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We establish a theoretical framework for predicting friction and heat transfer coefficients
in variable-property forced air convection. Drawing from concepts in high-speed wall
turbulence, which also involves significant temperature, viscosity and density variations,
we utilize the mean momentum balance and mean thermal balance equations to develop
integral transformations that account for the impact of variable fluid properties. These
transformations are then applied inversely to predict the friction and heat transfer
coefficients, leveraging the universality of passive scalars transport theory. Our proposed
approach is validated using a comprehensive dataset from direct numerical simulations
(DNS), covering both heating and cooling conditions up to a friction Reynolds number
Reτ ≈ 3200. The predicted friction and heat transfer coefficients closely match the DNS
data with accuracy margin 1–2 %, representing a significant improvement over the current
state of the art.
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1. Introduction

Heat transfer by turbulent forced convection occurs when a cold fluid flows over a hot
wall, or vice versa. Forced thermal convection has countless applications in engineering,
and it is the fundamental principle upon which heat exchangers are designed and built
(Incropera et al. 1996; Kakac, Liu & Pramuanjaroenkij 2002). Heat exchangers are a key
component in any energy conversion system – for instance, the radiators in our homes,
heat pumps, fuel cells, nuclear plants and solar receivers. In aerospace engineering, two
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notable applications are aircraft and rocket engines, where components are subjected to
extreme heat loads and internal cooling is necessary to guarantee the material integrity.

Most studies on forced thermal convection regard the temperature field as a passive
scalar, neglecting its feedback effect on the velocity field through the variation of the
transport properties of the fluid. Notable experimental and numerical studies relying
on the constant-property assumption are those by Sparrow, Lloyd & Hixon (1966), Xia
et al. (2022), Alcántara-Ávila, Hoyas & Pérez-Quiles (2021) and Abe & Antonia (2017),
together with the more recent direct numerical simulations (DNS) studies performed by
our group (Pirozzoli, Bernardini & Orlandi 2016; Pirozzoli & Modesti 2023).

The constant-property assumption is valid if temperature variations are of the order of a
few per cent because the thermodynamic variables and fluid properties can be assumed to
be constant (Cebeci & Bradshaw 1984). However, most engineering applications feature
large temperature differences. For instance, in aircraft engines, the air passing through the
cooling channels of turbine blades has mean temperature Tm ≈ 400 K, whereas the wall
temperature reaches Tw ≈ 800 K, hence their ratio is well beyond the range of validity
of the constant-property assumption. This range of temperature variations is common
in engineering applications; however, the constant-property assumption is used in most
academic research and exploited in engineering practice.

Preliminary design of cooling/heating ducts is based mainly on predictive formulas for
the Nusselt number and the pressure drop, which are used for sizing the cooling passages.
Among the most classical engineering formulas, we recall those by Dittus & Boelter
(1985) and Gnielinski (1976) for the Nusselt number, and Prandtl’s friction formula for
the pressure drop (Nikuradse 1933). Although their use is widespread in engineering
design, these formulas are based on the constant-property assumption and do not directly
account for the effect of variable fluid properties, which is usually included using empirical
corrections (Sleicher & Rouse 1975; Yeh & Stepka 1984).

The most popular empirical corrections for heat transfer prediction in water are those by
Dittus & Boelter (1985) and Sieder & Tate (1936), which account for the fluid viscosity
variations through an empirical corrective factor (μb/μw)n applied to the Nusselt number
resulting from formulas obtained for the constant-property case, where μm and μw are the
viscosities of the fluid evaluated at the mean and wall temperatures, respectively. Also for
gases, many empirical predictive formulas for the Nusselt number are available, and they
have been reviewed extensively by Petukhov (1970) and Yeh & Stepka (1984). However,
they all have a structure similar to that used for water, relying on a correction factor based
on the mean-to-wall temperature ratio (Tm/Tw)n, with exponent n depending on the type
of gas and on the cooling/heating ratio. Similar corrections are also used to estimate the
friction factor, and they suggest drag reduction in the case of wall heating, for both liquids
(Sieder & Tate 1936) and gases (Yeh & Stepka 1984), compared to the adiabatic case.
However, these corrections are fluid-dependent and available for only a limited number of
fluids, and their accuracy is often questionable.

More recently, some authors have studied forced thermal convection in fluids with
variable properties using DNS. Zonta, Marchioli & Soldati (2012) performed DNS of
water flow in a plane channel with a heated wall and a cold wall, and found a reduction of
the Reynolds shear stress and of the friction coefficient at the heated wall, despite the lower
viscosity, which increases the local Reynolds number. Lee et al. (2013) performed DNS of
turbulent boundary layers with temperature-dependent viscosity representative of water,
and investigated the effect of wall heating on the friction and heat transfer coefficients.
They reported a 26 % drag reduction for water with freestream-to-wall temperature ratio
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Forced air convection with variable physical properties

0.77, at freestream temperature approximately 300 K, and the drag reduction mechanism
was attributed to a reduction of the wall-shear stress, in agreement with the findings
of Zonta et al. (2012). Lee et al. (2014) used the same DNS dataset to assess heat
transfer modifications due to variable viscosity effects, and proposed a correction to the
classical Kader fitting for the mean temperature profile (Kader 1981). Patel, Boersma &
Pecnik (2016, 2017) studied the effects of variable density and viscosity in liquid-like
and gas-like fluids using DNS. They utilized compressibility transformations, originally
developed for high-speed boundary layers (Modesti & Pirozzoli 2016; Trettel & Larsson
2016), to map velocity and temperature profiles to the constant-property case, reporting
good agreement with the constant-property profiles. Kaller et al. (2019) conducted a
wall-resolved large-eddy simulation of flow in a duct with one heated side, filled with
water, and observed reduced friction near the heated wall, which was also accompanied
by weakened secondary flows. The effect of density variations is also important in the
context of mixed convection, although the common practice is to rely on the Boussinesq
approximation (Pinelli et al. 2010; Yerragolam et al. 2024), whereas studies that account
for a non-Oberbeck–Boussinesq effect are more limited (Zonta 2013). The effect of
variable physical properties is also important in pure natural convection (Gray & Giorgini
1976), particularly in experimental studies, where it is challenging to achieve high Rayleigh
numbers while satisfying the Oberbeck–Boussinesq approximation. To the best of our
knowledge, there is no counterpart of the Grossmann–Lohse theory (Grossmann & Lohse
2000) for Rayleigh–Bénard convection with variable properties.

Although studies focusing on the effect of density and viscosity variations in forced
thermal convection are available, predictive formulas for the heat transfer and friction
coefficients are invariably based on empirical fitting of experimental data, and the few
numerical studies available did not discuss in detail the prediction of these coefficients.
In this study, we aim to develop a more solid theoretical framework to estimate the mean
friction drag and heat transfer in the presence of variation of the transport properties,
focusing on the case of air as the working fluid. For that purpose, we use DNS data of plane
turbulent channel flow at a moderate Reynolds number to develop improved formulas for
friction and heat transfer prediction.

2. Methodology

We solve the compressible Navier–Stokes equations using our flow solver STREAmS
(Bernardini et al. 2021, 2023); additional details on the numerical method are reported
in Appendix A. The streamwise momentum equation is forced in such a way as to
maintain a constant mass flow rate. Periodicity is exploited in the streamwise and spanwise
directions, and isothermal no-slip boundary conditions are used at the channel walls. Let
h be the half-width of the channel, with DNS carried out in a computational domain
Lx × Ly × Lz = 6πh × 2h × 2πh. A uniform bulk cooling or heating term is added to the
entropy equation to guarantee that the mixed mean temperature, defined as

Tm = 1
2hρbub

∫ 2h

0
ρ̄ ū T̄ dy, ρb = 1

2h

∫ 2h

0
ρ̄ dy, ub = 1

2hρb

∫ 2h

0
ρ̄ ū dy, (2.1a–c)

remains exactly constant in time. Here, ρb and ub are the bulk density and velocity,
respectively. In the following, an overline is used to indicate Reynolds averaging in time
and in the homogeneous spatial directions, and a prime is used to denote fluctuations
thereof. As is common in variable-density flows, we also use Favre averages, denoted with
a tilde as f̃ = �ρf /ρ̄, and a double prime will indicate fluctuations thereof.
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A + superscript is used to denote normalization by wall units, namely by friction
velocity uτ = (τw/ρ̄w)1/2 (where τw = μw dũ/dy|w is the mean wall shear stress), and
the associated viscous length scale δv = νw/uτ , where the subscript w denotes quantities
evaluated at the wall. For inner normalization of the mean temperature, we use the
friction temperature θτ = qw/(ρwcpuτ ), where qw = λw dT̃/dy|w is the mean wall heat
flux, cp = γ /(γ − 1)R is the specific heat capacity at constant pressure, R is the air
constant, and λw is the thermal conductivity at the wall, evaluated as λ = μcp/Pr, with
Prandtl number set to Pr = 0.72.

Twenty DNS have been carried out at bulk Mach number Mb = ub/cm = 0.2 (where cm
is the speed of sound at the mixed mean temperature) and bulk Reynolds number Reb =
2ρbubh/μm ≈ 9000–70 000 (see table 1), where μm = μ(Tm) is the dynamic viscosity
evaluated at the mixed mean temperature, as obtained from Sutherland’s law (White
1974). The Mach number is low enough that compressibility effects are negligible, as it
turns out, in order to isolate variable-property effects. We consider various mean-to-wall
temperature ratios, namely Tm/Tw = 0.4, 0.5, 0.7, 0.8, 1.5, 2, 2.5, 3, resulting in friction
Reynolds numbers in the range Reτ = uτ h/νw ≈ 150–3200, where νw is the kinematic
viscosity at the wall. For the case of mean-to-wall temperature ratio Tm/Tw = 0.5, we
also study the effect of varying the dimensional wall temperature, considering cases
with Tw = 800 and 293.15 K. This temperature range is rather wide and covers most
applications of forced air convection of which we are aware. Cases with wall heating
approach the condensation temperature of air (≈90 K), and cases with wall cooling feature
temperature variations in the range 220 K � T � 1000 K, involving temperature values
beyond those normally found in heat exchangers. For each value of the mean-to-wall
temperature ratio, we have two flow cases, denoted with the letters L and H, depending on
whether the Reynolds number is comparatively ‘low’ or ‘high’ (see table 1). For two flow
cases with mean-to-wall temperature ratio Tm/Tw = 0.5 and Tm/Tw = 2 we also consider
a ‘very high’ Reynolds number case, denoted with VH. In the present study, we consider
pure forced convection, neglecting the effect of buoyancy because in forced air convection
applications the Richardson number is typically very small. For instance, cooling channels
of turbine blades have bulk velocity ub ≈ 30–60 m s−1 and temperature variations of order
400 K, leading to Richardson numbers of the order Ri ≈ 10−5.

3. Instantaneous temperature field

We begin our analysis by inspecting the instantaneous velocity and temperature fields
of flow cases H05-A (wall heating) and H3 (wall cooling) in figure 1. Both cases
exhibit the qualitative features that characterize wall turbulence, with high-speed cold
(or hot) flow structures protruding towards the walls, and low-speed hot (or cold) fluid
regions protruding towards the channel centre. Despite sharing the general features of
wall turbulence, we also note a significant effect of the thermodynamic and fluid property
variations between cases with wall heating and wall cooling. First, we observe that the
friction Reynolds number values reported in table 1 are not indicative of actual separation
of scales in constant-property flows. For instance, flow case with wall heating H05-A
(Tm/Tw = 0.5) has a relatively low friction Reynolds number (Reτ = 360), but it exhibits
finer eddies than one would expect at this Reynolds number. This effect can be traced
to strong viscosity variations within the near-wall and core flow regions. The opposite
is true for wall cooling; for instance, flow case H3 (Tm/Tw = 3) has a higher friction
Reynolds number (Reτ = 1420), but small scales are absent and the flow appears to be a
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Figure 1. Instantaneous (a,b) velocity and (c,d) temperature fields in a cross-stream plane, for flow cases
(a,c) H05-A (wall heating, Reτ = 360, Tm/Tw = 0.5) and (b,d) H3 (wall cooling, Reτ = 1420, Tm/Tw = 3).

‘low-pass filtered’ version of the heated case, in which only large structures survive. In
fact, in flow case H3 we observe large structures extending from one wall to beyond the
channel centreline, whereas those are masked by smaller eddies in flow case H05-A.

We note that the instantaneous velocity and temperature fields are highly correlated,
which is to be expected due to the similarity of the underlying equations and the near-unity
value of the Prandtl number, hence the Reynolds analogy holds qualitatively also for the
case of variable fluid properties. Close scrutiny of the kinematic and thermal fields reveals
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that temperature has finer structures as compared to velocity, which is due partly to the
Prandtl number being lower than unity, and partly to the effect of the pressure gradient
term in the momentum equation (A1b), which is absent in the energy equation (A1c)
(Pirozzoli et al. 2016). The occurrence of sharper eddy boundaries in passive scalars
compared to the velocity field, even at unit Prandtl number, is a well-known feature that
has been reported by several authors (Kim, Guezennec & Stretch 1990; Abe & Antonia
2017), and it has been associated with the unmixedness of the scalar, as the absence of the
pressure gradient results in reduced heat transport as compared to momentum transport.

4. Mean flow field and variable-property transformations

We begin the mean flow analysis by comparing the mean velocity and temperature profiles
to the equivalent statistics for the constant-property case. For that purpose, we rely both
on DNS data of constant-property plane channel flow with passive scalar transport at
Pr = 0.71 from Pirozzoli et al. (2016), and on synthetic composite profiles, which are
obtained by matching inner-layer velocity and temperature profiles with the corresponding
outer-layer distributions. The inner-layer profiles are obtained by integrating the eddy
viscosity of Musker (1979) for the velocity, and the eddy diffusivity proposed by Pirozzoli
(2023) for the temperature profile. In the outer layer, we use Clauser’s hypothesis of
uniform eddy viscosity (Clauser & Francis 1956) and uniform eddy diffusivity (Pirozzoli
et al. 2016). A complete derivation of the composite profiles is available in Pirozzoli &
Modesti (2024). Figure 2 shows that the composite profiles of mean temperature and
velocity for the constant-property case are essentially indistinguishable from the DNS
data, with the advantage that the synthetic profiles are available at any Reynolds number
and Prandtl number.

We note that the statistics of the variable-property DNS are substantially different from
those in the constant-property case when scaled in classical wall units. All the flow cases
exhibit deviations from the reference, starting from the buffer region, and becoming more
evident in the logarithmic region, where both the logarithmic slope and the additive
constant deviate from the constant-property references. Hence we conclude that in the
variable-property case, the law-of-the-wall for both the mean velocity and temperature is
not universal, but rather depends on the specific mean-to-wall temperature ratio.

In analogy with what is done for compressible flows, we assume that the effects of
density and viscosity variations can be accounted for using suitable convolution integrals
(Modesti & Pirozzoli 2016)

ycp =
∫ y

0
fcp dy, ucp =

∫ ũ

0
gcp dũ, θcp =

∫ θ̃

0
hcp dθ̃ , (4.1a–c)

with kernel functions fcp, gcp, hcp to be specified such that the flow properties are mapped
to the universal, constant-property case, denoted with the ‘cp’ subscript. In order to
account for the variable-property effect, we consider the streamwise mean momentum
balance equation

μ′ du′

dy
+ μ̄

dũ
dy

− ρ̄ ũ′′v′′ = ρ̄wu2
τ (1 − η), (4.2)

where η = y/h. Following Hasan et al. (2023), we then introduce an eddy viscosity for the
turbulent shear stress, such that −ρ̄ ũ′′v′′ = ρ̄νT dũ/dy. Substituting the transformations
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Figure 2. (a,b) Mean velocity and (c,d) mean temperature profiles for (a,c) L flow cases and (b,d) H
flow cases. Symbols indicate DNS data for different mean-to-wall temperature ratios: Tm/Tw = 0.4 (left
triangles), Tm/Tw = 0.5, Tw = 800 K (downward triangles), Tm/Tw = 0.5, Tw = 273.25 K (right triangles),
Tm/Tw = 0.7 (squares), Tm/Tw = 0.8 (hexagons), Tm/Tw = 1.5 (stars), Tm/Tw = 2 (circles), Tm/Tw = 2.5
(diamonds), Tm/Tw = 3 (upward triangles). The grey solid lines indicate the mean velocity and temperature
profiles of the constant-property case at Pr = 0.72, obtained using the composite profiles of Pirozzoli &
Modesti (2024). The dashed black lines indicate DNS of constant-property channel flow from Pirozzoli et al.
(2016) at Pr = 0.71.

(4.1a–c) into the streamwise mean momentum balance equation, and assuming
μ′ du′/dy ≈ 0, one obtains

μ̄

μw

fcp

gcp

(
1 + νT

ν

) du+
cp

dy+
cp

= 1 − η. (4.3)

Comparing (4.3) with the constant-property counterpart(
1 + νT,cp

νcp

) du+
cp

dy+
cp

= 1 − η, (4.4)

we find the following relation between the two kernel functions fcp and gcp:

μ̄

μw

fcp

gcp

(
1 + νT

ν

)
= 1 + νT,cp

νcp
. (4.5)

A second condition is needed, which we find by enforcing that van Driest scaling (van
Driest 1951) holds in the logarithmic region, as done by Trettel & Larsson (2016).
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Forced air convection with variable physical properties

With this condition, we find

fcp = d
dy

( y
R1/2N

)
, gcp =

(
1 + νT/ν

1 + νT,cp/ν

)
RN

d
dy

( y
R1/2N

)
, (4.6a,b)

where N = ν̄/νw and R = ρ̄/ρ̄w. The kernel functions (4.6a,b) are formally equivalent
to the velocity transformation derived by Hasan et al. (2023) for a high-speed turbulent
boundary layer, with eddy viscosities to be specified. Using the model eddy viscosity of
Musker (1979) for the baseline case of constant-property flow, herein we extend the model
to account for variable-property effects by including an ad hoc correction depending on
the mean-to-wall temperature ratio

νT,cp

ν
= (κy+

cp)
3

(κy+
cp)2 + C2

v1
,

νT

ν
= (κy+

cp)
3

(κy+
cp)2 + C2

v1 + ϕ(Tm/Tw)
, (4.7a,b)

where κ = 0.387 is the assumed Kármán constant, and Cv1 = 7.3. Fitting the present
DNS data (only flow cases at ‘high Reynolds numbers’, denoted as H, have been taken
into account), we have determined empirically the following expressions for the additive
function ϕ:

ϕ(Tm/Tw) =
{

−32 log (Tm/Tw) − 59(1 − Tm/Tw)2, Tm/Tw < 1,

5.6(1 − Tm/Tw), Tm/Tw > 1.
(4.8)

Similarly to what is done for the mean velocity, a transformation for the mean
temperature profile is obtained starting from the mean energy balance equation

λ′
dθ ′

dy︸ ︷︷ ︸
fluctuating conduction

+ λ̄
dθ̃

dy︸︷︷︸
mean conduction

− Cpρ̄ θ̃ ′′v′′︸ ︷︷ ︸
turbulent convection

+ Ψ︸︷︷︸
dissipation

= qw(1 − R)︸ ︷︷ ︸
total heat flux

, (4.9)

where

R(η) = 1
ρb

∫ η

0
ρ̄(η) dη, Ψ =

∫ y

0
ε dy −

∫ y

0

ρ

ρb

∫ 1

0
ε dη dy, (4.10a,b)

ε = σij
∂ui

∂xj
− ui

∂p
∂xi

. (4.10c)

The relative importance of the different terms in (4.6) is analysed in figure 3, for
representative flow cases with wall heating and wall cooling. Figure 3 shows that the
mean temperature balance of variable-property flows is qualitatively similar to what is
found in passive scalar convection, with mean conduction dominating the near-wall region,
and turbulent convection dominating the overall balance away from the wall. However,
notable differences are the nonlinearity of the total heat flux (on account of the definition
of R) and the presence of additional terms that are small but not zero. Indeed, very close
to the wall, we find a small contribution from the fluctuating conduction term, which,
however, remains much smaller than the mean conduction. We recall that in the mean
momentum equation (4.2) the fluctuating diffusion term μ′ du′/dy was neglected, which
yields a similar contribution to momentum balance as λ′ dT ′/dy yields to the temperature
balance (not shown). The dissipation remains negligible for all cases considered here,
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Figure 3. Mean energy balance as in (4.9) for flow cases (a) L05-A (Reτ = 212, Tm/Tw = 0.5),
(b) H05-A (Reτ = 360, Tm/Tw = 0.5), (c) L3 (Reτ = 1051, Tm/Tw = 3), and (d) H3 (Reτ = 1420, Tm/Tw =
3). The symbols indicate mean conduction (downward triangles), fluctuating conduction (squares), turbulent
convection (circles), dissipation (upward triangles), total heat flux R(η) in (4.9) (dashed black line), and sum
of the different contributions (right triangles).

due to the small Mach number under scrutiny, confirming that all flow cases can be
regarded as representative of incompressible flow. We also note that the total stress R(η) in
(4.10) is indistinguishable from the sum of the components, indicating excellent statistical
convergence of the results.

Based on the DNS data, we then assume Ψ ≈ 0 and λ′ dθ ′/dy ≈ 0, and in analogy with
what is done for the turbulent shear stress, we model the turbulent heat flux by introducing
a thermal eddy diffusivity, such that

θ̃ ′′v′′ 1 − η

1 − R = −αT
dθ̃

dy
. (4.11)

Following the same procedure as used for the mean momentum equation, we then
determine the corresponding kernel function

hcp =
(

1 + αT/α

1 + αT,cp/α

)
1 − η

1 − R RN
d
dy

( y
R1/2N

)
, (4.12)
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Forced air convection with variable physical properties

where α = λ/(ρcp) is the thermal diffusivity coefficient. Following Pirozzoli (2023), we
model the turbulent diffusivity as

αT,cp

α
= (κθy+

cp)
3

(κθy+
cp)2 + C2

v3
,

αT

α
= (κθy+

cp)
3

(κθy+
cp)2 + C2

v3 + β(Tm/Tw)
, (4.13a,b)

with constants κθ = 0.459, Cv3 = 10. As for the mean velocity, the dependency of the
eddy thermal diffusivity on mean-to-wall temperature ratio is accounted for empirically
by fitting the DNS data, to obtain

β(Tm/Tw) =
{

(1 − Tm/Tw)[141 − 507(Tm/Tw) + 608(Tm/Tw)2], Tm/Tw < 1,

−28 log (Tm/Tw) + 1.6(1 − Tm/Tw)2, Tm/Tw > 1.

(4.14)

To summarize, the kernel functions (4.6a,b) and (4.12) are rooted in the mean momentum
balance and temperature balance equations, with eddy viscosity and eddy conductivity
to be specified. This is, in our opinion, more robust that relying entirely on data-driven
transformations (Volpiani et al. 2020). Nonetheless, we are not aware of any exact result
in turbulence theory that does not include constants to be determined from experience
or simulation, and the present case is no exception. Here, the constants κ , κθ , Cv1 and
Cv3 were determined once and for all for constant-property flow (Pirozzoli et al. 2021;
Pirozzoli & Modesti 2023). The only added ingredients here are the functions ϕ in
(4.8) and β in (4.14), which account empirically for the dependency on the bulk-to-wall
temperature ratio. We note that both (4.8) and (4.14) show different functional dependency
for heating and cooling, which is aligned with empirical formulas for the Nusselt number
and friction coefficient reported in the literature (Petukhov 1970; Yeh & Stepka 1984),
featuring different coefficients or functions for the two cases.

In figure 4, we plot the transformed mean velocity and temperature profiles using
the kernel functions (4.6a,b) and (4.13a,b), and compare the results with the reference
constant-property case. The universality of the various distributions is quite remarkable,
given the wide range of variation of the flow properties that we are considering. The
accuracy of the velocity and temperature transformations also supports the validity of
the assumptions made to derive the kernel functions for the convolution integrals (4.1a–c).
We point out that the coefficients inferred from DNS have been calibrated only for flow
cases H, and they are successfully applied to lower or higher Reynolds numbers with
similar accuracy, showing substantial independence from the Reynolds number. These
transformations allow us to define an equivalent channel height hcp, which we use to
introduce an equivalent constant-property friction Reynolds number,

Reτ,cp = hcp

δv

, hcp =
∫ h

0
fcp dy. (4.15a,b)

The equivalent channel height hcp is larger than h for heating, and smaller for cooling,
leading to higher or lower equivalent constant-property friction Reynolds numbers,
respectively. The definition given in (4.15a,b) can also be used to define an equivalent
constant-property friction velocity, and an equivalent viscous length scale, namely

Reτ,cp = uτ,cph
ν̄w

, uτ,cp = ν̄w

δv,cp
, δv,cp = h

hcp
δv. (4.16a–c)

Values of the equivalent constant-property Reynolds numbers are reported in table 1,
which can be used as a guide to interpret the instantaneous flow field in figure 1, where
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Figure 4. (a,b) Mean velocity and (c,d) mean temperature profiles transformed using (4.1a–c) with kernel
functions (4.6a,b) and (4.13a,b), for (a,c) L flow cases and (b,d) H flow cases. Symbols indicate DNS data for
different mean-to-wall temperature ratios: Tm/Tw = 0.4 (left triangles), Tm/Tw = 0.5, Tw = 800 K (downward
triangles), Tm/Tw = 0.5, Tw = 273.25 K (right triangles), Tm/Tw = 0.7 (squares), Tm/Tw = 0.8 (hexagons),
Tm/Tw = 1.5 (stars), Tm/Tw = 2 (circles), Tm/Tw = 2.5 (diamonds), Tm/Tw = 3 (upward triangles). The grey
solid lines indicate the reference mean velocity and temperature profiles of the constant-property case at Pr =
0.72, obtained using the synthetic velocity profile of Musker (1979) and the synthetic temperature profile of
Pirozzoli (2023). The dashed black lines indicate DNS of constant-property channel flow from Pirozzoli et al.
(2016) at Pr = 0.71.

flow cases with heating show finer eddies than for cooling because their effective Reynolds
number is higher.

5. Wall friction and heat transfer

The variable-property transformations developed in the previous section are very useful,
especially as they enable the prediction of the heat transfer and friction coefficients.
For that purpose, the only required inputs are the reference constant-property mean
velocity and mean temperature profiles. As discussed previously, in the current work we
consider the composite profiles developed in the work of Pirozzoli & Modesti (2024).
However, different choices are possible, and one could, for instance, use the model for
the mean velocity by Nagib & Chauhan (2008), and the model for the mean temperature
by Kader (1981), although the latter might result in less accurate temperature profiles
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Forced air convection with variable physical properties

Algorithm 1 Inverse variable-property transformation, where εReτ and ε are the
tolerances for the iterative algorithm, which in our case are set to 10−9 and 10−10,
respectively.

Initialization:
1: Generate constant-property profiles for a prescribed target value of Reτ,cp: un

cp, θn
cp

2: Set:un = un
cp, θn = θn

cp, Calculate: f n
cp, gn

cp, hn
cp, Cn

f , Stn using θn for a given Tm/Tw

while (|Ren
τ,cp − Reτ,cp| < εReτ ) do

while (|Cn+1
f − Cn

f | < ε) and (|Stn+1 − Stn| < ε) do

3: yn+1 =
∫

1
f n
cp

dyn
cp, ũn+1 =

∫
1

gn
cp

dun
cp, θ̃n+1 =

∫
1

hn
cp

dθn
cp

4: Update kernels: f n+1
cp , gn+1

cp , hn+1
cp , using (4.6a,b)–(4.12)

5: Update coefficients and Reynolds number: Cn+1
f , Stn+1, Ren+1

τ,cp using (4.15a,b)

6: Update constant-property profiles un+1
cp , θn+1

cp at Ren+1
τ,cp

end while

end while

due to inconsistencies in the near-wall region. Starting from those, application of the
inverses of transformations (4.1a–c),

y =
∫ y

0

1
fcp

dycp, ũ =
∫ ucp

0

1
gcp

ducp, θ̃ =
∫ θcp

0

1
hcp

dθcp, (5.1a–c)

allows us to determine the actual variable-property profiles, for any given mean-to-wall
temperature ratio and Reynolds number. The key technical difficulty is that the kernel
functions fcp, gcp, hcp depend on the actual temperature in the variable-property case,
hence an iterative procedure is necessary, as for compressible flow (Kumar & Larsson
2022; Hasan et al. 2024). The iterative procedure is presented in Algorithm 1, and it can
be summarized as follows.

(i) Generate the constant-property profiles for a target friction Reynolds number Reτ,cp.
(ii) Initialize kernel functions fcp, gcp, hcp using the constant-property temperature

profile.
(iii) Calculate the backward convolution integrals (5.1a–c) to find y, u, θ .
(iv) Update the kernels fcp, gcp, hcp using the newly calculated temperature θ .
(v) Calculate the friction coefficient, the Stanton number and Reτ,cp.

(vi) Update the constant-property profiles based on the updated Reτ,cp.

Note that two nested loops are required for this iterative algorithm. This is because the
constant-property profiles are also recalculated at each step in order to converge towards
the target friction Reynolds number Reτ,cp.

Figure 5 shows the resulting friction coefficient Cf = 2τw/(ρbu2
b) and the Stanton

number St = qw/[ρbCpub(Tw − Tm)]. Whereas the data for the constant-property case
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Figure 5. (a) Friction coefficient, (b) Stanton number, (c) Nusselt number and (d) Reynolds analogy
factor as functions of the bulk Reynolds number Reb = 2hρbub/μm. Solid lines indicate predictions
obtained by inverting the variable-property transformations (4.1a–c), and symbols indicate DNS data
for different mean-to-wall temperature ratios, with matching colours: Tm/Tw = 0.4 (black left triangles),
Tm/Tw = 0.5, Tw = 800 K (orange downward triangles), Tm/Tw = 0.5, Tw = 273.25 K (blue right triangles),
Tm/Tw = 0.7 (purple squares), Tm/Tw = 0.8 (gold hexagons), Tm/Tw = 1.5 (brown stars), Tm/Tw = 2 (red
circles), Tm/Tw = 2.5 (grey diamonds), Tm/Tw = 3 (green upward triangles). Black pentagons refer to DNS
data of passive scalars in plane channel flow with Pr = 0.71 from Pirozzoli et al. (2016).

(black pentagons) fall on top of the corresponding theoretical curves (light grey), we
find significant deviations thereof in cases with property variations. In particular, we note
that cases with a heated wall yield reduced friction and heat flux, whereas cases with a
cooled wall yield an increase of momentum and heat transfer, with a scatter around the
constant-property case of ±25 % for both the friction coefficient and the Stanton number.
We also report the heat transfer in terms of Nusselt number Nu = Reb St Pr, although this
representation tends to hide differences within a few per cent, thus the Stanton number
should be preferred for accurate evaluation of theories. Theoretical predictions relying on
use of the variable-property transformations (4.1a–c) are shown in the figure with solid
lines of matching colours, and of course those are not universal as well. Notably, figure 5
shows that the resulting predictions match the DNS data to within 1–2 % accuracy for
all cases, for both the friction and heat transfer coefficients, as shown quantitatively in
figure 6. We further find that the analogy between momentum and heat transfer holds
also in the case of variable-property flows, as the Reynolds analogy factor stays close to
the constant property case, although this information alone is obviously not sufficient to
recover the heat transfer and friction coefficients from the constant-property case. Note
that the Reynolds analogy factor is not unity even in the constant-property case because
Pr = 0.72.
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Figure 6. Percentage difference between DNS data and predicted (a) friction coefficient and
(b) Stanton number as functions of the bulk Reynolds number Reb = 2hρbub/μm. Symbols indicate
DNS data for different mean-to-wall temperature ratios: Tm/Tw = 0.4 (left triangles), Tm/Tw = 0.5,
Tw = 800 K (downward triangle), Tm/Tw = 0.5, Tw = 273.25 K (right triangles), Tm/Tw = 0.7 (squares),
Tm/Tw = 0.8 (hexagons), Tm/Tw = 1.5 (stars), Tm/Tw = 2 (circles), Tm/Tw = 2.5 (grey diamonds),
Tm/Tw = 3 (upward triangles).

6. Conclusions

Currently, predicting heat transfer through forced convection in real fluids depends
heavily on fitting experimental data obtained decades ago, leading to uncertainties
of up to 20–30 %. This significant variability is clearly reflected in the current DNS
data. To address this uncertainty, we have developed a robust framework for estimating
momentum and heat transfer coefficients. Our approach is grounded in the first principles
of momentum and energy balance rather than empirical methods, offering the advantages
of accuracy and generalizability. Similar to approaches used in high-speed turbulent
boundary layers, our method relies on transformation kernels for velocity and temperature
distributions.

Preliminary tests indicate that transformation kernels informed by DNS data can
generate velocity and temperature distributions with excellent universality compared to
the constant-property case. Evaluating momentum and heat transfer coefficients involves
integrating the estimated velocity and temperature profiles obtained through the backward
application of these transformation kernels, requiring an iterative procedure. Our results
indicate that the method can accurately predict heat transfer and friction coefficients within
1–2 % compared to DNS data. Additionally, the developed method can determine mean
temperature and velocity profiles alone, providing valuable information for establishing
wall functions in simulations employing wall-modelled approaches.

We also acknowledge that cooling ducts in practical applications often feature rough
walls rather than smooth ones (Chung et al. 2021; De Maio et al. 2023; Zhong, Hutchins
& Chung 2023). This raises questions about the applicability of the current transformations
to complex surface patterns. In such cases, the effects of density and viscosity variations
lead to a much more intricate flow physics compared to constant-property flows. Several
mechanisms and parameters remain to be studied, including the precise mechanisms
responsible for friction and heat transfer variation, the impact on turbulence length scales,
the dependency of Prandtl number and heat capacity on the temperature, and the influence
of the working fluid. We plan to investigate these aspects in future studies.

We believe that the proposed approach could have important implications in closely
related fields, as mixed and natural convection. In principle, we see no reason why the
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same approach should not be applicable to these flow problems, as the transformations are
rooted in the mean momentum and thermal balance, which are universal.
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Appendix A

We solve the fully compressible Navier–Stokes equations for a perfect heat-conducting
gas,

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (A1a)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
+ f δi1, (A1b)

∂ρs
∂t

+ ∂ρujs
∂xj

= 1
T

(
−∂qj

∂xj
+ σij

∂ui

∂xj

)
+ Q, (A1c)

where ui, i = 1, 2, 3, is the velocity component in the ith direction, ρ is the density, p is
the pressure, s = cv log( pρ−γ ) is the entropy per unit mass, and γ = cp/cv = 1.4 is the
specific heat ratio. The components of the heat flux vector qj and of the viscous stress
tensor σij are

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (A2)

qj = −k
∂T
∂xj

, (A3)

where the dependence of the viscosity coefficient on temperature is accounted for
through Sutherland’s law, and k = cpμ/Pr is the thermal conductivity, with Pr = 0.72.
Use of the entropy equation to replace the energy equations is here dictated from the
possibility to relax the acoustic time step limitation with semi-implicit time stepping
Modesti & Pirozzoli (2018), thus yielding a computational efficiency comparable to a
variable-property incompressible solver.

The forcing term f in (A1b) is evaluated at each time step in order to discretely enforce
constant mass flow rate in time. Similarly, a uniform bulk heating/cooling term is added to
the entropy equation to make the mixed mean temperature exactly constant in time. Since
we solve for the entropy equation, this is achieved by correcting the local temperature at

1001 A27-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://newton.dma.uniroma1.it
http://www.thermoturb.com
https://orcid.org/0000-0003-2214-5799
https://orcid.org/0000-0003-2214-5799
https://orcid.org/0000-0002-7160-3023
https://orcid.org/0000-0002-7160-3023
https://doi.org/10.1017/jfm.2024.1098


Forced air convection with variable physical properties

each grid point and each Runge–Kutta sub-step as follows:

T(x, y, z, t) → T(x, y, z, t) − Tm(t) + T∗
m, (A4)

where Tm(t) is the mixed mean temperature before the correction, and T∗
m is the target

value. The updated temperature value is then used to re-evaluate the entropy at the current
time.
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