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CHARACTERIZATION OF A CLASS OF 
EQUICONTINUOUS SETS OF FINITELY 

ADDITIVE MEASURES WITH AN APPLICATION 
TO VECTOR VALUED BOREL MEASURES 

RICHARD ALAN OBERLE 

Let V denote a ring of subsets of an abstract space X, let R+ denote the 
nonnegative reals, and let N denote the set of positive integers. We denote by 
C(V) the space of all subadditive and increasing functions, from the ring V 
into P + , which are zero at the empty set. The space C(V) is called the space of 
contents on the ring V and elements are referred to as contents. 

A sequence of sets An G V, n G N is said to be dominated if there exists a 
set B G V such that An C J3, for n = 1, 2, A content p G C(V) is said 
to be Rickart on the ring V if limnp(An) = 0 for each dominated, disjoint 
sequence AnG V, n G N. Note that each finitely additive content is Rickart 
on the ring V. A set of contents P C C(V) is said to be uniformly Rickart on 
the ring V if the limit above holds uniformly with respect to the contents 
p G P . This condition is an abstraction of the condition of strong boundedness 
(often abbreviated ^-bounded in the literature) introduced by Rickart [22] for 
a finitely additive vector measure on a cr-algebra. A content p G C(V) is said 
to vanish at infinity on the ring V if for each number e > 0, there exists a set 
A G V such that p(B) < e for each set B G F, B C j f \ 4 . A set of contents 
P C C(F) is said to vanish uniformly at infinity on the ring V if the above 
relation holds uniformly with respect to the contents p £ P. 

The ring V is an abelian group with respect to the symmetric difference 
operation -f- and each content p G C(V) generates a semimetric on the group 
( V, -O by the relation 

P(A,B) =p(A - 5 ) 

for sets A, B G V. This semimetric is invariant in the sense that 

p(A,B) = P(A + C,B + C) 

for sets A, B, C G V. Therefore, any family of contents P C C(V) generates 
a topology on the group (V, -*-). A base of neighborhoods is given by the 
family of sets 

N(Ao, pi,...,Pn,e) = {AeV: pk(A + A0) < e, for k = 1, . . . , n) 

where A, G F, £i, . . . , pn G P and e > 0. A pair (7 , P ) , where P C C(7) 
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and (F, 4-) is given the topology generated by the family P , will be called a 
topological ring of sets. A study of topological rings of sets generated by 
uniformly Rickart families of contents with applications to finitely additive 
vector measures was initiated by Oberle [19], and developed by Bogdanowicz 
and Oberle [7; 8]. 

Since contents generate an invariant semimetric on the group ( F, -f- ), a 
content q G C(V) is (V, P)-continuous if and only if it is continuous at the 
origin, the empty set 0. Consequently, a content g G C(V) is (F, P)-continu-
ous if and only if for each number e > 0 there exists a number 3 > 0 and a 
finite set ph . . . , pn G P such that A G V and pk(A) < 8, for k = 1, . . . , n 
yields q{A) < e. Two topological rings (F, P) and (F, Q) are equivalent if 
each content p G P is (V, Q)-continuous and conversely. A set of contents 
Q C C(V) is said to be (F, P)-equicontinuous if for each number e > 0 there 
exists a number 3 > 0 and a finite set pu • • • , pn G P such that A G V and 
pk(A) < 5, for k = 1, 2, . . . , n yields q{A) < e for all contents q G Q. 

Let F be a Banach space and let a(V, Y) and ca(V} Y) denote respectively 
the spaces of finitely additive and countably additive F-valued functions on 
the ring F. Elements of the space a(V, Y) are referred to as vector charges and 
elements of the space ca(V, Y) are referred to as vector volumes. For each 
vector charge n G &(F, F), the semivariation p( • , /x) : V —> [0, oo] is defined 
by the relation 

p(A, /x) = sup (|M(B)| : B G F , 5 Ç i ) 

for 4̂ G F. The semivariation is subadditive and increasing on the ring F. A 
vector charge /z G a(V, Y) is said to be Rickart on the ring F if limw/x(y4w) = 0 
for each dominated, disjoint sequence An G F, n G A7. For each Rickart charge 
/x G a (F, F), the semivariation £( • , /x) is a Rickart content on the ring F 
(see Rickart [22]). A vector charge /x G a (F, F) is said to vanish at infinity on 
the ring F if for each number e > 0 there exists a set A G F such that 
| /x (5) | < e for all sets B G F, 5 C Z \ i . Let IF be an algebra and let V QW 
be a subring. A charge /x G a(W, Y) is said to be continuous at infinity relative 
to F if for each number e > 0 there exists a set A G F such that 
|/x(X) - M(23)| < e for all sets B G IF with i Ç 5 . The following spaces of 
vector charges will be referred to in the sequel. 

RiV, Y) = {n (z a(V, Y) : ^-Rickart on the ring V] 

R~{V, Y) = j/i 6 R(V, Y) : ^-vanishes at infinity on V\ 

caR(V, Y) = ca(V, Y)r\R(V, Y) 

caRœ{V, Y) = ca(V, Y)^Rœ(V, Y) 

ab(V, Y) = {utaiV, Y) : / » ( - , M) Ç C(V)\ 

abœ(V,R) = {n £ ab(V,R): ^-vanishes at infinity on V) 

cab(V,R) = o ô ( 7 , J ? ) n c a ( 7 , i î ) 
cab^(V,R) = a M F . i ^ n c a C F . i ? ) . 
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The symbols ab+(V, R), abœ
+(V,R) and cab+(V, R) are used to denote the 

cone of nonnegative elements. The main result of this paper is a characteriza­
tion of each pointwise bounded set in abœ (F, R) as equicontinuous if and only if 
it is uniformly Rickart and vanishes uniformly at infinity on the ring V. This 
characterization is then used to characterize the class of vector valued regular 
Borel measures on a locally compact space as the set of extensions of Rickart 
vector volumes which vanish at infinity on the ring generated by the compact 
G§ sets. 

A vector charge \i G a(V, Y) is said to be strongly bounded (see Rickart 
[22]), if for each disjoint sequence An G V, n G N, we have limnij,(An) = 0. It 
has been established that strongly bounded vector charges admit a nonnega­
tive, finitely additive control measure (see Brooks [9; 10]). Uhl [23] showed 
that for countably additive, strongly bounded vector measures on an algebra 
of sets, the existence of a finitely additive control measure is equivalent to the 
weak relative compactness of the range of the vector measure which in turn is 
equivalent to the existence of a countably additive extension to the generated 
o--algebra. In the development given by Brooks [9; 10; 11], and Uhl [24], either 
the Stone representation of an algebra of sets as the algebra of open/closed 
subsets of a totally disconnected, compact Hausdorff space and/or the weak 
compactness criteria developed by Bartle, Dunford and Schwartz [1] is used. 
The relation between the vector charges considered in this note and those 
studied by Brooks in [9; 10] and [11] is contained in the following proposition. 

PROPOSITION 1. Let V be a ring of subsets of a space X and let Y be a Banach 
space. The following are equivalent. 

(1) The charge /x G a(V, Y) is Rickart and vanishes at infinity on the ring V. 
(2) The charge \i G a(V, Y) is strongly bounded. 

The basic result of this paper is given in the following theorem. 

THEOREM 1. Let V be a ring of subsets of a space X. A pointwise bounded set 
M C ab(V, R) is uniformly Rickart and vanishes uniformly at infinity on the 
ring V if and only if there exists a charge v G abœ

+(Vy R) such that the set M is 
v-equicontinuous. In addition, M C cab(V, R) if and only if v G cabœ

+(V, R). 

Proof. If the family M C ab(V, R) is uniformly Rickart and vanishes uni­
formly at infinity on the ring V, then the family M is weakly relatively com­
pact in the Banach space fa (V, R) of real valued charges with totally bounded 
variation (see [11]). Consequently, there exists a control charge v G ab+(V, R) 
such that the family M is zz-equicontinuous and 

v{A) ^ sup (\n\(A) : ^ I ) 

for sets A G V where |/x|( •.) denotes the variation of the charge ju. Since the 
family M vanishes uniformly at infinity, the charge v G ab+(V, R) vanishes 
at infinity. 
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If each charge /* Ç M is countably additive, then the uniform Rickart 
condition insures that the family {|/i|( • ) : n € M) is uniformly countably 
additive [19]. Consequently, the control charge v 6 ab+(V,R) is countably 
additive. 

Remark 1. The existence of the control charge given by Brooks, [9; 10] is 
established by transferring the problem to the cr-algebra generated by the Stone 
representation algebra and then applying the Bartle-Dunford-Schwartz [1] 
weak compactness criteria. A direct construction of the control charge may be 
found in [7; 8], and [19]. 

Let F be a ring (er-ring) of subsets of an abstract space X. Then the smallest 
algebra (a-algebra) containing the ring V is given by the relation 

s/(V) = {A 6 P(X) :AeV or X\A e V}. 

The referee suggested the following proposition to clarify the structure of the 
class of charges under study. 

PROPOSITION 2. Let V be a ring of subsets of an abstract space X and lets/(V) 
denote the smallest algebra containing the ring V. Then for each Banach space F, 
there is a one-to-one correspondence between the space of Y-valued charges on the 
ring V vanishing at infinity and the space of Y-valued charges on the algebras/ ( V) 
continuous at infinity relative to the ring V. The correspondence preserves the 
Rickart condition and the semivariation. For Rickart charges the correspondence 
also preserves countable additivity. 

Proof. Let p £ a(V, Y) vanish at infinity and let V be ordered by inclusion. 
Then the net (n(A) : A £ V) is Cauchy (hence convergent) in the space F. 
The extension is defined for each set A Ç s/ ( V) by the relation 

U(A) if .4 6 7, 
lÀKJ±) \\imB^n{B) - n(X\A) if X\A£V. 

It is clear that the function /I is a charge extending the charge /x and from the 
definition, the charge /Z is continuous at infinity relative to V. The restriction 
defines the inverse mapping. 

Assume that the charge /z 6 a(V, Y) is Rickart on the ring V and that 
An £s/(V), n G N is a disjoint sequence. Ii X £ V, it follows from the 
definition of the a lgebra^ (V) that at most one term in the sequence (say Ai) 
satisfies the relation X\Ai Ç V. Using Proposition 1, limnjï(An) = 0. The fact 
that the semivariation of the extension is an extension of the semivariation 
follows from the relation 

{A r\B:B es/(V)} = V(A) 

for all sets A £ V where V(A) = {C £ V : C Q A}. The fact that countably 
additive, Rickart charges vanishing at infinity extend to countably additive 
charges will not be proven since this observation is not necessary for the later 
development. 
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Proposition 1 and the characterization of unconditionally converging series 
in terms of the weak relative compactness of the unordered finite sums given 
by McArthur [18] ,and Robertson [23], yields the "weakly relatively compact 
range" theorem. 

PROPOSITION 3. Let V be a ring of subsets of a space X, let Y be a Banach space 
and let p Ç C(V) be Rickart and vanish at infinity on the ring V. Then each 
p-continuous charge \x Ç a(V, Y) is strongly bounded and has weakly relatively 
compact range. Conversely, any charge p £ a(V, Y) with weakly relatively compact 
range is strongly bounded and its semivariation p{ • , y.) is a Rickart content 
vanishing at infinity on the ring V. 

Proof. Let v (z a(V, Y) be ^-continuous and assume that the content 
p Ç C(V) is Rickart and vanishes at infinity on the ring V. It is clear that the 
charge /i Ç Û ( F , F) is strongly bounded. We show that its range is weakly 
relatively compact. Let R(n) denote the range of the charge ju and let F(N) 
denote the family of finite subsets of the positive integers N. From Proposition 
2, the charge M admits an extension to a strongly bounded vector charge on 
the algebra S&(V) and consequently has weakly relatively compact range [24]. 

The converse assertion was first observed by Kluvanek [17]. The strong 
boundedness of a vector charge with weakly relatively compact range may be 
established by applying the McArthur-Robertson characterization. Note first 
that for each disjoint sequence An £ V, n £ N, the set 

2 > ( ^ * ) : A 6 F(N)\CR(») 

is weakly relatively compact. Consequently, the series Y,kn(Ak) converges 
unconditionally. Hence, the charge /z £ a(V, Y) is strongly bounded. 

Let F be a ring of subsets of a space X and for a volume v £ cabœ(V, R), let 
(X, VC1 vc) denote the completion (see Bogdanowicz, [2; 3]). Let Vv denote 
the class of countable unions of sets from the family V and let V denote the 
class of ^-measurable sets (see Bogdanowicz, [4; 5]). If we denote by X the 
measure on the d-ring V extending the volume v, from the condition Va C Ve 

(which is true for all volumes v £ cabœ
+(V, R)) and the fact that measurable 

sets have F^-support, we conclude that the measure X is finite valued (and 
therefore bounded) on the cr-ring V. For such measures, we denote by 5(X) 
the support of the measure X (note that the measurable set 5(X) is defined 
uniquely up to sets of measure zero). Since the measure X is finite on the 
o--ring V, the construction insures that X coincides with the completion vc (by 
[4, Theorem 3(6)]), that is, Vc = V and vc( • ) = X( • ). Using Theorem 1 and 
the fact that the ring V is dense in the <r-ring Vc (with respect to the semi-
metric 

P(A,B) =vc(A + J3 ) 

for sets A,B £ Vc) we have the following extension theorem for vector volumes. 
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THEOREM 2. Let V be a ring of subsets of a space X and let Y be a Banach space. 
For each vector volume JJL G caRœ(V, Y) there exists a a-ring V and a vector 
measure /Z G ca(V, Y) such that V C V and JU C M-

Proof. Set 

M= ( I / O M K - ) : / e F ' , b ' | = 1} 

and note that the set M C cabœ(V, R) is uniformly Rickart on the ring V 
and vanishes uniformly at infinity on the ring V. Using Theorem 1, there exists 
a volume v G cabœ

+(V, R) such that the set M is fl-equicontinuous. Conse­
quently, the vector volume ^ G caRœ(V, Y) is ^-continuous. Since the volume 
v G cabœ

+(V, R) has an extension to a bounded, scalar measure v G cab+(V, R) 
and the vector volume /JL is ^-continuous (and hence uniformly continuous) on 
the ring V, which is dense in the cr-ring V, there exists an extension /Z G ca(V, Y) 
which is ^-continuous on the c-ring V. 

Let (X, T) be a locally compact, Hausdorff space and let Cœ(X, R) denote 
the space of bounded, continuous real valued functions on the space X which 
vanish at infinity. The space Cœ(X, R) is a Banach space with respect to the 
uniform norm, defined for functions/ G Cœ(X, R) by the relation 

|| | U : / - * s u p ( | / ( * ) | : * e X ) . 

Moreover, each function/ G Cœ(X, R) has c-compact support. Denote by £8 
the Borel c-ring and denote by V (respectively VQ) the ring generated by the 
compact (respectively the compact GÔ) sets. The dual of the space (Cœ(X, R), 
|| | |œ) is the space M(X, R) of finite (and hence bounded) Radon measures on X 
(see [16] ). Moreover, each such measure has a-compact support (see [12] ) so that 
each vanishes at infinity on the c-ring SS relative to the class of compact sets. 
Since each compact set is a subset of a compact Gg set (see [13, Proposition 11, 
p. 294]), such measures vanish at infinity on the Borel o--ring with respect to 
the family of compact Gg sets. 

THEOREM 3. For each vector volume /x G caRœ(Vo, Y) there exists a bounded 
vector measure /Z G ca(âê\ Y) extending the vector volume /x. The extension Jl is 
regular in the sense that for each number e > 0, there exists a compact set F and 
an open Borel set G such that 

|P(B)I < e 

for all Borel sets B G Se such that B C G\F. 

Proof. By Theorems 1 and 2, the vector volume /x G caRm(Vo, Y) is con­
tinuous with respect to a volume v G cabœ

+(V, R). This volume is Baire 
regular in the sense that for each set A G VQ and each number e > 0, there exists a 
compact set K and an open set G such that k C A C G and \v(A) — v(B)\ < e 
for each set B G V0 with K C B C G (see [13]). Also [13, p. 351] the 
volume v generates a unique, regular volume v on the delta ring b generated by 
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the compact sets. For each compact set Q C. X, the extension v is given by 
the formula 

v(Q) =inf(v(A) :A G V0, Q Q A) 

and for each set E G b, 

v{E) = sup (v(Q) : Q-compact, Q Q E). 

We will show that the extension v : b —» i£+ vanishes at infinity on the delta 
ring b. Consider any number e > 0 and use the fact that the volume v vanishes 
at infinity on the ring V0 to choose a set K £ V0 such that i f V0, A d X\K 
yields v{A) < e. Since each set in the ring Vo is contained in a compact G& set, 
we may assume that the set K is a compact G$ set. Let Q C X\K be an arbi­
trary compact set. Then there exists an open F„ set G and a compact G$ set C 
such that Q CG C C C X\K [13, p. 294]. Consequently, v(Q) < e so that 
for any set A G b with 4̂ C X\K, we have 

z;(-4) = sup (v(Q) : Q Q A) g e. 

Since the extension £ : b —» i£+ is countably additive and vanishes at infinity 
on the delta ring b, it is strongly bounded. Therefore z/is bounded on the class 
ha = o-(b) = 38. That is, for each disjoint sequence An G b, n G N, the se­
quence of numbers v(Ut=iA^), n G N, is bounded. Moreover, from the 
regularity of v on b the restriction of the measure v to the lattice ^ of compact 
sets is a regular content in the sense of Halmos [15, pp. 224-240]. This restric­
tion generates a measure v on the Borel cr-ring 38 which is regular in the sense 
that 

v(A) = sup (0(C) : C ^ , C Ç i ) 

and 

v(A) = inf (v(G) : i C G , G-open, G G 38) 

for each set 4̂ ^ 38. Also, the restriction of the measure v to the delta ring b 
coincides with the measure v. Consequently, the measure v is finite on the 
o--ring 38 = ba. From regularity and [13, Proposition 11, p. 234], the ring V0 

is dense in the <r-ring 38, Therefore the vector measure \x G ca(V0} Y) admits 
an extension to a vector measure Ji G ca{38\ Y). Moreover, the extension 
/z G ca{38, Y), obtained via the ^-continuity (actually the uniform ^-continuity) 
is Borel regular and the proof is complete. 

Let 38T be the largest o--ring in which the cr-ring 38 is an ideal. The family 38% 

is characterized by the equality 

38r = {A C X : A Pi B G 38 for all B G 38]. 

The cr-ring 38 r is a c-algebra containing the delta ring b of relatively compact 
Borel sets and consequently [13, Proposition 5, pp. 290-291] the o--algebra 38T 

contains the open and the closed sets. 

PROPOSITION 4. Let p G C{38r) be a content which is regular on the Borel sets 
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SS and vanishes at infinity on the o-algebra SS T relative to the family of compact 
sets (i.e., for each number e > 0, there exists a compact set K such that p(A) < e 
for each set A G SSr, A C X\K). Then the content p is outer regular on the 
a-algebra SS T. 

Proof. For any set A £ SS T, it must be shown that the set A can be approxi­
mated from above by open sets. Let e > 0 be arbitrary and choose a compact 
set Q for which p(B) < e/2 for each set B € SSr, B C X\Q. From the regu­
larity of the content p on the c-ring of Borel sets, there exists an open set 
Gi € SS with A C\ Q C Gi and p(G1) <p(AC\Q) + e/2. Then for any open 
set G2 with A\Q C G2 C A<2 we have for the set G = d \J G2, A C G and 

£(G) â P(Gi) + p(G2) < p(A r\ Q) + e/2 + e/2 

so that 

^(G) < ^ ( ^ H ( 2 ) + e<p(A) + e. 

Since the number e > 0 is arbitrary, the content p is outer regular. 

Let w Ç ca+(SS, R) be regular. Then the measure w vanishes at infinity on 
the o--ring Se relative to the compact Gs sets. For each set A G Ser, we set 

w(A) = sup («>(()) : Q C i , Q-œmpact) < oo. 

The function w : SST —> i^+ is a countably additive, regular extension of the 
Borel measure w. Indeed, the countable additivity on the cr-algebra SS\ follows 
easily from the countable additivity and the regularity of the measure w on 
the c-ring SS. In addition the regularity of the measure w insures that the 
function w extends the measure w. Consequently, the function w is a countably 
additive content which is regular on the cr-ring SS and inner regular on the 
cr-algebra SSr. We show that the content w vanishes at infinity on the <r-algebra 
SS r relative to the family of compact G h sets. However, this follows from the 
definition of the content w and the fact that the measure w vanishes at infinity 
on the o--ring SS relative to the compact Gs sets. From Proposition 4 the count­
ably additive content w is a finite regular measure extending the measure w. 
Moreover, since any regular extension wf of the measure w to the c-algebra SSr 

satisfies the relation 

wf{A) = sup (V(Q) : Q C Ay Q-compact) 

for each set A Ç S8r, the extension w is necessarily unique. 
We have established the essentials of the following general theorem. 

THEOREM 4. Let Vo denote the ring generated by the compact G s sets and let 
SST be the largest a-ring in which the Borel a-ring SS (the a-ring generated by the 
compact sets) is an ideal. Then corresponding to each vectorvolume fx Ç caRœ(Voy Y) 
there exists a unique, regular measure Jl Ç ca(SST, Y) which extends the volume p. 

Proof. Let v € cabœ
+(Voj R) be a control volume for the vector volume n 

and let v Ç ca+(SSr, R) be the unique regular extension of the volume v. The 
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volume v generates a semimetric on the (7-algebra 36\ for which the lattice ^ 
of compact sets is dense. By Theorem 3, the volume \x admits an extension to a 
^-uniformly continuous, regular, vector measure MI 6 ca{36, Y). Since the 
o--ring 36 contains the compact sets, there exists a vector measure & £ca {36 T, Y) 
for which /z is ^-continuous on the c-algebra 36 T and /Z extends \x. Consequently, 
/Z G ca{36 T, Y) is a regular vector measure extending the volume \x £ cai?œ(Fo, 
F). The uniqueness follows from the fact that the compact sets are zJ-dense in 
the o--algebra 36 r. 

Remark 2. In a recent paper, Ohba [20] noted that a Borel regular vector 
measure on the (7-ring 36 generates an inner regular measure on the c-algebra 
generated by the closed sets via the above process. 
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