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It is well known that Z(p®) is isomorphic to each of its
non-zero homomorphic images [3]. The aim of the present
note is to generalize this fact about Z(p®) to indecomposable
injective modules over rings more general than the ring of
integers which will include Dedekind domains as a special case.
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Throughout this paper we consider R to be an integral
domain and PCR a maximal ideal.

Let RP denote the ring of quotients of R with respect

to P and define ¢: R/P——)RP/ RPP by ¢(x+P) = x + RPP .
The mapping ¢ is clearly an R-module homomo rphism and is
one-to-one since x + RPP = 0 implies xe¢ RPPITR =P. To
show that it is an epimorphism, let (r/s) e RP . Then, since
R = Rs + P, there exist ac¢R, beP such that 1= as +b.

P = = = .
Hence (r/s) + RP ra + (r/s)b + R.PP ra + R.PP o(ra + P)
Thus ¢ is an R-isomorphism. Since RP/ R'PP is an
R.P-module, this shows that R/P can be made into an
R.P-module by (1/s){(r+P)=ra +P if seR\Pand l=as +b
as above, such that ¢ is an RP-isomorphism. This fact

extends as follows to E, the R-injective hull of R/P:

LEMMA By extending the Rp—module structure of

R/P, E can be made into an Rp-module such that it is
isomorphic to the Rp-m_]ectwe hull of %/ RPP'
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Proof. We first show that for se¢ R\P, the R-module
homomorphism fix——sx, is an automorphism of E. Let
0 :{cxa E, then since E is an essential extension of R/P,
there exists a non-zero element rxe Rx(IR/P and since { is
one-to-one on R/P we have 0 :,L. f(rx) = srx which implies
that sx+ 0 and so f is one-to-one on E. The fact that E is
indecomposable [2] and f(E) is isomorphic to E and hence
injective, gives f(E) = E. { is, therefore, an automorphism
of E. Thus for any xe¢E, se¢ R\P, there exists a unique
element ye¢E such that x = sy and we can define (l/s)x =y
which makes E into an %-module.

Finally, to prove the required isomorphism, let E' be
an RP—injective hull of RP/RPP and j: R/P—3E and

it RI*D/ RPP——-)E‘ the natural injections. From the R-injectivity
of E it follows that there exists an R-homomorphism

u: E'=—=E such that joq»nl = yoi with ¢ as defined above.
Take x'e ker y and suppose x# 0. Then RPx‘ﬂRP/ RPPJ{: 0
sinc: E' is an RP-essential extension of RP/ RPP. Hence
ther» exists a non-zero element rx' eR.x‘ORP/ RPP. As Yol

is a monomorphism, we have 0 :h;oi (rx') = y(rx') = rp(x') =0,
a contradiction. Hence  is a monomorphism. Now, if

se RNP, x'¢E', then there exists a unique element ye¢E such
that! sy = @{x') = U {s(l/s)x') = s (Y(l/s)x) whence

(1/s} ¢ (x') = ¢ {(1/s)x'). This shows that ¢ is Rp-linear. It

follows that W(E') is RP—injective and therefore an R.P-direct

summand of E. In particular {(E') is an R-direct summand
of E. Hence { ')=E. Thus y: E'~—3E 1is the desired
R_ -isomorphism.
P
Proposition. Let be a principal ideal ring. Then
the injective hull of R/P isisomorphic to any of its quotients
by ¢ proper submodule.

Proof. Here RPP = RP m for some Te RP, and

-1 . .
RP/ RP‘.T has E = RP[TT 1/ an as its injective hull [ 1] where

-1 . -1
RP[T; ] is generated by = as a ring extension of RP in the

quotient field of R. By the lemma it suffices to consider this
R-nwdule E.
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We first show that every R-submodule of E is also an
Rp-submodule which will imply that the Rp-submodules are

the same as the R-submodules. For this, it is sufficient to
prove that if SCE is any R-submodule and 5, ¢ R/P, then

-1 -k . .
(/s )SCS. Now, Rlr ]= Uk >0 Rom = implies that any
element in S is of the form x = (a/ s)1-r-k + RPTI' where
aeR, se R\P and k aninteger. From R=Rs_+ pit [4],

we get 1= sot +u with teR, ue Pk+1 and, therefore,

-k
(1/ so)x =tx + (1/ so)ux = tx + (u/ so)((a/s)v + Rprr) = txe S.
Hence (1/ so)Sg S and we can talk about the submodules of E

without reference to- R or RP

We next show that every submodule of E is of the form
R. ™ /Rpﬂ'. The lattice of all submodules of E is isomorphic
to the lattice of RP submodules of %[‘n‘ ] which contain
an. Hence any submodule of E corresponds to exactly one
fractional ideal S of R, with RmC C Sc RP[-rr ] Let
=S nRPTr -k then RomC S c Rprr whichimplies

k
s «" CR_. By the fact that R_ i incipal ideal
R.P SER —RP' y the a Rp is a princip e

]
i = i 0
ring, one has Skn- RPTI' k for some !k with glks k+l1.

-k
Therefore, S = Rpﬂlk . If S corresponds to a proper

submodule of E, then SCR. [n~ ] and since S=U >O «

and the Sk's form an ascending sequence, one has S = an- e
for some integer n. Thus every proper submodule of E is of
the form Rpw /Rprr, and any quot1ent of E by such a
submodule may be expressed as Rp[rr ]/Rp

Now, if we compose the homomo rphism x—-)n'-(nﬂ)x of

RP[‘IT ] into itself, with the natura.l homomorphxsrn

y—y + RpT P from Rp[n' ] to Rp[rr ]/Rpﬂ , we get an
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. . -1 -1 -n .
epimorphism Rp[Tr ]—)Rp[ﬂ ]/ R whose kernel is Rpw.
-1 -
This shows that E is isomorphic to Rp[n' 1/ Rom n
Remark. If R is a Dedekind domain then each proper
prime ideal P of R is maximal, and ELP is a principal

ideal ring [4] ; therefore, the Proposition then applies to any
R/P. It follows from this that the indecomposable injective
torsion modules over a Dedekind domain all have the property
that they are isomorphic to any of their non-zero homomorphic
images.

In conclusion we provide an example where an indecom-
posable injective module has a quotient module which is neither
zero nor isomo rphic to itself:

Let R be a Noetherian domain, P a non-zero, non-
maximal prime ideal in R and E an injective hull of R/P.
Then there exists a maximal ideal M such that
OCPCMCR and so EDR/POM/P# 0, Hence E/(M/P)%F 0.
We will show that E is not isomorphic to E/(M/P). Assume
the contrary. Then E/(M/P) is indecomposable injective
and contains (R/P)/(M/P) which is isomorphic to R/M 4: 0,
and hence E/(M/P) is isomorphic to the injective hull of R/M.
This implies that R/M and R/P have isomorphic injective
hulls which leads to a contradiction since P and M are
different prime ideals {2]. Thus the quotient module E/(M/P)
is neither zero nor isomorphic to E and we have a counter -
example where the above proposition fails to be true.
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