-static in the limit of very small shear rate for φ > φad, and inertial
for φ < φad, and an intermediate regime is observed for φ = φad.

The granular temperature T profiles shown in figure 8(c) are continuous all the way
from the wall to the centre of the channel. The standard deviation is always much smaller
than the mean value, even at the centre where the temperature is more than five orders of
magnitude smaller than that at the wall. The non-zero granular temperature indicates that
the particles are not jammed, but they do have fluctuating motion. This is consistent with
the φ profile in the plug zone in figure 8(a), where φ is lower than φrcp. In the shearing
zone, the granular temperature decreases as φ̄ increases. In contrast, in the plug zone, the
granular temperature appears independent of φ̄, with the exception of φ̄ = 0.62 where
the granular temperature is noticeably higher. This could be attributed to the significantly
higher normal stress σxx shown in figure 6(a) – this higher normal stress seems to be a
consequence of higher agitation of the particles in the plug zone.

The rates of shear energy production (black) and dissipation due to particle interactions
(red) are shown in figure 8(d). The energy production rate is significantly higher than the
energy dissipation rate in the dense and loose shearing zones. The rates of production and
dissipation of energy decrease as φ̄ is increased, exhibiting the same trend as the granular
temperature in the shearing zones. In the plug zone, there is virtually no shear production
of energy because the shear rate is zero to within the simulation resolution. However,
the rate of dissipation of energy is clearly measurable and approximately a constant in
this region. Since there is no shearing in the plug zone, there is no shear production of
energy. The temperature in the plug zone is determined from a balance between the rate of
conduction of energy and the rate of dissipation due to particle interactions. The dashed
lines in figure 8(c) are fits using the conduction equation (B13), with specified values of
the temperature and zero flux at the centre. The best fit for the conduction length in these
curves is lc ≈ 11.5 dp. These fits provide good predictions for the temperature in the plug
zone, and the temperature profile departs from these fits in the dense shearing zone where
there is energy production due to shear.

Two other kinematic measures are shown in figure 9. The particle angular velocity is
a non-conserved variable in a fixed coordinate reference frame for the flow of frictional
particles. The angular velocity Ωz scaled by duy/dx is shown as a function of x/dp in
figure 9(a). For the present unidirectional flow, the vorticity is equal to ωz = duy/dx. When
the particle rotation rate and the local material rotation rate are the same, the ratio Ωz/ωz

equals 1
2 . However, Ωz could be very different from half of the vorticity in regions of

thickness comparable to the particle diameter at the boundaries of the flow and in a region
where the material rotation rate is negligible. In figure 9(a), there is a lot of scatter in
the data in the plug zone; this is because the magnitude of the angular velocity and the
shear rate are close to the simulation resolution in this region, and small errors in either
of these quantities result in large variations in the ratio. However, this ratio is close to 1

2
in both the dense and loose shearing zones, indicating that the particles are rotating with
the same angular velocity as the material in these zones, as expected from the continuum
approximation for a material with no microscopic torques. The ratio differs from 1

2 in the
wall shearing zone as well, due to the effect of wall collisions.
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Figure 10. The variation of (a) φ, (b) uy, (c) duy/dx and (d) T , for kn = 105 (◦), kn = 106 (�), kn = 107 (∇)
and kn = 108 (	), and φ̄ = 0.61 (black lines) and φ̄ = 0.59 (brown lines). The red line is the boundary between
the wall and loose shearing zones; the black and brown vertical lines from left to right are the boundaries
between the loose and dense shearing zones, and the dense shearing zone and plug zone, respectively.

The ratio dp(duy/dx)/
√

T is shown in figure 9(b). This ratio has a behaviour similar
to that for the shear rate, but it seems to have a positive slope at the wall, in contrast to
the shear rate, which has a negative slope at the wall. This indicates that the rheology in
the wall shearing zone is different from that in the loose shearing zone, and a continuum
approximation may be difficult to formulate for this region as it extends over a distance
equal to only two particle diameters. This ratio is continuous across the loose and dense
shearing zones, though it is shown later, in figure 13, that the dependence on φ is very
different.

The effect of particle stiffness kn on the volume fraction φ, velocity uy, shear rate duy/dx
and temperature T are shown in figure 10 for channel width W = 100 dp and for two
different average volume fractions φ̄ = 0.61 and 0.59. In all cases, φ and uy in figures 10(a)
and 10(b) are independent of kn for kn ≥ 105, except for one case corresponding to
variation of φ with x/dp for kn = 105 and φ̄ = 0.59. The profiles of duy/dx and T in
figures 10(c) and 10(d) suggest a more complicated picture. These are independent of
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Figure 11. (a) The friction coefficient μ = |σxy/σxx| as a function of the inertial number I, and (b) 0.64 − φ

as a function of I, for W = 100 dp and φ̄ = 0.62 (◦), φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	). The data in
the dense shearing zone are shown in brown lines, the loose shearing zone by black lines and the wall shearing
zone by red lines. The dotted blue lines are (B3) and (B4), respectively, and the inclined black dotted line in
(b) shows a slope of 1.

kn in the wall and loose shearing zones for φ < φad = 0.587. However, there is some
dependence of duy/dx on kn, and an even stronger dependence of T on kn in the dense
shearing and plug zones. Here, T in the plug zone decreases as kn increases, and it
appears to depend only on kn and not on φ̄ in this region. This is expected because φ

in this region is approximately 0.63 for all φ̄, and there is no shearing in this region.
There are enduring contacts between particles, and the divergence of the shear stress is
balanced by the gravitational force density due to the contacts. The monotonic decrease
of T with kn suggests that T will decrease to zero in the hard-particle limit, and the plug
zone will be in a jammed state. When kn is finite, there is agitation within the plug zone
resulting in a non-zero temperature. As T in the dense shearing zone also depends on kn,
the dense shearing zone cannot be described using hard-particle models. However, in the
loose shearing zone and the wall shearing zone, the shear rate and granular temperature
are independent of the particle stiffness, hence these zones can be described using the
hard-particle models.

The friction coefficient μ = σxy/σxx is shown as a function of the dimensionless ‘inertial
number’ I = dp|duy/dx|/√σxx/ρp in figure 11(a). In this figure, μ in the dense shearing
zone is shown by the brown lines, the loose shearing zone by the black lines and the wall
shearing zone by the red lines. A log scale is used on the horizontal axis, in order to
highlight features that are not visible readily in a linear scale. For φ̄ = 0.62, μ is lower
than for 0.59 ≤ φ̄ ≤ 0.61. For the latter, μ approaches a finite value for the lowest values
of I discernible in the dense shearing zone. It scales approximately as a linear function
of log(I) as I becomes small, and is independent of φ̄ for I � 10−3 in the dense shearing
zone. However, it exhibits a definite dependence on φ̄ for I � 10−3 in the loose shearing
zone and the wall shearing zone. The qualitative behaviour of the μ–I curves is the same
for other channel widths, and is not shown. The inertial number varies over a large range
(O(10−5)–O(100)) from the centre to the wall in the flow through a vertical channel, and
the linear relation between μ and I does not apply to the whole domain, in contrast to the
assumption of Barker et al. (2022).
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Figure 12. The variation of − log(φ) with x/dp for W = 100 dp (solid lines) and W = 150 dp (dashed lines),
and φ̄ = 0.62 (◦), φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	).

The scaling of φ with I, shown in figure 11(b), also reveals interesting features. Instead
of plotting φ itself, which results in a rather featureless graph, we have shown the
difference between φrcp = 0.64 and φ. It depends only on I in the loose shearing zone
for φ < φad = 0.587, and depends on I and φ̄ in the dense shearing zone for φ ≥ φad.
A clear break in the slope of the graph is visible at φ = φad, which is the boundary
between the dense and loose shearing zones. The slope of the φ–I curves is larger in
the loose shearing zone in comparison to the dense shearing zone.

The dotted blue lines in figures 11(a) and 11(b) are the predictions of (B3) and (B4), with
the parameters μs = 0.384, μ∞ = 0.625, I0 = 0.3, φmin = 0.4 and φmax = 0.6 reported
in Jop (2015). It is evident that there is a quantitative difference between the simulation
results and the parameters commonly used in the μ–I models. More importantly, there is
a difference in the shape of the curves, which is not captured adequately when drawn on
a linear axis. The simulation results for μ exhibit a slow logarithmic dependence on I for
the lowest values accessible in the dense shearing zone, in contrast to the constant value
predicted by the μ–I model. Similarly, the volume fraction φ in the dense shearing zone
increases to 0.63 in the limit of low I, but (B4) predicts a constant value of 0.6 in the
limit I → 0. The decrease in the volume fraction below φad in the loose shearing zone is
captured reasonably by (B4).

The comparison of our data with that of Barker et al. (2022) should be made with care,
because the results of the latter are equivalent to the flow through a vertical channel with
purely rough walls that enforce a no-slip boundary condition. The wall shearing zone
observed in the current study for the flat frictional walls may not be present if the walls
are rough. Additionally, the linear approximations used in Barker et al. (2022) to obtain an
analytical solution may not be valid in the whole domain. For example, the linear relation
between μ and I is not valid in the loose and wall shearing zones where φ < φad, and the
linear relation between φ and I does not capture the dense shearing zone where φ ≥ φad.
Barker et al. (2022) obtained an exponential variation of φ with the distance from the wall
in their analytical solution. However, a clear linear variation is not observed in the shearing
zone when log(φ) is plotted as a function of x/dp, even if the first two or three points in
the wall shearing zone are excluded, as shown in figure 12. The velocity profile obtained in
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Figure 13. Plots of (a) σxx/T , (b) σxy/(|duy/dx| T1/2) and (c) D/T3/2 as functions of (0.64 − φ) for φ̄ = 0.62
(◦), φ̄ = 0.61 (�), φ̄ = 0.6 (∇) and φ̄ = 0.59 (	), and W = 100 dp. The data in the dense shearing zone are
shown in black, in the loose shearing zone in brown and in the wall shearing zone in red. The blue circles, from
left to right, are the results for the flow down an inclined plane for angles of inclination 20◦–24◦. The blue
dotted lines fit to the data diverging at φ = φad = 0.59 ± 0.002.

the analytical solution is the combination of a linear function and an exponential function
in Barker et al. (2022); it does not fit our data as well as the exponential function (3.1)
(see figure 4b). Hence the fits of the functional forms for the volume fraction and velocity
profiles are not shown here. In Debnath et al. (2022), the nonlinear expression (B3) for
μ(I) was used to solve the models of Barker et al. (2017) and Schaeffer et al. (2019)
numerically. However, this does not result in better agreement between the DEM results
and the model predictions for μ(I) and φ(I).

Figure 13 shows different quantities of interest in the kinetic-theory-based models as a
function of the volume fraction φ. Here, the focus is on φ near φrcp = 0.64, so the data
are plotted as a function of 0.64 − φ on a log-log scale. In this figure, the values in the
dense shearing zones are shown by the black lines, the loose shearing zones by the brown
lines, and the wall shearing zones by the red lines. The constitutive relations (B8), (B9)
and (B10) are examined in figures 13(a), 13(b) and 13(c), respectively. If these constitutive
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relations are valid, then the functions pφ = σxx/T in figure 13(a), μφ = σxy/T1/2(duy/dx)
in figure 13(b), and Dφ = D/T3/2 in figure 13(c) should depend only on the volume
fraction φ. In all cases, it is observed that the dependence of these quantities is different
in the dense shearing zone in comparison to the loose shearing zone. There is significant
scatter in the dense shearing zone; however, there is less scatter in the loose shearing zone,
and the quantities are approximately functions of φ only in this zone. This indicates that
the kinetic-theory-based models, which assume that these quantities depend only on φ, do
not apply in the dense shearing zone for φ ≥ φad, but they do seem to apply in the loose
shearing zone for φ < φad. This supports the conclusion that the flow in the loose shearing
zone with φ less than φad = 0.587 can be described by a hard-particle model, and it cannot
be used for the dense shearing zone.

The blue circles in figure 13 are the results for the dense granular flow down an inclined
plane with a free surface. As explained in the Introduction, the highest volume fraction
that can be attained in this unconfined flow is around φ = φad. The volume fraction φ

is a constant in the bulk due to the momentum conservation condition, and it has been
found that the quantities in figure 13 depend only on φ. The flow is stable for a relatively
small range of angles of inclination, from about 20◦ to about 24◦. The results for this
range of angles, separated by 1◦ intervals, are shown by the five blue dots in each panel of
figure 13. The results for the inclined plane flows are in agreement with the results for the
loose shearing zone for φ < φad, indicating that the dynamics in the loose shearing zone
is the same as that in a dense granular flow down an inclined plane.

The coefficients pφ , μφ and Dφ for an inclined plane flow shown by the blue circles
in figure 13 diverge at φ = φad of about 0.585 ± 0.005. The value φad = 0.587 used
in the current study to mark the boundary between dense and loose shearing zones is
slightly lower, by less than 1 %, than the value 0.592 obtained by an extrapolation of the
hard-particle simulations (Kumaran 2009c). In figure 13, the divergence, shown by blue
dotted curves proportional to χ = (φad − φ)−1, provides the best fit for the loose shearing
zone at φad = 0.59 ± 0.002; the agreement is quite good for pφ and μφ , but not as good
for Dφ . However, it is clear that the divergences in the stresses and the dissipation rate
occur at nearly the same volume fraction φ = φad for the inclined plane flow and the
loose shearing zone. For the inclined plane flow that is unconfined, the divergence in these
functions, pφ, μφ and Dφ , leads to flow cessation. For the flow in the vertical channel, as
φ increases beyond φad, the divergence in these functions is cut off by a cross-over to the
dense shearing zone, where the hard-particle model does not apply.

The results for pφ , μφ and Dφ are compared with the model of Berzi et al. (2020) in
figure 14. The qualitative trends of these functions are captured in the loose shearing zone
and the dense shearing zone; however, the quantitative differences are evident. The order of
magnitude differs in some cases. Their model underestimates the coefficients in the loose
shearing zone for φ < φad = 0.587, though the slopes of the curves are approximately
the same. There is less disagreement in the dense shearing zone except for Dφ . The
quantitative difference could be because the functions of Berzi et al. (2020) were fitted
for plane shear simulation and an inclined plane flow in Berzi & Jenkins (2015), and not
for a vertical chute. Another issue related to the conduction flux in their model is the
following. In the channel flow, if the conduction flux at the interface where φad = 0.587
has to be matched, then the slope of the φ profile appears to be discontinuous, which does
not agree with the trend predicted by the DEM results (Debnath et al. 2022). More work
is required to resolve these issues.
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Figure 14. A comparison of the model of Berzi et al. (2020) (red lines) and the results of the present
simulations (black lines) for the functions (a) σxx/T , (b) σxy/(|duy/dx| T1/2) and (c) (D/T3/2), as functions
of 0.64 − φ for φ̄ = 0.61 (�) and φ̄ = 0.59 (	), and W = 100 dp.

4. Conclusions

One of the simplest granular flows that could be envisaged is the flow in a vertical
rectangular channel bounded by walls in one direction and with periodic boundary
conditions in the other two directions. Even this flow exhibits complex structure–rheology
relationships. Previous studies have classified the flow broadly into a plug zone at the
centre and a shearing zone near the wall.

The important conclusions of the present study are as follows.

(i) The flow is studied for different channel widths W = 60–150 dp. There is a steady
flow for a relatively small range of the average volume fractions φ̄, from about 0.62
to 0.59 for W ≥ 100 dp. The material is static for φ̄ > 0.62, and there is no steady
state for φ̄ < 0.59.
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(ii) The velocity profile exhibits significant slip at the wall. Both the slip velocity uslip

and the maximum velocity umax are proportional to
√

W for W ≥ 100 dp. The ratio
of the maximum and slip velocities, umax/uslip, is found to be nearly a constant in the
range 1.38–1.4 for the entire range of channel widths and average volume fractions.

(iii) The width of the shear layer, δ0.95, is defined as the distance from the wall at which
uy − uslip is 95 % of its maximum value. A specific exponential form, (3.1), is found
to provide an excellent fit for all of the profiles for different values of W and φ̄. The
width δ0.95 varies with φ̄, and it increases proportional to W for W ≥ 100 dp.

(iv) The scaling of the velocity and boundary layer thickness with W does not seem to
apply for the smallest width W = 60 dp. The breakdown of universality at W = 60 dp
is likely due to the finite-size effects. If the ratio of the width and particle diameter
is not sufficiently large, there are two length scales, the particle diameter and the
channel width, hence properties may not depend only on the channel width.

(v) A detailed analysis of the flow dynamics reveals the presence of multiple zones. In
the ‘plug’ zone at the centre of the channel, the volume fraction φ has a constant
value 0.63. The velocity is a constant and the shear rate is zero in this region,
to within the simulation accuracy. However, the granular temperature is non-zero,
though it could be 4–5 orders of magnitude smaller than that at the wall.

(vi) In the plug zone, the granular temperature decreases as the particle stiffness
increases. This suggests that the system could be jammed in the limit of infinite
stiffness, and a hard-particle approximation cannot be used to describe this region,
subject to the following caveats.

(vii) Adjacent to the plug zone is a ‘dense shearing’ zone, where the particle volume
fraction exceeds φad. Here, the shear rate and granular temperature are 3–4 orders
of magnitude smaller than the values at the wall. However, the shear rate and the
granular temperature are both finite and measurable, and the rate of production of
energy due to shear exceeds the rate of dissipation due to particle interactions. The
particle angular velocity in this region is equal to half of the vorticity, indicating
that the particle and material rotation rates are equal. The shear rate and granular
temperature in this region depend on the stiffness of the particles.

(viii) In the loose shearing zone between the dense and wall shearing zones, the volume
fraction φ is below φad. The shear rate and the granular temperature in this region
are independent of the particle stiffness, indicating that the hard-particle models
can be used to describe the flow dynamics in this region. It is found that (B8) and
(B9) for the stresses, and (B10) for the energy dissipation rate, formulated from the
kinetic-theory-based models, are applicable in the loose shearing zone. The values of
the coefficients in these constitutive relations are in agreement with those obtained
from studies on the granular flow down an inclined plane.

(ix) The coefficients pφ , μφ and Dφ in (B8)–(B10) initially diverge as the volume fraction
φ is increased beyond φad in a manner similar to the values for the flow down
an inclined plane. However, a transition to the dense shearing zone cuts off this
divergence in the vertical channel flow. These functions are in qualitative agreement
with those proposed by Berzi et al. (2020), though there are quantitative differences,
possibly because the functions of Berzi et al. (2020) were formulated for an inclined
plane flow.

(x) The simulation results are compared with the predictions of the μ–I model, which
relates the friction coefficient μ = |σxy/σxx| to the inertial number I by (B3), and the
volume fraction to I by (B4). The model predictions are different qualitatively from
the simulation results in the limit of low I. Whereas (B3) predicts that μ approaches
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a constant value for I → 0, the simulation results in figure 11 show a logarithmic
decrease down to the lowest value of I accessible in the dense shearing zone. The
friction coefficient can be approximated as a function of I in the dense shearing
zone, but it varies with the average volume fraction also in the loose shearing zone.
The volume fraction φ is quite well predicted by (B4) in the loose shearing zone, but
there is a difference between the model prediction and the simulation results in the
dense shearing zone.
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Appendix A. The discrete element model and parameters

The simulations are performed using the discrete element method (DEM) proposed by
Cundall & Strack (1979), and are carried out using the open source LAMMPS package
(Plimpton 1995). In the DEM, particles are characterized as soft and deformable. They
can overlap during collisions, and the extent of overlap determines the contact force.
Integrating Newton’s second law, the kinematics of each particle is computed. The
particle–particle and particle–wall interactions are modelled using the linear and Hertzian
spring–dashpot models.

Consider the interaction between two spherical particles i and j, centred at xi and xj, with
diameter dp, velocities vi and vj, and angular velocities Ω i and Ω j. The interparticle force
is non-zero only when the particles overlap, that is, when the distance between centres
is less than the sum of radii, |xij| < dp. Here, |xij| = |xj − xi| is the distance between
the centres of the particles. The contact forces are defined in terms of overlap δij = dp −
|xij|, and the relative velocity of the surface of i with respect to j at the point of contact,
vij = vi − vj + (dp/2)(Ω i + Ω j) × nij, where nij = xij/|xij| is the unit vector along the
line joining the centres of i and j. The normal F n

ij and tangential F t
ij components of the

contact force exerted by j on i are given by

F n
ij =

(
δij

dp

)a (
−knδijnij − meff ξnv

n
ij

)
, (A1)

F t
ij =

(
δij

dp

)a (
−kt �xt

ij − meff ξtv
t
ij

)
for |F t

ij|/|F n
ij| < μp,

= −μp |F n
ij|
(
�xt

ij/|�xt
ij|
)

otherwise, (A2)
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where a is 0 for the linear model and 1
2 for the Hertzian model, kn, kt are spring

constants, ξn, ξt are damping constants, meff = mimj/(mi + mj) is reduced mass, μp is the
interparticle coefficient of friction, and the normal and tangential relative velocities at the
point of contact are vn

ij = (vij · nij)nij, vt
ij = vij − vn

ij. The tangential relative displacement
�xt

ij is determined as (Silbert et al. 2001)

d(�xt
ij)

dt
= vt

ij −
(�xt

ij · vij) xij

|xij|2 . (A3)

Here, simulations are performed using the linear spring–dashpot model with friction.
The density, length and time dimensions are non-dimensionalized by particle density ρp,
particle diameter dp and

√
dp/g, respectively, where g is the gravitational acceleration. The

dimensionless value of the spring constant is O(1010) for real glass bead type particles of
size 100 μm to 1 mm. As the computational time step is proportional to k−1/2

n , a large
value of kn makes the simulations computationally expensive. Hence the value of kn is
chosen in the range 105–108, and kt is set to 2

7 kn (Debnath, Rao & Nott 2017). The damping
coefficient ξn is chosen so that normal coefficient of restitution for the interaction between

two particles, en = exp(−ξntc/2), is set equal to 0.82. Here, tc = π/

√
kn/meff − ξ2

n /4 is
the collision time in the linear model (Silbert et al. 2001). The value of the damping
coefficient ξt is set to 1

2ξn. The coefficient of friction μp is chosen as 0.5, which is
within the range of the friction coefficient for common granular materials. Lower values
of the friction coefficient were reported in the range 0.1–0.25 for collisions between glass
spheres in Foerster et al. (1994). The coefficient of sliding friction was extracted from
experiments in Foerster et al. (1994) involving the collision of two particles. The relative
velocity just before impact is about 1 m s−1. It is not clear whether such large relative
velocities occur in the dense assemblies considered here. For a coefficient of friction less
than 0.25, the dissipation in particle interactions was sufficiently small that there was no
steady flow. Therefore, we have used a higher value of 0.5, in agreement with experimental
results reported in Ananda et al. (2008) and Rao & Nott (2008). The restitution and
friction coefficients for particle–wall collisions are the same as those for particle–particle
collisions. The simulation time step is set to 1.2 × 10−4√dp/g for kn = 106 and ξn = 180.
Unless specified, all the results correspond to kn = 106.

The rolling friction torque has not been included in the present work. Shojaaee et al.
(2012) studied the effect of rolling friction on the shear flow in a Couette geometry. They
found that there is no internal shearing when the rolling friction coefficient is small. They
concluded that the effect of rolling friction is similar to that of a rough wall, where particles
are glued on to the wall. However, rough walls are not considered in the present analysis.
Similar conclusions have been reported by Zhou et al. (1999), that the rolling friction has a
significant effect on the angle of repose in the formation of a static pile. The current study
considers a continuous flow through a vertical channel, and the effect of rolling friction on
flow problems remains an open issue.

The work of Fleischmann et al. (2016) points out the importance of storing the history
of the tangential displacement of the contacts for determining the tangential contact force.
Here, we have included the history of the tangential displacement during a contact, as
shown in (A3).
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Appendix B. Theoretical considerations

For steady fully developed unidirectional flow, the flow properties depend only on the x
coordinate perpendicular to the walls. The momentum balance equations in the x and y
directions are

dσxx

dx
= 0, (B1)

−dσxy

dx
+ ρg = 0, (B2)

where ρ = ρp φ is the bulk density, ρp is intrinsic particle density, and φ is the local
volume fraction. The stresses in (B1) and (B2) are defined to be positive if they are
compressive. If the volume fraction is approximately constant across the channel, then
(B2) indicates that the shear stress increases linearly from the centre to the wall. From
(B1), the normal stress σxx is independent of cross-stream position. However, the criterion
for determining σxx is not clear a priori in the present geometry.

In the classical frictional theory, the material yields when the friction coefficient
μ = |σxy/σxx| exceeds a threshold μc. For the flow in a vertical channel, the shear stress
increases monotonically from the centre to the wall. Therefore, the material would flow in
the zone adjacent to the wall where μ > μc. The velocity profile cannot be determined
from a yield criterion. In continuum models based on the modifications of the yield
criterion, the constitutive relation is expressed as a relation between the friction coefficient
μ = |σxy/σxx| and the inertial number I = dp(|duy/dx|/√σxx/ρp. Here, dp and ρp are
the particle diameter and the mass density, respectively. In the ‘μ(I) − φ(I) rheology’
Pouliquen, Forterre & Le Dizes (2001), the friction coefficient μ and the volume fraction
φ are related to the inertial number I as

μ(I) = μs + μ∞ − μs

1 + (I0/I)
, (B3)

φ(I) = φmax − (φmax − φmin)I, (B4)

where μs and μ∞ are the friction coefficients for I → 0 and I → ∞, respectively, I0 is a
material parameter, and φmax and φmin are the maximum and minimum values of φ for the
μ–I model. More complicated forms for the functions μ(I) have been proposed, but all of
these asymptote to a constant value in the limit of small I, and a higher constant value for
large I. The relation (B4) is a simple linear relation that can be used for only small values
of I and for φmin ≤ φ ≤ φmax.

The simulation results are also compared with ‘hard-particle’ models for dense granular
flows that have been applied specifically to flows down an inclined plane. Here, the
particles are considered sufficiently hard that the time of an interaction is much smaller
than on any other time scale. If the rheology is local, then the only relevant time scale is the
inverse of the local shear rate. From dimensional analysis, it follows that all components of
the stress tensor are proportional to the square of the shear rate for a steady unidirectional
flow. The relevant stresses in the present case are

σxx = Bxx

(
duy

dx

)2

, (B5)

σxy = Bxy

(
duy

dx

)2

, (B6)
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where Bxx and Bxy are called the Bagnold coefficients, which depend only on the local
volume fraction. The Bagnold relations are found to be applicable for dense granular flows
down an inclined plane in the bulk away from boundaries, even for very dense flows with
φ in the range 0.55–0.58. In the case of an inclined plane flow, the ratio of the shear
and normal stresses is equal to tan(θ), where θ is the angle of inclination of the plane
from horizontal. Therefore, the ratio Bxy/Bxx is independent of height. If the Bagnold
coefficients Bxy and Bxx are functions of φ, then this implies that φ is independent of
height. Indeed, in simulations, it is observed that φ is a constant in the bulk to within the
simulation accuracy (Silbert et al. 2001). Due to this, it is possible to obtain dynamical
properties as a function of φ by changing θ in a steady flow.

A more detailed analysis involves the definition of the ‘granular temperature’ (Lun et al.
1984; Jenkins & Richman 1985; Kumaran 1998, 2008), which is the mean square of the
fluctuating velocities and angular velocities defined in (2.3). For a unidirectional flow, the
energy balance equation for the granular temperature at steady state is

d
dx

(
k

dT
dx

)
− σxy

duy

dx
− D = 0, (B7)

where k is the thermal conductivity, and D is the rate of dissipation of energy due to
particle interactions per unit volume defined in (B10). On the left-hand side of (B7),
the first term is the rate of conduction of energy, and the second term is the rate of
production of energy due to shear. The models for the shear and normal stress, the thermal
conductivity and the dissipation rate are based on kinetic theory for dense gases:

σxx = pφT, (B8)

σxy = −μφT1/2 duy

dx
, (B9)

D = DφT3/2, (B10)

k = kφT1/2, (B11)

where the coefficients pφ , μφ , Dφ and kφ are dimensionless functions of φ and are
independent of the shear rate or the granular temperature.

Due to the rate of dissipation of energy in (B7), energy is not a conserved variable,
and continuous shear production of energy is necessary to sustain the particle agitation
in the flow. The ratio of the rates of conduction and dissipation of energy in (B7) scale
as (kφ/Dφ)(d2

p/L2), where L is the system size. The conduction length lc is defined as
dp
√

kφ/Dφ . If the system size L is smaller than lc, then the rate of conduction of energy is
much larger than the rate of dissipation, and energy can be treated as a conserved variable.
For L � lc, the rate of conduction of energy can be neglected in the bulk, and the granular
temperature is determined from a local balance between the rates of shear production
and dissipation. Conduction is important in regions of thickness lc at the boundaries.
For a collisional flow of nearly elastic particles, the conduction length lc scales as
dp/

√
1 − e2, where e is the coefficient of restitution. For inelastic and frictional particles,

the conduction length is comparable to the particle diameter. Thus the conduction length is
the microscopic length scale in kinetic models for granular flows, analogous to the lengths
postulated in non-local continuum theories.

There is no shear production of energy in the plug zone where the shear rate is zero, but
there could be agitation of the particles. If the shear production is neglected in (B7), and
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(B10) and (B11) are used, then the energy balance equation is

d
dx

(
kφT1/2

d2
p

dT
dx

)
− DφT3/2

d4
p

= 0. (B12)

If φ in the plug zone is a constant, then Dφ and kφ are constants, and (B12) can be solved
as

d2T3/2

dx2 − T3/2

l2c
= 0, (B13)

where lc = (2d2
pkφ/3Dφ)1/2.
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