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NILPOTENT BY SUPERSOLVABLE M-GROUPS 

ALAN E. PARKS 

1. Introduction. A character of a finite group G is monomial if it is 
induced from a linear (degree one) character of a subgroup of G. A group 
G is an M-group if all its complex irreducible characters (the set Irr(G) ) 
are monomial. 

In [1], Dade gave an example of an M-group with a normal subgroup 
which is itself not an M-group. In his group G, the supersolvable residual 
N is an extra special 2-group and G/N is supersolvable of even order. 
Moreover, the prime 2 is used in such a way that no analogous 
construction is possible in the case that \N\ or \G:N\ is odd. This led Isaacs 
in [8] and Dade in [2] to consider the effect of certain "oddness" 
hypotheses in the study of monomial characters. 

Our main results are in the same spirit. Although our techniques seem to 
require a restrictive assumption on the supersolvable residual of the 
groups we consider, our theorems provide more evidence that under 
fairly general circumstances normal subgroups of M-groups should be 
M-groups. 

THEOREM A. Let NAG with N nilpotent and G/N a supersolvable group 
of odd order. Suppose that G is an M-group. Then every subnormal subgroup 
oj G is an M-group. 

In [8], Isaacs asked whether a Hall subgroup of an M-group need be an 
M-group (this is known to be true if the Hall subgroup is normal). 

THEOREM B. Let NAG with N nilpotent and G/N supersolvable and of 
odd order. If G is an M-group, then so is every Hall subgroup of G. 

In fact, under the hypothesis of Theorems A and B we will show that 
any subgroup of G containing N is an M-group (see Corollary 8.2). It is 
not true that all subgroups of these groups are M-groups: If G is the 
regular wreath product of the quaternion group of order 8 with a cyclic 
group of order 3 then 02(G) has index 3 in G, and G is an M-group, yet G 
contains a subgroup isomorphic to the non-M-group SX(2, 3). 

In Section 3 of [9], Seitz investigated the supersolvable residual N of an 
M-group G. Several of his results involve assuming TV to be an 
extra-special/7-group of order p3. We summarize Theorems 3.1, 3.3, 3.10 
and Corollary 3.6 of [9]. 
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THEOREM (Seitz). Let N be the supersolvable residual of a group G 
and suppose that N is an extra-special p-group of order p . Put 
C = CG(N/Z(N) ). Then G/C can be identified as a subgroup of GL(2, /?), 
and G is an M-group if and only if p > 3 and (G/C) 0 SL(2, p) is 
reducible. 

Our methods allow us to generalize this result in the case that \G\N\ is 
odd. We do not need to assume that N is the residual or to restrict the 
structure of N quite so severely. For 9 e Irr(A^) we identify ker(#) as in 
2.20 of [7], and the inertia group IG{0) as in 6.10 of [7], 

THEOREM C. Let iVAG with N' ^ Z(N) and G/N supersolvable of odd 
order. Then G is an M-group if and only if for every 6 e Irr(N), there is a 
subgroup A of N containing ker(0), normalized by IG(0), and such that 

A = CN(A/kQT 0). 

The relationship between Seitz' theorem and Theorem C is clearer in the 
following: 

THEOREM D. Let N A G with N an extra-special p-group and G/N 
supersolvable of odd order. Then G is an M-group if and only if there is 
A ^ N with 

A A CG(Z(N)) and A = CN(A). 

In Section 2 we collect the facts about characters of nilpotent groups 
needed in Sections 3, 7, and 8. In Section 3 we prove a rather general result 
enabling us to find certain monomial characters of inertia groups. Sections 
4 and 5 contain a generalization of Dade's hyperbolic modules, (found in 
[2] ) which allows us to prove the key Theorem 6.4 in Section 6 and to 
obtain Theorems C and D. In Section 7 we introduce a process which uses 
a nilpotent normal subgroup of a group G to control questions about 
which characters of G are monomial. We are then able to obtain a 
characterization of M-groups of the type in Theorems A and B (see 
Theorem 7.4). We link Sections 6 and 7 together in Section 8 and prove 
Theorems A and B. 

Throughout, we assume the notation of [7]. All groups considered are 
finite and all modules are right, unital, and finite dimensional. If ;// is a 
character of G, we denote the set of its irreducible constituents by 
Irr(G|^). 

Because of its fundamental importance we mention Clifford's theorem 
(6.11 of [7] ). Let TV A G and 0 G Irr(iV). Put / - IG(0). Then for each 
X G Irr(G|^G) there is a unique x$ G In*(/) such that (X$)N IS a multiple of 
0 and (xef = X- Also, if ^ G lrr(/|07) then 

xpG e Irr(G) and >// = 0 / / % 
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The author has appreciated the referee's many comments and sugges­
tions, which have aided the areas of conciseness, clarity, and choice of 
notation. 

2. Characters of nilpotent normal subgroups. If 0 G Irr(A^) then as in 
Definition 2.26 of [7] we put 

Z(0) = {x G N\ \0(x)\ = 0(1)1 

By Lemma 2.27 of [7], 

Z(0)/ker(0) = Z(A7ker(0) ) 

and this factor group is cyclic. 
The following well-known fact will be needed in Sections 3 and 6. 

PROPOSITION 2.1. Assume that N' ^ Z(N). Let 0 G \n(N) and put 

Z = Z(0). Then there is a unique element X oflrr(Z\Oz) and 0 is the unique 

element oflrr(N\XN). 

In Sections 6 and 7 we will need to factor characters of nilpotent groups. 
If N is a nilpotent group and 8 G IVY(N) then in light of Definition 4.20 
and Theorem 4.21 of [7] we have 

PROPOSITION 2.2. 0 can be written uniquely of the form Y\ 0 where p 
ranges over the prime divisors of \N\, 0 G lrr(N), and ker(0 ) contains the 
normal p-complement of N. If Q G SyL(N), then we also have that 0 is a 
direct product I I i>p where \p G lrr(Q ) . In fact \p = (0p)n and 0 is 
determined by xp . Finally, 

ker(0) = n k e r ( ^ ) = U ker(^) . 

PROPOSITION 2.3. Let 0 G \rr(N) and factor 0 = Yl 0p as in Proposition 
2.2. Let Ap ^ N with kev(0p) ^ A . Suppose that A = C\Ap. If x G N and 
[A, x] ^ ker(0), then 

[Ap,x] ^ ker(^) for all p. 

Proof If Qp G Syl^Ol^), then since N/ker(0p) is a /7-group, we have 
A = tlp Qp, where Qp G S y l ^ ) for all /?. Since Qp char A, [A9 x] ^ 
ker(#) implies that 

[Qp, x] ^ (Qp) n ker(0) ^ ker(^) 

where the last containment is furnished by Proposition 2.2. 
Now Ap = ker(0p) • Qp and ker(^) A N. Thus 

[Ap,x] ^ ker(^) for all/7, 

as needed. 

https://doi.org/10.4153/CJM-1985-051-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-051-0


M-GROUPS 937 

In what follows, N is a nilpotent normal subgroup of a group G. 
Whenever a product sign or intersection sign occurs for objects with a 
subscript/? we understand that the product or intersection is taken over all 
primesp dividing \N\. Similarly, the phrase "for each/?" means "for each 
prime p dividing \N\". Furthermore, if B denotes a group and 0 a 
character of B we define 

B = HBp and 0 = U (0p)B. 

PROPOSITION 2.4. Let Ap ^ N for each p and assume 6p G lrr(A ) and 
that ker(0 ) contains the normal p-complement of N. Then 

a) 0 e \rx(A ) 
b) ker(0) = nker(0 ) 
c) if x G G then Ax = A and 0X = 0 if and only if {A f = Ap and 

Vpf = Opforallp. 

Proof. Let Q G Syl (A ) for each p. Then the hypothesis shows that 
A = I I Qp (internal direct product). By Proposition 2.2 applied to each 
0p G lvv(Ap) we see if i// = (0 )Q then \pp G Irr(<2 ) and 0p is determined 
by %. 

We see that 

9 = n (op)A = n v 
and thus 0 G Irr(^) by Theorem 4.21 of [7]. By Proposition 2.2, 

ker(0) = I I ker (^) = nke r (^ ) . 

This proves (a) and (b). 
Let x G G and suppose that Ax = A and 0X = 0. Since Q char A we 

find that Qx = Q By the uniqueness of factorization of 0, (\^p)
x = \pp. 

Now A = R X Q where R is the normal /?-complement of N. Since 
Rp char TV, (Rp)

x = Rp and hence (Ap)
x = Ap. Now \pp determines 

0p = In X ^ a n d s o t f , ) * = 0p. 
Conversely, if x G G and (Ap)

x = Ap and (0p)
x = 0p for all /?, then 

Ax = n M p ^ a n c i e n ( ^ = 0. 

This proves (c). 

PROPOSITION 2.5. Let Ap ^ Bp ^ N for each p. Suppose 

Xp e I r r ( ^ ) , ep e Irrd^kX,)*'), 

#«d //zûf/ ker(A ) contains the normal p-complement of N for each p. Then 

A ^ B and 0 G Irr(fl|À*). 

Proof. It is clear that A ^ B, and by Proposition 2.3, X G Irr(vï) and 
0 G Irr(£). 

For each/7, let Qp G Syl^C^), then 
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Ap n Qp G S y l ^ ) . 

Put 

% = (6phP
 a n d fP = Up\nQp-

Then as in Proposition 2.4, 

0 = I I i>p and X = I l vp. 

Since [^, (A^)^] ^ 0 we find that 

[%Avp)
Qp] * 0 for each p. 

The proof of Theorem 4.21 of [7] shows that 

i n *„, ( i i <PPf] = n w>, (CP,)^] * o. 
Thus [0, A5] ^ 0. 

Finally, we need information about a configuration which will arise in 
Section 7. Because we have all the notation at hand, it seems best to prove 
it now. 

PROPOSITION 2.6. Let An ê Bn A Hn % G for each p with Bn ^ N and 
p p p J r p 

Ap A Hp. Let 
\pelrr(Ap) and 0p e \xr(Bp\ (\p)

Br) 

and suppose that ker(A ) contains the normal p-complement of N for all p. 
Put 

Jp = I„JL0p)9 Kp = IB(Xp\ and 

<vP = (°p\ for each p. 

Then A ^BAH,AAH,J = IH(6), K= /fi(A), and <p = 0X. 

Proof Observe that Kp ^ N and that ker(ç> ) â ker(Ap) so that 
<P G \rr(K) by Proposition 2.4. It is clear that A and B are normal in H. 
That J = Iff(O) and K = IB(X) follows from Proposition 2.4(c) applied 
respectively to 2? 0 and to A , A . 

Since ^ G I r r ( ^ | (A^)^), Proposition 2.5 shows that 0 <= Irr(jL?|Afl) 
so that 0X makes sense. By the same proposition applied to 0p e 
I r r ( ^ | (<pp)

Bp) we conclude that 

0 e Irr(£|</). 

For the same reason, <p e Irr(A^| (\p)
Kp) implies that 

? <= Irr(AT|A^). 

By Clifford's theorem we must have that <p = 0X. This completes the 
proof. 

3. Passing to inertia groups with monomial characters. Let NAG, and 
suppose that x e Irr(G). Let 0 e lrr(N\xN), and put 7 = Ic(0). By 
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Clifford's theorem there is a unique element xe G Irr(/) such that (XO)M ls 

a multiple of 0, and such that (xe)G = X- I* ls possible for x and 0 to be 
monomial, yet Xe n°U this situation is at the heart of many interesting 
examples in the theory of monomial characters (see [1], or see Example 6.4 
of Berger in [8] ). 

In various settings later on, we will need to assert that a certain xe *s 

monomial. Theorem 3.1 shows that this is the case under a fairly general 
hypothesis. 

We say a group is Sylow-abelian by nilpotent if the Sylow /^-subgroups of 
its nilpotent residual are abelian for all primes p. 

THEOREM 3.1. Let NAG with N solvable and Sylow abelian by nilpotent. 
Suppose x G Irr(G) is monomial, and that 0 e Irr(iV|x^). Then Xe ^s 

monomial. 

A use of induction in the proof of Theorem 3.1 will reduce us to the case 
that all characteristic, abelian subgroups of TV are central in N. The 
following two lemmas allow us to handle this situation. 

LEMMA 3.2. Assume that N is solvable, Sylow-abelian, and that all 
characteristic, abelian subgroups of N are central in N. Then N is abelian. 

Proof. Observe that the hypothesis is inherited by all characteristic 
subgroups of N. We induct on \N\. 

Let/? be a prime divisor of \N:N'\ and let A = Op(N). Then A < N, and 
A char N. By induction A' = 1, and thus, by hypothesis, A ^ Z(N). 

If P e Sy\p(N), then AP = N. Now P is abelian and A ^ Z(N). It 
follows that N is abelian. 

LEMMA 3.3. Assume that N is solvable and Sylow-abelian by nilpotent. 
Suppose that all characteristic, abelian subgroups of N are central in N. Then 
N' ^ Z(N). 

Proof Let A be the nilpotent residual of N. Since A char N, Lemma 3.2 
allows us to conclude that A' = 1, hence, by hypothesis, A ^ Z(N). Now 
N is nilpotent, for N/Z(N) is nilpotent. 

If K; is the z'th term of the lower central series for N, then by Satz III. 
2.11 of [6], Kl is abelian when 2/ is greater than the nilpotence class of N. 
Such Ki must be central in TV by hypothesis, hence Ki+X = 1. This 
situation forces that the class of N is at most 2. 

Our next result establishes Theorem 3.1 in the case where 0 is linear, but 
without any special assumptions on G or on N. This fairly easy and well 
known fact may be deduced from Lemma 4.1 of [2]. 

LEMMA 3.4. Let NAG. Suppose that x G Irr(G) is monomial. Let 
0 e Irr(7V|xyv) be linear. Then xe is monomial. 

Proof of Theorem 3.1. Among all quadruples G, x> N, 0 satisfying the 
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hypothesis but not the conclusion of Theorem 3.1, choose one so as to 
minimize \G\. We will derive a contradiction. 

STEP 1. All characteristic, abelian subgroups of N are central in G. 

Proof. Let A ^ N, A A G, and A' = I. Choose X e ln(A\0A). Then 
X G Irr(^lx^). We will show that X is invariant in G. Since by the 
minimality of \G\, x ls faithful; this will prove that A ^ Z(G) (see Lemma 
2.27 of [7] ). 

Assume, to the contrary, that T = IG(X) is proper in G. Now N n T = 
IN(X). By Clifford's theorem we find 

^ = 0X «= lvr(N n T) 

with \pN = 6 and \pA a multiple of X. Put 

a = xx G I " ( r ) , 

so that aG = x and aA is a multiple of X. 

fix 

e N \ \ 
Y Ta = Xx 

Xs A 

We claim that 

* G Irr(JV n 7 1 ^ n r ) . 

Indeed, since / = « and x e Irr(G|0c), we find that 

X e Irr(G|*c). 

Thus Xr and ^ have a common irreducible constituent ft. Clearly, 

ft G Irr(r|Xr). 

Also, since \pA is a multiple of À, and since *// is a constituent of ftNnr, we 
find that 

A G I r r ( ^ | ^ ) . 

This proves that ft e lrr(T\XT). By Clifford's theorem, we must have 
ft = XA' a n d so ft = a. Then 

* e Irr(W n r | a ^ n r ) , 

as claimed. 
By Lemma 3.4, a is monomial. We want to apply the inductive 

hypothesis to 

(N n T) A T, a <= Irr(7), and 
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+ G Irr(JV H I\aNnT). 

Since N n T ^ N, N n T is Sylow-abelian by nilpotent. By the 
minimality of |G|, we conclude that a^ is monomial. 

Put J = IT(\p) and let /? = a^, so then ft = a, and y8 / v n r is a multiple 
of ,/,. Put / = IG(9). We claim that 7 ^ 7 . Indeed, if x G J, then 

^ = tyV = (+xf = ^ = 0. 
Thus x G /, as needed. 

Finally, we claim that ft = xe- This will be a contradiction, for /? is 
monomial, yet xe is n o t - Now 

/?G = (pTf = ac = x, 

and thus /?7 G Irr(/|x/)- Since fiNnT is a multiple of i//, ()S /)yvn7 has ^ as a 
constituent. Thus (Z?7)^ has \pN = 6 as a constituent. We conclude that 

/?' G lrr(/|07). 

By Clifford's theorem, /? = x#- This completes step 1. 

From step 1, it follows that all characteristic, abelian subgroups of N are 
central in N. By Lemma 3.3, N' ^ Z(N). Put Z - Z(N). 

STEP 2. Z = Z(0). 

/Voo/. Certainly Z ^ Z(0). But 

[TV, Z(0) ] ë TV' n ker(0). 

Now W ^ Z, and since TV ^ 1, we have N' is a proper, characteristic, 
abelian subgroup of N. By step 1, N' ^ Z(G). Thus 

AT n ker(0) A G. 

Since x is faithful, this proves that 

N' n ker(0) = 1 

(see Corollary 6.7 of [7] ). Hence Z(0) â Z. 

By Proposition 2.1, if X G Irr(Z|0z), then 0 is the unique element 
of Irr(Af|X^). If Z < N, then by step 1, Z ^ Z(G), and so X is invariant in 
G. But then 0 is invariant in G. Hence xe = X» a contradiction. 

Thus Z = N, and so 0 is linear. By Lemma 3.4, x# is monomial, a 
contradiction. This proves Theorem 3.1 

4. Extensions of modules. The goal of this section is to prove 

THEOREM 4.1. Let MAG with \G\M\ = q, an odd prime. Suppose U is an 
irreducible, G-invariant module for M over a finite field F of characteristic p, 
where q divides p(p — 1). Then there is to within F G-isomorphism at most 
one irreducible, self-dual FG-module lying over U. 
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LEMMA 4.2. Assume the hypothesis of Theorem 4.1. Let V be an 
irreducible FG-module lying over U. Then V = U or VM = U. 

Proof. We assume U Q V. Let x e G\M and let n ^ 1 be minimal such 
that 

(3) Ux" Q. 2 Uxl. 

Then the sum on the right side of (3) is direct since U is M-irreducible, and 
the object on the right side of (3) is a G-submodule, hence is K, for V is 
(7-irreducible. Because \G\M\ = q, we have n = q. 

If n = q, then obviously V = U . 
Now suppose that n < q. By Clifford's theorem F^ is homogeneous. Put 

E = EndFM(U), and then the number of irreducible M-submodules of V 
is 

e = \E\n~] + . . . + |£| + 1 

(see [5], Lemma 2.2.3 for this result of Green). 
We claim that q does not divide e. Indeed, if q = p then e = 1 mod q. If, 

on the other hand, q\p — 1 then \E\ = 1 mod q, for E is a finite field of 
characteristic p. Since « < q, q \ e in this case either. 

The previous paragraph shows that some irreducible M-submodule of V 
is a G-submodule, for the orbits of M-submodules under right translation 
by elements of G have size q or 1. Since V is irreducible, this proves that 
n = 1, as needed. 

Proof of Theorem 4.1. Let V, W be irreducible, self-dual FG-modules 
lying over U. We can assume that U is an FM-submodule of V and 
of H/. 

By a standard result, both Vand Ware homomorphic images of £/G. If 
either F or W is isomorphic to Lr<7, then so is the other, and we are 
done. 

By Lemma 4.2, the only possibility left is that VM = U = WM. The rest 
of the proof is meant to show that W is isomorphic to the tensor product 
of V with a 1-dimensional module. To this end, for g ^ G, denote by og 
the endomorphism of U induced by the action of g on K, and by g, the 
endomorphism induced by the action on W. We have 

(1) og = g for all g e M. 

Put E = EndFA/(£/). Since F is finite, and U is irreducible, E is a finite 
field. We view F Q E. 

Choose x e G — M and define a e Aut(£) by 

8° = ox~]8o x for 8 e £. 
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Next define Na:E —> E by 

(2) 7^(5) = 8°q~] ...8° S for 5 e E. 

Observe that 

Na(8) = ox~q(ox8)q. 

Finally observe that ox~] x is an element of £, call it a. Then 

Na(a) = ox'q{oxa)q = ox~q • xq = 1, 

using (1). 
Because JĈ  G M, we have oq = \. 
Case 1. a = 1. Then 1 = Na(a) = aq and since q divides p(p — 1) we 

have a e F. From the definition of a, we conclude that W is 
FG-isomorphic to V ® R where R is the 1-dimensional FG-module on 
which x has eigenvalue a. Since Kand Ware both self-dual and q is odd, it 
follows easily that R is trivial (a = 1) and therefore V = W. 

Case 2. a ^ 1. Then jVa is the norm map from E to the fixed field of o. 
Since Na(a) = 1, Hilbert's theorem 90 forces there to be /? e £ x satisfying 
/?« = fia. It is then routine to check that the map sending u <E U to ufi is 
an FG-isomorphism from W to K 

5. Forms on abelian groups. Let V be an abelian group and let Z be a 
cyclic group. We will write the group operation on V and on Z as + . A 
Z-form on F is a map [,]: V X V —> Z satisfying: 

[w, v + w] — [w, v] + [w, w] 

[w + v, w] = [w, w] + [v, w] 

[w, w] = 0 for all w, v, w e K 

From these conditions, it is clear that [w, v] = — [v, u]. 
This is a straightforward generalization of the idea of an alternating 

bilinear form on a vector space. Our preliminary work is essentially to 
generalize certain elementary facts from vector spaces to arbitrary abelian 
groups. 

For U Q V, put 

U1- = {v e V\ [w, v] = 0 for all u <E U}, then 

(/-1 = {v G K| [v, w] = 0 for all w G U) 

as well, and so (U) ^ U.U U Q U we say £/ is isotropic and define the 
factor form on U IU by 

(£/ + v, t/ + w) = [v, w]. 

This is clearly a well defined Z-form on (7 / £/. If £/ n £/ = 0, we say U 
is nondegenerate. 
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Throughout this section, Kis an abelian/?-group for some prime/? and G 
acts on V so as to stabilize the Z-form [,] on V 

lug, vg] = W-> v] f° r a ^ w, v G K, g G G. 

We will say that Fis G-hyperbolic if there is a G invariant U Q Vsuch that 
U = U^. The goal of this section is to prove the following. 

THEOREM 5.1. Let G be a group of odd order. Suppose M A G with the 
property that if q is a prime divisor of |G:M|, then q divides p(p — 1). 
Assumes that V is M-hyperbolic. Then V is G-hyperbolic. 

In Theorem 3.2 of [2], Dade proved that if V is elementary abelian and 
\G\M\ is a power of/?, then Kis M-hyperbolic implies F i s G-hyperbolic, 
without assuming that M A G . Our result was inspired by Dade's 
theorem. 

PROPOSITION 5.2. Let U be an abelian group. Then 

|Hom([/, Z)\ ^ \U\. 

Proof Write U as a direct product (x,) + . . . 4- (xn). An element 
a G Hom([/, Z) is determined by the values x°. Since Z is cyclic, there 
are ni = O(Xj) possible choices for xa

t. Thus 

|Hom(t/, Z) | = II /!,- ^ II 0(xt) = \U\. 

LEMMA 5.3. Let U Q V be nondegenerate. Then V = U 4- U (internal 
direct product). 

Proof. We can map V into Hom(£/, Z) by sending v G K to [•, v] 
considered as a function on U. Clearly, the kernel of this map is U±. 
Because U is nondegenerate, the map is an injection when restricted to U. 
Thus 

\U\ ^ |Hom(£/, Z ) | . 

By Proposition 5.2, we must have 

\U\ = \Hom(U, Z)\. 

Thus U is mapped bijectively to Hom(£/, Z). It follows that V = 
U + U\ 

Given Lemma 5.3, the proof of the following is virtually identical to 
Proposition 1.5 of [2]. 

LEMMA 5.4. Let X, Y be maximal, G-invariant, isotropic subgroups of V. 
Then X±/X = Y±/Y as G-groups. 

LEMMA 5.5. Suppose that every G-subgroup ofVis nondegenerate. Then V 
is elementary and so is a vector space over afield F of order p. Furthermore, 
the Z-form [,] is equivalent to a G-invariant, F-bilinear, alternating form on 
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V X V. Moreover, V = U] + . . . 4- Un where JJl are irreducible 
FG-submodules and l)l Q U • if i ¥= j . 

Proof. We induct on \V\. Let U > 0 be a minimal (/-subgroup. Then U 
has exponent p and so the values [w, v] for w, v e £/ lie in the unique 
subgroup of Z of order/?. Thus U may be viewed as an FG-module and [,] 
restricted to U as an F-linear form. 

By Lemma 5.3, V = U -f U . By induction, (7 has exponent p and can 
be decomposed as required. 

We remind the reader that \G\ is odd in the following lemma. This result 
follows from the work of Isaacs in [8] and it is stated as Corollary 2.10 of 
[2], together with Proposition 1.10 of [2]. 

LEMMA 5.6. Assume F is a finite field and that V is an FG-module with a 
nondegenerate, G-invariant, alternating F-bilinear form [,]. Suppose 
V = Ux + U2 where Ul are nondegenerate isomorphic irreducible 
G-submodules and U] Q U^. Then V contains a nonzero, isotropic 
G-submodule. 

Proof of Theorem 5.1. Choose (G, M, V) among all counterexamples to 
Theorem 5.1 to minimize first |G|, then \G:M\, and then \V\. Because G/M 
is solvable, the minimality of G forces that \G\M\ = q, a prime. (Then 

q\p(p ~ i).) 

STEP 1. If U Q V is a G-subgroup then U is nondegenerate. 

Proof. Assume 0 < ÎJ is irreducible and not nondegenerate. Then U is 
isotropic. Let ( / Q l a maximal, M-invariant isotropic subgroup of V. Let 
V c Kbe M-invariant with Y = Y^. By Lemma 5.4, 

X^IX = Y^IY = 0. 

Thus X = X±\ and this shows that U±/U with the factor form is 
M-hyperbolic: X/U = (X/U)^. 

By the minimality of K, U /U is G-hyperbolic and so we find 
G-invariant W with 

U ç w Q U^ and W/U = (W/U)^. 

Then W = W1- and so V is G-hyperbolic, a contradiction. 

Now by Lemma 5.5, we view V as an FG-module where F is a field of 
order p. By Lemma 5.5, V is completely reducible; thus, by Clifford's 
theorem, VM is completely reducible. 

STEP 2. Let V = X + Y where X, Y are nonzero, G-submodules with 
X ç Y\ Then there is Xx Q X9 Yx Q Y with AT,, Yx nonzero M-submodules 
and Xx = y,. 
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Proof. Otherwise X and Y have no common M-composition factor. It 
follows that if W Q F is any M-submodule, then 

w = (W n X) + (W n Y). 

In particular, if W = W"1 then W C\ X and Ĥ  n F are their own 
perpendicular subspaces in X and Y respectively. 

This proves that X and Y are M-hyperbolic. By the minimality of K, X 
and y are G-hyperbolic, hence so is K, which is not the case. 

The group G acts on the homogeneous components of VM by right 
translation. The sum of the elements of any G orbit is a G-submodule X 
and X is nondegenerate by Step 1. By Lemma 5.3, V = X + X , but this 
contradicts Step 2 unless X = V. 

STEP 3. VM is homogeneous. 

Proof. Otherwise, since \G:M\ = q, there are exactly q homogeneous 
components to VM, say Wx,. . . , W. Then V = Wx + . . . 4- W7. Since q is 
odd and since the Wi are all G-translates of Wx, each Ŵ- is nondegenerate 
and orthogonal to the others. 

By hypothesis there is A c V, an M-submodule with A = A . Then 

and so 

(Wx n A)1- n M/, ç ^ . 

Choose x G G — M, and we can arrange that Wxx
l — Wi+X. Put 

</ 
x = 2 (Wx n ^)JC' 

and it follows that X = X is a G-submodule of K, a contradiction. 

Write V = Ul + . . . + Un where t/,- are irreducible, pairwise 
orthogonal (hence self-dual) G-submodules (Lemma 5.5). 

The form [,] is alternating, and so, since \G\ is odd, if Ut = U- say with 
/ ¥= j then by Lemma 5.6, Ut -f L̂  has an isotropic G-submodule, 
contradicting Step 1. Thus the Ut are pairwise nonisomorphic. 

STEP 4. V is irreducible. 

Proof. Let n > 1. By Step 3, U] and t/2 have irreducible M-submodules 
Xx, X2 respectively which are FM-isomorphic. By Theorem 4.1, Ux = U2, 
which is not so. 

Because V is M-hyperbolic, VM is not irreducible. By Lemma 4.2 
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V = XG where X is an irreducible FM-submodule of V. Thus the 
composition length of VM is q which is odd. 

Now let A Q V with A = A and A an M-submodule. Because VM is 
completely reducible V = A -f 5 for some M-submodule 5. Since the 
composition length of VM is odd and VM is homogeneous, we cannot have 
\A\ = \B\. But since V is a vector space with a nondegenerate, alternating 
form we cannot have A = A unless \A\ = \B\. This contradiction 
completes the proof of Theorem 5.1. 

Finally, we indicate a natural setting where a (7-invariant Z-form on an 
abelian group V can arise, and we interpret the condition of being 
hyperbolic in this setting. 

PROPOSITION 5.7. Let N A G with N' ^ Z(N) ^ Z(G). Assume that 
Z = Z(N) is cyclic. Put V = N/Z and let G act on V by conjugation. Then 
the map 

(Zx, Zy) = x~ y~ xy 

is a well-defined, G/N-invariant Z-form on V. 

Proof. Because N' ^ Z, [g, h] = g~}h~]gh is independent of the choice 
of g G Zx and h G Zy. Thus (,) is well-defined. The usual commutator 
identities show that (,) is a Z-form. 

Since Z c Z(G), (,) is G-invariant: 

((Zxf, (Zyf) = (Zx*, Zyg) = [xg,yg] 

= l^yf = [x,y] = (Zx,Zy) 

for all x, y ^ N and g e G. Since N acts trivially on K, G/N acts on V. 

PROPOSITION 5.8. Assume the hypothesis of Proposition 5.7. Then V 
is G/N hyperbolic if and only if there is A ^ N with A A G and 
A = CN(A). 

Proof. By definition of the Z-form, a subgroup B/Z of V is isotropic if 
and only if B is abelian (B ^ CN{B) ). Also 

(BIZ)1- = CN(B)/Z. 

The result is now clear. 

6. Class 2 by supersolvable groups. We want to prove Theorems C and 
D as well as to develop some further machinery relevant to Theorems A 
and B. 

THEOREM 6.1. Let N A G with N' ^ Z(N) and G/N a supersolvable 
group. Suppose 0 G lrr(N) is invariant in G and that there is A = N with 

A AG, ker(0) ^ A, and A = CN(A/kex(6) ) . 
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Then all elements of Irr(G|0G) are monomial. 

Theorem 6.1 provides one direction of Theorem C. To prove it we need 
two simple facts. 

LEMMA 6.2. Assume the hypothesis of Theorem 6.1. If X ^ \xr(A\6A), 
then X(\) = \ and A = IN(X). 

Proof. Clearly, A/kex(6) is abelian, and so X(l) = 1. Clearly 

Z(N) ^ CN(A/kex(d)) 

so that the hypothesis forces that N' ^ A. It follows that IN(X) A N. 
Assume A < IN(X) and choose B ^ IN(X) with B A N and \B\A\ a prime. 

By Corollary 6.20 of [7], X extends to ft e Irr(2?), and by Gallagher's 
theorem (Corollary 6.17 of [7] ) we may suppose \x e \XX(B\0B). 

Then jii(l) = X(\) = 1 and so 

W ^ ker(/i) n Z(N). 

Since also, B' A JV, we see that 

ker(0) ^ k e r ( ^ ) ^ B'. 

Thus [A, B] ^ ker(0). This contradicts that 

A = CN(A/kex(6)) 

and proves the lemma. 

LEMMA 6.3. Let A A G with G/A super solvable. Suppose X e \xx(A ) is 
linear. Then every element 6>/Irr(G|À ) is monomial. 

Proof If x e Irr(G|AG) then 

ker x ^ ker(AG) ^ ,4'. 

It follows that x can be viewed as a character of G/v4r. Then x is monomial 
by Huppert's theorem (Satz V 18.4 of [6] ). 

Proof of Theorem 6.1. Let x e Irr(G|0G). If A G Irr(^lx^) then 
X G I r r ( ^ | ^ ) . Thus À(l) = 1 and A = IN(X) by Lemma 6.2. Put 
/ = IG(X). 

Now N n I = IN(X) = A. Let if/ = Xx- T h e n ^ G Irr(/|X7) and 
/A4 = //(TV Pi / ) is isomorphic to a subgroup of G/N, hence is 
supersolvable. By Lemma 6.3, \p is monomial, and thus x = ^ *s 

monomial. This proves Theorem 6.1. 

Our next major step is to establish the converse of Theorem 6.1 in the 
case that N is a/?-group and \G:N\ is odd. 

THEOREM 6.4. Let NAG with Nf ^ Z(N), N a p-group for some prime p, 
and G/N a supersolvable group of odd order. Let 0 e Irr(jV) be invariant in 
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G and assume that all elements of\xx(G\0 ) are monomial. Then there is 
A ^ N with 

AUG, ker(0) ^ A, and A = CN(A/ker(0)). 

Because 0 is invariant in G, ker(0) A G. Since we are seeking A â ker(#), 
there is no loss of generality in assuming that ker(0) = 1. Then by Lemma 
2.27 of [7], Z(N) = Z{0) is cyclic. Put Z = Z(N). Then 0 being invariant 
in G leads to Z ^ Z(G). By Proposition 5.7 commutation induces 
a G/vV-invariant Z-form on N/Z. By Proposition 5.8 the existence of 
A ^ N with A A G and A = CN(A) is equivalent to N/Z being 
(//TV-hyperbolic. 

We begin with a host of preliminaries. The first is an easy consequence 
of the fact that supersolvable groups have Sylow towers. 

LEMMA 6.5. Let S be a supersolvable group and p a prime. Then there are 
normal Hall subgroups of 5, T = U with U/T a p-group. 

LEMMA 6.6 Let S be a supersolvable group and P e Syl (S) with P A S. 
Suppose Q e Syl (5) and q | p(p — 1). Then Q centralizes P. 

Proof. H M A S with M ^ P, then \M\ = p and so \S:CS(M) \ divides 
p — 1. Hence Q ^ CS(M). By induction applied to S/M, we find that 
[P, Q] S M. Then 

[P, g, g ] â [M, g ] = 1. 

By coprime action of Q on P, we see that [P, Q] = 1. 

Lemmas 6.5 and 6.6 allow us to obtain useful subgroups of G/N in the 
proof of Theorem 6.4. The subgroups provided by 6.5 are Hall subgroups, 
and our next three facts establish that certain of their characters are 
monomial. Theorem 6.7 is due to Gallagher and found in [3]. Theorem 6.8 
is a trivial consequence of Lemma 3.4 of [9]. 

THEOREM 6.7. Let M A G be a Hall subgroup of G. Let 0 e Irr(M) be 
invariant in G. Then 0 extends to an element of Irr(G). 

THEOREM 6.8. Let M A G be a Hall subgroup of G. Let 0 e Irr(M) and 
assume that all elements of Irr(G|0 ) are monomial. Then there is a 
monomial extension of 0 to an element of\rr(IG{0) ). 

LEMMA 6.9. Let M A G and let M ^ J ^ G. Let x e Irr(G) be monomial 
and assume that \M e Irr(M). Then Xj Is monomial. 

Proof. Let H ^ G and X G lrr(H) with X(l) = 1 and XG = x- Then 
(XMH)M has XM a s a constituent, hence XMH(\) ^ xOX that is to say 

\MH:H\ ^ \G:H\. 

It follows that M H = G. 
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By Mackey's theorem 

Xj = (Xe)., = (\M")j = (XJnfl)
J. 

Thus Xj is monomial. 

LEMMA 6.10. Let H, K ^ G with G = HK. Let X be a character of H and 
fi a character of K. Then 

X' • ixJ = (XHnK ' li,fnK) . 

In particular if a, ft are monomial characters of G of cop rime degree, then a/3 
is monomial. 

Proof We put J = H n K and compute 

(\jfjijf = ( (\jfijff = ( (Xjfuf 

= ( ( A c ) ^ ) c = XG • ixG, 

proving the first statement. 
For the second, let a = XG where X e lrr(H) for H ^ G and /? = /xG 

where /x e lrr(K) for K ^ G. Then \G\H\ and \G\K\ are coprime, hence 
HK = G, and we are done by the first part. 

At a crucial point in the proof of Theorem 6.4, we will need to quote 
Dade's theorem O of [2]. 

THEOREM 6.11. Let G be a p-solvable group for an odd prime p and let 
X G Irr(G) with x(l) a power ofp and x monomial. Let M A A G and 
6 e Irr(M|xyv/)- Then 0 is monomial. 

Proof of Theorem 6.4. Put Z = Z(0). As remarked following the 
statement of Theorem 6.4 we can assume ker(0) = 1 and we can view our 
task as to show that N/Z is G/TV-hyperbolic with respect to the form 
defined as in Proposition 5.7. We will use induction on |G|. 

By Lemma 6.5 applied to the supersolvable group G/N and prime p 
(N is a/7-group), we find M ^ L ^ G with N g M, M A G, L A G, MIN 
and LIN Hall subgroups of G/N, and L/M a /?-group. Since N is a 
/?-group, it follows that L is a normal, Hall subgroup of G. 

STEP 1. L ^ g be a prime with q\ p(p — 1) and choose Q e Syl (G). Then 
Q ^ CG(L/M). 

Proof. We have that QMIM G Syl^(G/M). By Lemma 6.6, 

[L/M, QM/M] = 1. 

Thus [L, £)] = ^ ^ needed. 

Put K = L • CG(L/M). By Step 1, if q\\G\K\ and q is a prime, then 
q\p - 1. 
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STEP 2. All elements oflrr(K\0K) are monomial. 

Proof. Let a e lrr(K\0K) and let fi e lrr(L\aL) so then 0 G Irr(L|07 ). 
Put / = IG(P). Then L is a normal, Hall subgroup of /. Because all 
elements of Irr(G|/?G) are elements of Irr(G|0G) and all elements of the 
second set are monomial, Theorem 6.8 produces a monomial \p G Irr(7) 
such that i//L = /?. 

Thus if J = / n K = IK(fS), then by Lemma 6.9 ̂ y is monomial. Now 
\̂ z = /? and so by Corollary 6.17 of [7], every element of \rx(J\fiJ) has the 
form x^j - 8 for 8 e \XX(JIL). In particular, a^ = \pj • 8 for some such 8. We 
will show that ao is monomial. Since a = (an) , this will prove that a is 
monomial. 

We have already remarked that ^7 is monomial and irreducible. The 
character 8 is monomial, being an irreducible character of the supersolv-
able group J IL. Because L is a Hall subgroup, 

(8(1), |L|) = 1, forô(l)| |7:L|. 

Now xpL = (1 and so OKI), 8(1)) = 1 since ^(1) ||L|. By Lemma 6.10, 
\p- - 8 is monomial, and this completes Step 2. 

STEP 3. We are done in the case K < G. 

Proof. If K < G, then by Step 2, induction applies to the group K and 
we conclude that N/Z is À7 TV-hyperbolic. By Step 1, if q\\G\K\ then 
q\p — 1. Also, |G:iV| is odd and thus by Theorem 5.1, N/Z is 
G/A/-hyperbolic and we are done in this case. 

We are left to assume that K = G. By the Schur-Zassenhaus theorem, 
there is a complement JIM for LI M in GIM. We have [L, J] ^ M and 
thus J A G . Because MIN is a /?'-group, JV is a normal, Hall subgroup 
of J. 

By Theorem 6.7, there is an extension <p of 6 to / . 

STEP 4. <p zs monomial. 

Proof If 7 = G, then the conclusion is obvious. Otherwise, p\\G:J\ and 
so /? is odd. 

Let x e Irr(G|<pG), then x e Irr(G|0G). Furthermore xO)/<p(l) divides 
|G:/ | (by Corollary 11.29 of [7] ) and thus is a power of p. But *(1) = 0(1) 
is also a power of/? and we now see that xO) is a power of p. By hypothesis 
X is monomial, and thus Theorem 6.11 shows that <p is monomial. 

STEP 5. NIZ is JlZ-hyperbolic. 

Proof. By Step 4 we can find i / ^ / a n d A e Irr(//) with À(l) = 1 and 
A — <p. 

Then since 0 is invariant in 7, (\NH)N has 0 as a constituent. Thus 

\NH:H\ = \NH(\) ^ 0(1) = <p(l) = |y://|. 
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Now NH = J and then (\"H)N = 0. 
By Mackey's theorem, 

0 = (X )N = (KHH) • 

Put A = TV n H. Then since (XA )N is irreducible, we must have Z ^ ^ , so 
then A A TV. Also A = TV n H A / / and thus ^ A TV// - J. In fact, 
since (X^)* = e, we have ^ ^ C ^ ) . We can finish Step 5 by showing 
that A is abelian. 

Now since (XA )N = 0 we see that 

A' ^ ker(A*) â ker(0) = 1. 

This completes Step 5. 

Since p is odd and G/J is a /?-group, Theorem 5.1 shows that N/Z is 
G/iV-hyperbolic. This completes the proof of Theorem 6.4. 

We can now prove Theorem C, which was stated in Section 1. 

Proof of Theorem C. First assume for every nonlinear 0 e Irr(TV), that 
IG(0) has a subgroup A as indicated in the statement of Theorem C. 

Let 0 e Irr(TV). If 0 is linear, then all elements of Irr(G|^G) are 
monomial by Lemma 6.3. If, on the other hand, 0(1) > 1, put J = IG(0) 
and get A ^ TV with 

ker(0) ^ A, A A J, and A = CN(A/ker(0)). 

By Theorem 6.1, all elements of lrr(J\0J) are monomial. By Clifford's 
theorem, this proves that all elements of Irr(G|0 ) are monomial. 

If x ^ Irr(G) then x ^ Irr(G|0G) for some 0 e Irr(TV). We have now 
shown that G is an M-group. 

Now assume that G is an M-group. Let 0 e Irr(TV). We will find A ^ TV 
with 

ker(0) ^ A, A b. lG{0\ and A = CN(A/kQr(0)). 

As in Proposition 2.2, 0 can be factored 0 = I I 0 where p ranges over 
the prime divisors of |TV| and N/ker(0p) is a/?-group. Put Jp = IG{0p) and 
suppose, for each /?, we can find A ^ TV with 

ApIHJp, ktr(Op)^Ap, and ^ = CN(Ap/ktr(0p) ). 

We claim that then A = C\A meets our requirements. 
Indeed, by Proposition 2.4(c), IG(0) = njp and thus A A IG(0). By 

Proposition 2.2, 

ker(0) = n k e r ( ^ ) 

and so ker(0) ^ A. By Proposition 2.3, if JC e TV and [^, JC] ^ ker(0) we 
have 
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[Ap,x] ^ kerC^) for all p. 

Thus 

CN(A/ker(0)) ^ nCN(Ap/kev(0p)) = nAp = A. 

Also, 

A' ^ c\A'p ^ n k e r ( ^ ) = ker(0), 

so then 

/l S C^(^/ker(<9)). 

This shows that such ,4 would have the required properties. 
Thus, to finish the proof of Theorem C, it suffices to consider 

0 <E Irr(TV) where N/ker(0) is a/?-group. Put T = IG(0). By Theorem 3.1, 
every element of I r r ( r |# r ) is monomial. Because 0 is invariant in T, if 
J = 77ker(0), then 0 can be viewed as a character of J and the sets 
l r r ( r |0 r ) and 1TT(J\6J) can be identified. 

Then (7V/ker(0) ) A J satisfies the hypothesis of Theorem 6.4. Hence 
there is a subgroup .4/ker(0) ^ A7ker(0) with 

(A/ker(0) )AJ and A/ker(0) = CN/ker(0)(A/ker(0) ). 

Clearly, 

A A T, ker(0) ^ A ^ N, and ^ = C^(^/ker(«) ). 

This completes the proof of Theorem C. 

Theorem D is a straightforward consequence of Theorem C. 

Proof of Theorem D. The group TV is assumed to be an extra-special 
/?-group. Put Z = Z(N). If 0 e lrr(N) is nonlinear, then there is a unique 
X e Irr(Z|0z), and 0 is the unique element of I rr^lÀ^). It follows that 
IG(X) = IG(0). 

Because \Z\ = p, we find that 0(1) > 1 forces that À is faithful. Hence 
IG(X) = CG(Z). Theorem D is now seen to be a direct corollary of 
Theorem C. 

7. Searching. In this section we develop the tool which allows us to use 
Theorem 6.4 to prove Theorems A and B. 

Let x e Irr(G) be monomial. Then there is H ^ G and X e Irr(G) with 
A(l) = 1 and XG = x- Part of the difficulty in obtaining information about 
the subgroups of M-groups is that there is no canonical method 
of producing such an H and X. Let NAG with N nilpotent and let 
0 e Irr(7V). We will describe a process which will produce K ^ G and <p e 
Irr(A: n N) such that: 

a) (N n K)/ker <p is nilpotent of class at most 2. 
b) Character induction yields a surjection from 1TT(K\<PK) to 
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Irr(G|06). 
c) If \p <= Irr(A:|<p^) then \p is monomial if and only if \pG is monomial. 
d) If N ^ L ^ G then (a)-(c) holds with L replacing G and L n K 

replacing K. 
The surjection of (b) will actually be a bijection and we will have 

[,//, <pK] = [i//C, 0G] for all i// G Irr(A:|</), 

but we will not need (or prove) these stronger facts. 
Throughout this section N A G with N nilpotent and 6 G Irr(iV). To 

begin our description of the process mentioned above we choose 
A ^ ker(0) with A A G and define the quintuple (G, N, 0, A, \A ) to be an 
initial step for (G, N, 8). 

Now suppose S = (H, M, <p, B, X) has been defined with the following 
properties (which are obviously satisfied by an initial step): 

7.1a) B ^ M A H ^ G, with 5 A // . 
7.1b) <p G Irr(M) 
7.1c) X e Irr(£|<^) and A(l) = 1. 
Put J = Iff(<p) and choose C ta M satisfying 
7.2a) B^CAJ 
7.2b) <pc has a linear constituent. 
Choose /A <= Irr(C|<pc). Put I = Ij(fi), L = M n 7, a = «jy and 

r = (/, L, a, C, ju). We say 7" is constructed from S for (G, JV, 0) using C and 
JU. Observe that with the notation interpreted appropriately, T satisfies all 
of 7.1. 

We call such S as above & final step for (G, N, 6) if 
7.3a) <p is invariant in H. 
7.3b) there is no D A H with B < D ^ M and such that <pD has a linear 

constituent. 
A sequence S}, . . . , Sn where S1,- = (G7, Af/5 #,, .4,, A,) is a (G, A/', 0) search 

provided S] is an initial step for (G, N, 0), Si+] is constructed from S, for 
(G, Af, 0) using y4/+1 and A /+1 for 1 ë / < «, and 5W is a final step 
for (G, N, 0). The 57- are called terms. If, in addition, we have Nn = An then 
we say that the search is successful. One of our main goals is the following 
characterization. 

THEOREM 7.4. Let NAG with N nilpotent and G/N a supersolvable group 
of odd order. Then G is an M-group if and only if for every 0 e Irr(TV) there 
is a successful (G, N 0) search. 

We remark that given 0 e Irr(Af), a (G, N, 8) search always exists. If in 
the choice of C for 7.2a and 7.2b in the construction of each term, we also 
require that \C\ be as large as possible with the desired properties, then we 
will necessarily reach a final step after a finite number of constructions. 

It is apparent that if S is a final step and T is constructed from S, then 
S = T. Thus, given a (G, N, 6) search 5 , , . . . , Sn, we can always append 
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copies of Sn to obtain a search of longer length. This will be useful in 
Proposition 7.9 below. 

We will prove Theorem 7.4 in Section 8. For now we collect auxiliary 
facts. 

PROPOSITION 7.5 Let T = (/, L, a, C, /A) be a term of a (<7, N, 0) search, 
where NAG with N nilpotent. Then 

a) L = I n N so then L A / 
b) C A / 
c) jit is invariant in I 
d) Character induction defines a surjection from Irr(/|a ) to \rv(G\6 ). 
o) If ^ ^ Irr(/|a ) then xj/ is monomial if and only ifxp is monomial. 

Proof The properties are clear for an initial step. Assume T is 
constructed from S = (H, M, qp, B, À) using C and /A, and assume (by 
induction) that, with the notation interpreted appropriately, S satisfies 
(a)-(e) of Proposition 7.5. 

STEP 1. (a)-(c) hold for T. 

Proof By definition L = M n /. By (a) applied to S, M = H n N. 
Thus 

L = HnNnl = Nnl, 

since / ^ H. By 7.2a C A IH(<p). Thus C A /, for we have / ^ 7 (̂<p). By 
definition of /, /x is invariant in /. 

As in the definition of the construction, let / = 7//(<P). 

STEP 2. MI = J. 

Proof Since <p is invariant in J and C A / , / acts on the set Irr(C|<pc) by 
conjugation. By Clifford's theorem, M acts transitively on this set. By 
definition, / is the stabilizer of the point /x. Thus MI = J. 

H 

J / 

q>M ( \ l 

A 
A B 

STEP 3. (d) holds for T. 
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Proof. Because (d) applies to S, it suffices to show that character 
induction yields a surjection from Irr(/|a7) to Irr(//|c/7). 

By Clifford's theorem, since a = <p , ac is a multiple of /x. Thus, by 
Frobenius reciprocity, 

Irr(/|<x7) c Irr(/ | / /). 

By the definition of / = Ij(ii) and by Clifford's theorem, character 
induction provides a surjection from Irr(/|ii ) to Irr(/|/x ). Thus if 
\p G Irr(/|a7), then \pJ G Irr(./|//). Moreover, by Mackey's theorem, 
{yj/)M = (i>L)M so then (tf)M has <p = aM as a constituent. Thus 
*// G Irr(./|q/). We conclude that character induction maps Irr(/|a7) into 
Irr(7|</). We claim that this map is onto. Indeed, if /? G \vr(J\y) then 
since /x G Irr(C|<pc) we see that /? G Irr ( / | / / ) , hence /? = \pJ for some 
^ G Irr(/|/x7) by Clifford's theorem. Also 

and thus \pL and <pz have a common irreducible constituent a'. 
Since *// G Irr(/|/A7) and since \x is invariant in /, a' G Irr(L|jU ). Also 
L = M n I = IM{\i), and so by Clifford's theorem a' = ^ = a. Thus 
\p G Irr(/|a ), and the claim holds. 

The last two paragraphs establish that character induction defines a 
surjection from Irr(/|a7) to lrr(J\<pJ). By definition J = IH(<p) and thus 
Clifford's theorem implies that induction gives a surjection from Irr(./|«/) 
to Irr(//|<p ). By the transitivity of induction we have a surjection from 
Irr(/|a ) to Irr(//|<p77). As remarked above, this completes Step 3. 

STEP 4. (e) holds for T. 

Proof Let \p G Irr(/|a ). If 1// is monomial, then clearly \p is 
monomial. 

Let \p be monomial. By Step 3, 

xpG G Irr(G|0G) and i//7 G lrr(H\<pH). 

Since (3) holds for S we find that i//7 is monomial. 
Now M % N (by (a) ) so then M is nilpotent. Theorem 3.1 shows that 

\pJ = (̂ 77)<p is monomial. But then C ^ N so then C is nilpotent and 
Theorem 3.1 forces that xf/ = 0//7)» is monomial. This completes Step 4 and 
Proposition 7.5. 

COROLLARY 7.6. //*(//, M, <p, 5, X) /s awy term of a (G, N, 0) search then 
HIM is isomorphic to a subgroup of GIN. 

Proof. By Proposition 7.5a, M = TV n H. 

Next we show that at a final step, the structure of M/ker(<p) is 
limited. 
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PROPOSITION 7.7. Let S = (//, M, <p, By X) be a final step of a (G, N, 8) 
search. Then ker(<p) ^ B. Put B* = i?/ker(<p) and M* = M/ker(<p). Then 
B* = Z(M*) and (M*)' ^ Z(M*). 

Proof By 7.3a <p is invariant in //, and hence Z(<p) A H. Then 
i? • Z(<jp) A 7/ and <p restricted to 5 • Z(<p) has a linear constituent, for <pB 

does. By the maximality condition 7.3b on B, B • Z(<p) = .5, and so 
Z(<p) ^ 5. In particular ker(<p) ^ 5. 

Because X is invariant in H (Proposition 7.5c), we see that ker(A) = 
ker(<pfl) and that B ^ Z(y). Thus B = Z{q>), and so B* = Z(M*). 

We have left to show that (M*)' ^ Z(M*). We will apply Lemma 3.3 to 
M*, which is a nilpotent group, since M ^ N. 

Let C char M* with C = 1. Pull C back to Z) ^ M. We claim that 
D A H. Indeed, since ker(qp) A //, / / acts on M* by automorphisms, and 
so H leaves C invariant, hence D A H. Because C = 1 and B = Z(<p), 
<PDB has a linear constituent. By the maximality of By DB = B, hence 
C ^ B* = Z(M*). Now Lemma 3.3 applies to show that (M*)' ^ 
Z(M*). 

Now we show successful searches pass to subgroups. 

PROPOSITION 7.8. Let St = (G,, Ni9 0h Ah A,), 1 ^ /' ^ n, be a successful 
(G, TV, 0) j^ rc / i . Suppose N ^ K ^ G. Then S] = (K n G„ N„ 0,, ,4,, A,) w 
(2 successful (K, TV, 9) search. 

Proof. It is clear that S\ is an initial step for (K, N, 0). We show that 
S-+, is constructed from 5- for (K, N, 6) using >4/+1 and \i+\. 

Indeed, because N ^ K,1A holds for S-. Put 

Then 

W,(») = K H ty*/) = * n y-
Because ^4/ + i satisfies 7.2a and 7.2b for 7, it satisfies 7.2a and 7.2b for 
K n J. By the definition of the construction, 

Gi+\ = /y(\ + i)-

To show that £•+, is constructed from 5-, we need to show that 

A' n G/ + 1 = /tfn/Ai + i). 

But 

W ( \ + i ) = * n /y(X /+1) = A: n G /+1, 

as needed. 
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Now we show that S'n is a final step for (K, TV, 6). Since Sn is a final step, 
by 7.3a, 6n is invariant in Gn. Thus 0n is invariant in K n Gn. Because the 
(G, TV, 6) search is successful, An = Nn and so there is no subgroup D ^ 
Nn with An < D. Thus 7.3b holds for S'n and we see that S'n is a final step. 
Since Nn = y|/7, it is clear that the (K, TV, 0) search is successful. 

Finally, we need to show that searches can be built from the Sylow 
subgroups of N. 

PROPOSITION 7.9. Let TV A G with TV nilpotent and let 0 e Irr(TV). 
Factor S = I I 0 as in Proposition 2.2. Suppose for each p\\N\, that there is a 
successful (G, TV, 6 ) search. Then there is a successful (G, TV, 0) search. 

Proof. For each/?||TV|, let 

S\p) = (G\p\ N\P\ 0\P\ A\p\ \\P\ \ ^ i ^ n p 

be the terms of a successful (G, TV, 0 ) search. By a remark which followed 
the statement of Theorem 7.4, we can assume that all the n are equal to a 
common n. Also, as is apparent from the construction, since the normal 
/^-complement R of TV is contained in ker(0 ), we can assume that 

Rp g ktï{e\p)) 

and that 

Rp ^ kcr(\\p)) for all / and p. 

Taking intersection and product signs over/?||TV|, we put 

G, = nG\p\ TV, = nN\p\ 0, = IT 0\p\ 

At = nA\p\ A, = n (X^h, and 

S, = (G,, Nh 0„ Ah \ ) for l ^ / ^ / i . 

We claim that S}, . . . , Sn is a successful (G, TV, 6) search. 
First of all, by Proposition 2.2, ker(0) = nker(0 ) hence AX A G 

and Ax ^ ker(#). It is now clear that S} is an initial step for (G, TV, 0). 
We now show that Si+] is constructed from Sf for (G, TV, 0) using 

^4/4-1, \ + i- By induction on /, we assume that St satisfies 7.1. Then 
0; G Irr(TV,) by 7.1b and TV, A G, by 7.1a, and so we can put J = /(;(#,) as 
in the definition of the construction. Now if 

r(P) — r (fi(Ph 

then 

A\p) ^ A(ii\ t±J{p). 

Using the notation and conclusion of Proposition 2.6, J = P\J^p) and also 
Aj ^ Ai+X A / so that 7.2a holds for Ai+]. By Proposition 2.4a, 

Xi+] e lrv(Al + ]) 
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and since 

Proposition 2.5 shows that X/+1 is a constituent of (0,)^ . By definition, 
Ay+i is linear and now 7.2b holds for Ai+] and X/+1. 

By Proposition 2.6, 

G, + 1 = IjiK+0 and 6i+i = (6,)Xi+t. 

Clearly 

Ni+l = n(jv<."> n GK'I) = JV> n £,-+,. 

This completes the proof that 5 / + 1 is constructed from SÉ. 
Because the given (G, N, 0 ) searches are successful, we have that 

N\p) = A(
t
p) for all/? and that 6{

n
p) is invariant in G(/\ Thus 0„ is invar­

iant in Gn by Proposition 2.4c, and Nn = An. This proves that Sn is a final 
step for (G, TV, 0), and that this search is successful. 

8. Theorems A and B. We begin with a result which, in conjunction with 
Proposition 7.9, yields one direction of Theorem 7.4. This result is also 
relevant to Theorem A. 

THEOREM 8.1. Let NAG with N a p-group for some prime p and G/N 
super solvable of odd order. Let 0 e IVY(N) and assume all elements of 
Irr(G|0 ) are monomial. Then there is a successful (G, N, 0) search. 

Proof As remarked following the statement of Theorem 7.4, there is 
always some (G, TV, 0) search Sx, . . . , Sn. Let 

S„ = (H, M, <p, B, X). 

By 7.3, <p is invariant in //, hence ker(<p) A H. We put 

//* = i//ker(v). 

By Proposition 7.7, ker(^) ^ B, and if 5* = £/ker(cp) and M* -
M/ker(<p) then (M*)' ^ Z(Af*) = B*. 

We can view <p as a character of M*, and we can identify the sets 
Irr(//|<p7/) and Irr(//*|<p7/*). By Proposition 7.5e, all elements of 
Irr(//*|v

7/*) are monomial. By Corollary 7.6, HIM = H*IM* is a 
supersolvable group of odd order. Clearly, M* is a /?-group. Thus, by 
Theorem 6.4, there is A ^ M* with yl A //* and 4̂ = CM*(A ). Clearly 

5* = Z(M*) g A 

Pull ,4 back to C ^ M with B ^ CAH. Then C ^ ker(<p) and so <pc has 
a linear constituent. By 7.3b, we must have B = C. But then B* = A and 
so 
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M* = CM.(B*) = CM*{A) = A. 

Thus B* = M*, so then B = M and the search is successful. 

Proof of Theorem 1A. First assume that G is an M-group and choose 
0 e lrr(N). Factor 0 = I I 0 as in Proposition 2.2. For each/?||W|, all the 
elements of Irr(G| (6 )G) are monomial. If R is the normals-complement 
of N, then R A G and we can view 0 as a character of N/Rp and we can 
identify Irr(G| (0pf) and lvv(G/Rp\ (0p)

G/Rp). By Theorem 8.1, there is a 
successful (G/R , N/R , 0 ) search, which can be viewed as a (G, JV, 0^) 
search. Since this holds for each/?||Af|, Proposition 7.9 shows that there is 
a successful (G, JV, 0) search. 

Now assume for each 0 e lrv(N) that there is a successful (G, JV, 0) 
search. Let x E I r r(G) and choose 0 G \XX{N\XN) and a successful 
(G, N, 0) search whose last term is (//, M, <JP, B, X). Then B = M and 
<JP = À is linear. By Corollary 7.6, / / / 5 is supersolvable. By Lemma 6.3, 
every element of \rr(H\X ) is monomial. Then by Proposition 7.5d and 
7.5e, all elements of Irr(G|0 ) (including x) are monomial. This proves 
that G is an M-group. 

COROLLARY 8.2. Let N AG with N nilpotent and G/N supersolvable and 
of odd order. Assume that G is an M-group. Then every subgroup of G 
containing N is an M-group. 

Proof. Let N ^ K ^ G. For every 0 G. Irv(N) there is a successful 
(G, N, 6) search, by Theorem 7.4. By Proposition 7.8 there is a success­
ful (K, N, 6) search. Theorem 7.4 implies that K is an M-group. 

Theorem B is almost instantaneous. 

Proof of Theorem B. We use induction on |G|. Let H be a Hall subgroup 
of G and we must show that H is an M-group. 

Let/? be a prime divisor of \N\ and P G SylAN) so then P A G . We have 
P ^ H or p\\H\. Up\\H\ for some such p, t hen / / = HP/P. Now HP IP 
is a Hall subgroup of GIP and \G/P\ < \G\. Since G is an M-group, G/P is 
too. By induction, HP IP is an M-group, hence H is too. 

We are left to assume that N ^ H. But then H is an M-group by 
Corollary 8.2. 

To prove Theorem A we need only slightly more work. 

LEMMA 8.3. Let TV, AT A G with \N:N n A'l coprime to \K:N n A'l. 
Let 0 e Irr(N Pi K) be invariant in N. Then all elements of\xx(K\6K) are 
invariant in NK. 

Proof. We can assume that G = NK. Observe that IK(0) is normalized 
by N. Thus the hypothesis holds with IK(S) replacing K. If IK(6) < K, then 
an inductive argument shows that all elements of lrr(IK(0) ) lying over 8 
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are TV-invariant. By Clifford's theorem all elements of Irr(AT|̂  ) are 
N-invariant, as needed. Thus we can assume that 0 is invariant in NK. 

Now the theory of projective representations (see Chapter 11 of [7] ) 
allows us to assume that 0(1) = 1 and that N n K is central in G. Now the 
coprimeness forces that if II is the set of prime divisors of \N\N O K\ then 
G = Gu X G\v f° r a normal Hall Il-subgroup Gn and Hall n'-subgroup 
Gvv. We have 

N = Gn(N n K). 

The result is now trivial. 

Proof of Theorem A. If R is the supersolvable residual of G then the 
group R • O1 (G), which is contained in N, has the same properties in G 
that TV does. We assume N = R • O2 (G). 

Let K AA G and we will show that K is an M-group by induction on 
\G\K\. We can assume that K A G and that |C7:AT| = q is a prime. If 
N ^ K, then Â  is an M-group by Corollary 8.2, and so we can assume 
that N ^ K. 

Now G/K is cyclic and so R ^ K. Since N ^ Â , we must have 
0 2 (G) ^ ^ and thus \G\K\ = 2. 

Suppose K is not an M-group. By Theorem 7.4, there is 0 e Irr(A^ n /Q 
such that there is no successful (K, N n K, 0) search. Factor 0 = YY0p as 
in Proposition 2.2, and then by Proposition 7.9, there is a prime/? \\N Pi K\ 
such that there is no successful (K, N n K, 0) search. Because 
(N n K)/ker(0p) is a/7-group, Theorem 8.1 finds x

 e Irr(A:| (0,)*) which 
is not monomial. We change the notation and put 0 = 0 

CLAIM 1. 0 is not invariant in N. 

Proof Now N ^ K and so NK = G. Then \N:N n K\ = 2 and G/N is a 
supersolvable 2' group. If 0 is invariant in N, then by Lemma 8.3, all 
elements of Irr(A^|0^) (x for instance) are invariant in NK = G. By 
Corollary 6.19 of [7], x extends to \p e Irr(G). Since \p is monomial, 
Lemma 6.9 shows that x is monomial, a contradiction. 

CLAIM 2. 0 is invariant in K. 

Proof Put J = IK(0) and assume / < K. By Corollary 8.2, A// is an 
M-group. Now [N, K] ^ N n K and so J A M/. By induction (NJ < G) 
J is an M-group, thus \e is monomial. But then x = (Xe)K is monomial, 
which is not so. 

By Claims 1 and 2, K = IG(0) thus 

X
G e Irr(G) and X = (x^V 
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Observe that N n K A G and N n K is nilpotent. Since every element of 
\rr(G\0°) is monomial, Theorem 3.1 forces that x = (x )e ls monomial, a 
contradiction. This proves Theorem A. 
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