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On the Relation between Inverse Factorial Series and
Binomial Coefficient Series.*

By W. L. FERRAR.

Received and Read 5th June 1925.

The chief aim of this note is to investigate directly the relation
between the inverse factorial series

" _",."! -o)
n=0

and the binomial coefficient series, or Newton's interpolation
formula,

(2)
which may also represent $2 (a;), the sum of the series (1).

The coexistence of such expansions was established by Nielsen,
Handbuch der Theorie der Gammafunktion (1906), in his work on

ri
integrals of the type I tz<j>(t)dt (p. 125). He also, p. 247, makes a

Jo
direct reference to the expansion of inverse factorial series in the
form (2). The relation between (1) and integrals of the type
mentioned is well known—for certain regions an equivalent
integral can be found for any series (1), though the regions of
convergence of the two are not necessarily the same. Moreover,

f1

Nielsen's integral <*"'<£(<) dt is assumed to be uniformly con-
Jo

vergent over the half plane R(x)>0, while the integral of the same
type corresponding to an inverse factorial series does not necessarily
converge over this region.

Accordingly we here examine the transformation from (1) to
(2) on its own merits. Norliind,-)- Annales de VEcole Normale (3)

* Added August 10th, 1926.— Science Progress for July 1925 notes a
paper by J. Horn, "Math. Zeitsohrift" 21 (1924) 85 95, in whioh work on
differential and difference equations, previously done with inverse factorial
series, is carried out with binomial coefficient series. I have been unable to
consult the paper itself to see what points in the connection between the
two types of series are exemplified.

t Further references to this paper will be given as Norliind (1923).
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40 (1923), p. 44, has pointed out the similarity between the trans-
formations of Newton series and of inverse factorial series and
concludes '<il paratt interessant de rapprocher ces deux series
l'une a l'autre "—a remark which indicates that Nielsen's reference,
a short statement occupying some two or three lines, has been over-
looked by later writers.

The present paper also contains a short discussion (§ 5) of other
series which may represent the sum of an inverse factorial series.

§ 1. Notation.
For convenience of printing we use the following symbols

{x\n)-T(x+\)fT(x-n+\)t

so that, when n is a positive integer
(x | n) =
(x\ -n)

Further, we use (x, n) to denote x(x-l)...(x-n + l)/n !

§1.1. Preliminary lemmas.

If A, 2 have the meanings usual in the theory of finite differ-
ences, and they are considered as operating on a function of x,

A(x | n) =n(x \ n- 1) for all values of n
2(a: \n) =(x \ n+l)~(n + l) save when n = - 1

If the operations A, 2 are applied term by term to the series (1)
the resulting series have the same region of convergence as the
original series, and their sums are A12(se) and 2i2(x) respectively.

The proof of this is immediate on applying the theorem that
"if 26, converges and 2 | cn+l-cn | also converges, then 26ncn is
convergent," [compare Bromwich, Introduction to the Theory of
Infinite Series (1908), p. 205].

§2. The expansion o/Q(x + h).
By a known result in the theory of the hypergeometric function

h.m h(h-l)m(m + l)
~ l(ar + m + l ) 1
= F(-h, m; x + m + l; 1)

(3)
provided that B(x + h + 1) > 0.
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This result, on being divided by (x+l)(x + 2)...(x + m), becomes
a;| -ro) - (h, \)m(x | - m - 1 )

+ (h,2)m(m+l)(x\ -m-2)-...

If then fi(a;) = S a B + 1 n ! ( x | - n - 1 )
n=O

Q(x + A) = 2 an+1 n l{ 1 (A, r)(-n-l | r)(* | -n - 1 - r) ) (4)
n=0 <-r=0 ^

The coefficient of (h, r) in this expansion is

S < W l n ! ( - n - l |r)(*| - n - l - r )
n=0

= I(-l)X+ 1(n + r)!(*| - n - l - r )
n=0

= ArQ(a:).

Hence provided that we can justify the rearrangement of the
double series, we may write, when B(x + h+ l )>0

Q{x + h) = Q(x) + (h, l)AJ2(a;) + (h, 2)Aafl(o;) + (5)

§ 2.1. Sufficient conditions for the rearrangement of the series.
The rearrangement of the double series (4) is justified if, when

we put

aM = ( - l)X+i(« + r) ! (h, r)(x \ -n-l-r)

the double series 22anr is absolutely convergent.

Now l a I - a""nl h(h-l)...(h-r+l)
How, I « - I - {x+i){x + 2){x + n + l) • 1.2....r

Since T(-A)= lim {1. 2...(r-l)r-»/(- A)( - A + l ) . . . ( - h + r- 1)},

we can find a definite R such that, when r>R,

and so we can find a finite K such that, for every r,

Similarly, we can find a finite M such that, for every r,

'/T(n+1) | ...(7)
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By the inequalities (6) and (7)

h(h — \),. Ah — V -\- 1) [71 + 1 ) . . . (W + **) I .
• - . • . \PJ

<MK\

2
r=0

If 2 | r-*-*-* | is convergent, i.e. if B(x + h+ l )>0 , a condition
which has already been imposed in § 2,

22 (9)

where A is finite.
But (9) may be written as

A2(n)\an+1T(x+l)/V(-h)\,

and so the double series is absolutely convergent if 2aB+1 is.

Theorem I. If 2 | an+, | is convergent and x, x + h are in the
convergence domain of the series (1)

il(x + h) = H(x) + AAI2(a;) + (h, 2)Asn(a;) + ...
whenever R{x + h + 1) > 0.

The last condition is necessary when (1) reduces to a single
term.

§ 2.2. Alternative conditions.

An alternative set of conditions can be obtained by a slight
change in the analysis.

tends to zero or to a finite limit as r tends to infinity. Hence,
using (6),

(8)<A 2 | r-"-1 | <B
r=0

where A and B are finite numbers provided that B(h)>0.
Hence the sum of the double series 22 | anr |

<Bl I
n = 0 I

and is finite provided that x is a point of the region of absolute
convergence of the series (1). We have thus established.
Theorem II A. If x is a point of the region of absolute con-
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vergence of the series 2an+1 n! (a; | - n - 1) whose sum is denoted
by Q(x), then

Q,{x + h) = il(x) + AAfl(») + .. •

provided that £(x + 1) > 0 and .B(A)>0.
There is, however, a further form of the theorem which removes

the condition of absolute convergence. Norliind * has shown that

converges for B(x) > A., and a,+1 = bx + b2 + ... + b,+1, the series

converges absolutely and represents Q(x) for B(x) > A, jB(a;) > 0.

From this result and theorem I I A we have
Theorem IIB. If B(x)>0 and a; is a point of convergence of the
series 2 s! b.+1(x - 1 | - * - 1) whose sum is il(x),

il(x + h) = Q(x) + hASl(x) + (h, 2)A5fi(a;) + ...

whenever £(h)>0.

§ 2.3. The last result is easily extended to series of a somewhat
more general type.

If 0(x) denote the sum of 2 —; *'.*'+' ^ — ...(11)

while il(x) denotes the sum of 2 ' *+' v,
v ' x(x+l)...(* + «)

then 9(x) = fi(a; + /8), and we have
Theorem IIC. If .ff(x + /3) > 0 and a; is a point of convergence of
the series (11), then

6{x + h) = % ) + AA0(a;) + ...
whenever B(h)>0.

If a; is a point of absolute convergence of (11) the condition
R(x + fi) > 0 may be replaced by R(x + /?) i 0.

J/o<A. 37 (1914) 344. Further references to this are given aa
Norliind (1914).

https://doi.org/10.1017/S0013091500036361 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500036361


97

§2.4. Some remarks on these theorems.
The limitations of x and h to certain half-planes is only to be

expected from the form of the series and its region of convergence
respectively. Thus in I IC, the point x + j6 = 0 must be excluded
since it is an infinity of every term of the original series; the
assumption that the inverse factorial series converges for x makes
it necessary that it should also converge for points to the right of
x, but not that it should converge for points to the left of i t ; 60
that, unless we make R(h)>0, we cannot be certain that Q(x + h)
has a meaning.

§ 3. An inverse factorial series expressed as a Newton series.
If we write h — x for h we obtain

tt(h) = Q(x) + (h- *)Afl(aj) + (h - x, 2)A2fi(a;) + ... ,
valid when R(h -x)>0. Thus, if the series

Q(x) = 26J+1 s ! (x- 1 | - s - 1 ) (10)
converges for x = 1, one Newton expansion for Q,(x) is

il(x) = s(0)-(x-l, l)8(l) + (a ; - l , 2)«(2)- (12)
where s(r) = a,/(r + 1) + a,/(r + 2) + ...

§3.1. By Norliind (1914), p. 354, Theorem V, if the series (10)
is summable (C, r) for as, whose real part is positive, then its ' sum'
can also be represented by a series of the form (11) which converges
for that value of x when R(f$)>r, and converges absolutely for that
x when R({1)>r+l.

Thus, if R(h - a;) > 0, the ' sum' of the inverse factorial series
(10) for x — h may be written (using Theorem IIC) as the
convergent series

Q{x) + (h- x)Ml(x) + (h - x, 2) A2fi(ar) + ...
The coefficients ii(x), AQ(x), ... may here be regarded as

arising from the sum (C, r) of series (10) or the ordinary sum of
the corresponding convergent series (11)—the two 'sums' are
equivalent for every x when R(x)>0. From the foregoing
we have
Theorem III. If R(m)>0 and an inverse factorial series is con-
vergent or summable (C, r) for * = »», and its sum is denoted
by fl(x), then

G(*) = fl(m) + (x-m, l)AG(w)+ (*-»», 2)A5fl(»») + (13)
the expansion on the right being convergent whenever 2?(a; - »»)>0.
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§ 4. The transformations of Newton series indicated by the
theory of inverse factorial series.

By theorem IV of Norliind (1914) the sum of the series

may also be expressed by a convergent series of the type
26,+1«! (* + / ? - 1 | - , - 1 )

when R(x)>0, and B(J3) == 0.
The corresponding property for series of type 26, (a:, 8) is indi-

cated by the following simple deduction from theorem I I I of the
present paper. If Q(x) is a function which admits an expansion
both as an inverse factorial series of type (10) and as a Newton
series, the Newton series being

26,(a; - a., a) where R(a.) > 0,

then it admits an expansion 2e,(a; + p-a., s) where B(p)2: 0, pro.
vided that the point x = a.-p is a point at which the inverse
factorial series is summable and B(a. - p)>0. Moreover the series
26, (x-<x, s) is known to converge only for B(x)>B(a.), while the
series 2c, (x + p-a., s) converges for M(x) > H(a. - p). That is to
say, by increasing the real part of the argument of the Newton
series we can represent the function over an extended region, and
thus attain any point (to the right of the origin) at which the
inverse factorial series is summable. If il(x) admits an expansion
of type (11), " to the right of x= - / 3 " replaces " to the right of
the origin " in the last parenthesis.

The theorem for any Newton series 26, (a; - 1 , s) representing
any function and the extension of the domain of convergence by
increasing the real part of the argument is given- by Norlund
(1923), p. 36. In this case the question of summability of the
inverse factorial series is irrelevant, and the domain of convergence
can be increased so as to be the half plane B(x) > A, where X is
determined by the properties of the function to be represented by
the Newton series.

Again, if (10) converges for a; = a it converges for x = a. + p,
B(p)>0. Hence, if a representation of the sum of (10) as
26, (X-OL,S) exists, valid for 2?(a:-a.)>0, then there is also a
representation 2c, (x-a. — p, s) valid over the less extensive region
B(x — a. - p) >0. A similar state of affairs occurs when the repre-
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sentation of any function by a Newton series is discussed : cf.
Norlund (1923), p. 36.

§ 4.1. The transformation of series of the type

Q(x) = 2cl+1s\u'+'/x(x + a>)...(x + sm) (14)

by taking different values of w, real and positive, is less helpful in
indicating the corresponding transformations of Newton series.

We know * that if a function, satisfying certain conditions,
admits an expansion of type (14) for any real and positive value of
(i), there is a number 6 such that the expansion of type (14) is

possible when <o>6, but not possible when (a<6.
Suppose now that the series (14) is convergent for x=a.<o where

R(a) > 0. If we represent Q(x) by a series of the same type with <u
replaced by G>J, where <u1>c», then the .new series also converges
for x = ouo. But the point (xw, is to the right of the point a-w and
so the new series converges for x = a.to1.

il(xu) = 2c,+1 s l/x(x +l)...(x + s)

where, by our hypothesis, the series on the right converges for
x = a..

Hence there is a convergent expansion of the form

tl(xu>) = 2w, (* - a, *), convergent for R(x - a.) > 0;
and so, il(x) =2m,(x-a.<o){x-(a.+ l)<o}...{x-(<*. +s- l)o>}, ...(15)
the last series being convergent for S(x - a.oi) > 0.

We may in the factorial series representation decrease <», but
not beyond the point at which that series remains convergent for
x = a.(D. Thus we may, down to a point imposed by the factorial
series representation, decrease &> in the Newton series (15). In
the theory of Newton series representing any function, the factorial
series representation is irrelevant and we may decrease <o as much
as we please provided that 0<w.f

Moreover the region of convergence of (15), namely, the half-
plane R(x)>R(a.o)), is increased by decreasing u>, a fact which
continues to be in evidence when the more general question is
broached.

• KOBLUND (1914), Theorem VII, 361.

t NOFLUND (1923), 43.

https://doi.org/10.1017/S0013091500036361 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500036361


100

On the other hand, the theory of inverse factorial series does
not indicate the existence of a number y such that the Newton
series representation of type (15) ceases to be possible when w>y.
In the general discussion of Newton series such a number appears,
and only under special hypotheses is this number + oo. The
Newton series representing functions which may also be repre-
sented by inverse factorial series come under these special
hypotheses. For, as we have seen, an increase in <•> still leaves
«.a> a point of convergence of the inverse factorial series and
so leaves the expression (15) valid, though over a less extensive
region.

§ 5 . 4 series which may represent the analytical continuation of
series (1).

The series (1), having an abscissa of convergence X, defines an
analytic function 12(a;) which also admits a representation

fl(ar)= [e<Mt)dt (16)
Jo

where <£(<) =2af+1 (1 - t)', and is regular within \ t-\ | = 1 .

If the radius of convergence of this series is greater than unity
the series (1) is absolutely convergent over the whole plane with
the exception of points x = - 1 , - 2 , . . . * The function fi(a;) can
also be analytically continued over the whole plane, with the
exception of points x — —n, whenever <£(<) can be analytically
continued over the interior of the circle j t | = 1. In such a case,
an expansion exists of the form

convergent for 0 * ( * l .

Hence, when B(x) > 0, we have

(17)

• PIKCHBRLB, Annales Sci. de VEcoU Normak (3), 22 (1905), 50.

BROMWICH, he. cit., p. 254, Ex. 1.
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Since 26, converges, the series (17) converges uniformly* over the
whole plane except near *= - 1, - 2 , . . . . The series (I) also
converges uniformly for M(x)^K>k^. - 1. The two series (1)
and (17) mast therefore be representations of the same analytic
function since their sums are equivalent over the half plane
B(x)>\, B(x)>0.

The expression (17) is valid whenever <f>(t) is regular within
j t - 1 | =1 and within \t\ = 1 .

§5.1. This representation of an inverse factorial series gives
rise to a carious relationship with the Gauss interpolation formula.

The values of fl(») sin irxjir at the points - 1, - 2, ... are - 6,,
fea — 6JI ... i and are zero at the points 0, 1, 2, ... But (17) multi-
plied by sin irxjir is the Cardinal function-)- of this table of values
and is thus equivalent to the corresponding Gauss interpolation
formula.

We have then, assuming the possibility of the equality (17)

Sl(x) is equivalent to the Newton formula of its own table of values')
sin ttx &(X)/TT is equivalent to the Gauss formula of its own table of values/'

§5.2. The series of powers and inverse powers which repre-
sent Q(%).

If, for 0 < < < l , we denote (l/<) f <f>(t)dt by &(<), we have
Jo

Q(x) = f 1 ' <j>(t)dt = I i*+1 & (<)?- x[l t' & (t)dt. R{x) > - 1.

With the assumptions of §5 the integrals involved are all con-
vergent, both in this and when we repeat the process beginning

with f rfaWdt.
Repeating this process, and writing

(18, a)

* By the teat given by Hardy. Proc. Lond. Math. Soc. (2), 4 (1907),
250-1.

t E. T. WHITTAKBE, Proc. Royal Soc. Edinburgh, XXXV., (1915),
181-194.

8 Vol. 43
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where the limits of each integration are taken to be 0, t when

The remainder after n terms consists of x" times a convergent
integral, and the series (18) has a unit circle of convergence. The

series and its circle of convergence may also be obtained by
expansion of the terms of (17) and the use of Weiersfcrass' double
series theorem (Bromwich, loc. eit., p, 253).

Again, if ^(T) = 2a,+I f

If

or, writing <£<">(t) = (tDf <f>(t) where Bsd/dt (19, a)

Moreover, any ^,, (r) is analytic within | T | = 1 , and for sufficiently
large values of R(x) the integral is convergent; so that (19) is an
asymptotic expansion of £l(x).

The way in which the operator tD enters into both expansions
is rather curious.
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