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Degrees of Regular Sequences With a
Symmetric Group Action

Federico Galetto, Anthony Vito Geramita, and David Louis Wehlau

Abstract. We consider ideals in a polynomial ring that are generated by regular sequences of homo-
geneous polynomials and are stable under the action of the symmetric group permuting the vari-
ables. In previous work, we determined the possible isomorphism types for these ideals. Following
up on that work, we now analyze the possible degrees of the elements in such regular sequences.
For each case of our classiûcation, we provide some criteria guaranteeing the existence of regular
sequences in certain degrees.

1 Introduction

Consider the graded polynomial ring R = C[x1 , x2 , . . . , xn]. A set of n homogeneous
polynomials f1 , f2 , . . . , fn is amaximal regular sequence in R if the only common zero
of these n polynomials is the point (0, 0, . . . , 0). A sequence g1 , g2 , . . . , gt is a regular
sequence in R if it can be extended to amaximal regular sequence in R.

We suppose that G is a group acting linearly on R via an action that preserves
the grading. _e subring RG ∶= { f ∈ R ∶ ∀σ ∈ G , σ ⋅ f = f } is called the ring of
invariants. _ere has been some interest in determining the degrees (d1 , d2 , . . . , dt)
for which there exists a regular sequence in RG with deg( f i) = d i . Dixmier [6]made
a conjecture concerning this question for the classical case of the action of SL(2,C)
on an irreducible representation. _is conjecture has attracted some attention [1, 7,
17]. Recently, a few authors have taken up this question for the natural action of the
symmetric group on R [4, 5, 14].

We consider a more general question. Our goal is to determine the degrees of a
maximal regular sequence f1 , f2 , . . . , fn in R such that the ideal I ∶= ( f1 , f2 , . . . , fn) is
stable under the group action. _is is equivalent to the artinian quotient algebra R/I
inheriting the action of the group.

We will also restrict our attention to the natural action of the symmetric group
Sn permuting the variables. In our earlier paper [10], we showed that there are four
possible representation types for the action of Sn on I (the notation follows that of
[19]):
● the trivial representation S(n), given by all f i being symmetric polynomials,
● the alternating representation S(1

n
), given by one alternating polynomial, together

with up to n − 1 symmetric polynomials,
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● the standard representation S(n−1,1), possibly togetherwith one symmetric polyno-
mial,

● the representation S(2,2), togetherwith up to two symmetric polynomials (this only
occurs when n = 4).

Our earlier paper showed examples of regular sequences corresponding to all four
cases, but didnot address the question ofhow o�en such regular sequences can appear
or, more precisely, the degrees in which they can be realized. Here we give explicit
answers showing in which degrees it is possible to ûnd a regular sequence for each of
the above four representation types for n ⩽ 4. We also derive a number of results for
general values of n.

Note also that our results relating to the ûrst case above actually apply to the
degrees of regular sequences of homogeneous polynomials in the polynomial ring
C[y1 , . . . , yn], with the non-standard grading given by deg(y i) = i. _is case cor-
responds geometrically to the homogeneous coordinate ring of a weighted projective
space.

2 Regular Sequences of Symmetric Polynomials

We consider the polynomial ring R = C[x1 , x2 , . . . , xn] in n indeterminates equipped
with the standard grading. _e symmetric groupSn acts naturally on R by permuting
the variables. It is well known that the invariant subring RSn can be identiûed with
the subalgebraC[e1 , e2 , . . . , en] generated by the elementary symmetric polynomials
[11]. In particular, RSn is a polynomial ring equipped with the non-standard grading
deg(e i) = i.

2.1 Degree Sequences

We are concerned with the degrees of elements of regular sequences in RSn . All of
the regular sequences we consider consist of homogeneous polynomials.

Deûnition 2.1 Let (d1 , d2 , . . . , dn) be an (unordered) sequence of n positive inte-
gers. If there exists a regular sequence f1 , f2 , . . . , fn ∈ RSn with deg( f i) = d i , then we
say that (d1 , d2 , . . . , dn) is a regular degree sequence.

Proposition 2.2 Suppose (d1 , d2 , . . . , dn) is a regular degree sequence. We deûne
β i ∶= #{1 ⩽ j ⩽ n ∶ i ∣ d j}, for i = 1, 2, . . . , n. _en

(2.1) β i ⩾ ⌊
n
i
⌋ for all i = 1, 2, . . . , n

In particular, n! ∣∏n
j=1 d j .

Proof If (d1 , d2 , . . . , dn) is a regular degree sequence, then there exists a regu-
lar sequence f1 , f2 , . . . , fn in RSn with deg( f i) = d i . _e graded subring A =
C[ f1 , f2 , . . . , fn] is a polynomial ring and RSn is a free A-module: RSn ≅ ⊕γ∈Γ A ⋅ γ
for some set of homogeneous elements Γ ⊂ RSn [3, Lemma 6.4.13]. _us the
Hilbert series of RSn and A are related by H(RSn , t) = ∑γ∈Γ tdeg(γ)H(A, t). Since
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H(RSn , t) =∏n
i=1(1 − t i)−1 andH(A, t) =∏n

i=1(1 − td i )−1, we see that

n
∏
i=1

1 − td i
1 − t i

=∑
γ∈Γ

tdeg(γ)

is a non-negative integer polynomial.
Working overQ, all the irreducible factors of (1− td) are cyclotomic polynomials.

Speciûcally, (1− td) =∏i∣d Φ i(t), whereΦ i denotes the i-th cyclotomic polynomial.

Since #{1 ⩽ j ⩽ n ∶ i ∣ j} = ⌊n/i⌋, we see that ∏n
i=1

1−td i
1−t i is an integer polynomial if

and only if β i ⩾ ⌊n/i⌋, for all i = 1, 2, . . . n.
To prove the ûnal assertion, we cancel the factors of (1 − t) from the numerator

and denominator. _us
n
∏
i=1

1 + t + t2 + ⋅ ⋅ ⋅ + td i
1 + t + t2 + ⋅ ⋅ ⋅ + t i

=∑
γ∈Γ

tdeg(γ) .

Evaluating at t = 1, we see that (∏n
i=1 d i)/n! = ∣Γ∣ = rank of RSn as an A-module.

Remark 2.3 A number of authors have observed the restriction that the product
of the d i is divisible by n!, see for example [5, Lemma 2.8]. _e inequality (2.1) was
observed byConca,Krattenthaler, andWatanabe for regular sequences of power sums
[5, Lemma 2.6 (2)].

Suppose (d1 , d2 , . . . , dn) is a regular degree sequence. Since

⊕
d⩽i

RSn
d ⊂ C[e1 , e2 , . . . , e i]

and hence cannot contain a regular sequence with more than i terms, we deduce that
(d1 , d2 , . . . , dn) must also satisfy the following condition

(2.2) #{ j ∶ d j ⩽ i} ⩽ i for all i = 1, 2, . . . , n.

Deûnition 2.4 Let (d1 , d2 , . . . , dn) be an (unordered) sequence of n positive inte-
gers. We say that (d1 , d2 , . . . , dn) is permissible if it satisûes the two conditions (2.1)
and (2.2). _us, every regular degree sequence is permissible.

Note that if there exists a matching, i.e., a permutation π ∈ Sn such that i divides
dπ(i) for all i = 1, 2, . . . , n, then (d1 , d2 , . . . , dn) is a regular degree sequence as is
shown by the regular sequence of polynomials (e i)dπ(i)/i for i = 1, 2, . . . , n. For ex-
ample (1, 4, 9) is a regular degree sequence since e1 , e22 , e33 is a regular sequence.

2.2 Regular Degree Sequences for n ⩽ 4

_eorem 2.5 (i) For n = 2, a degree sequence is regular if and only if it is permis-
sible if and only if it satisûes (2.1).

(ii) For n = 3, a degree sequence is regular if and only if it is permissible.
(iii) For n = 4, degree sequences of the form (1, 2, 5, 12δ), (2, 2, 5, 12δ), (2, 5, 5, 12δ),

where δ ∈ N, are permissible, but are not regular. Every other permissible degree
sequence is regular when n = 4.
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Proof (i) If (d1 , d2) satisûes (2.1), then at least one of d1 or d2 is even and sowe have
amatching.

(ii) Let n = 3 and suppose that (d1 , d2 , d3) is permissible but has no matching.
_en, without loss of generality, 6 divides d3 while d1 and d2 are both odd numbers
not divisible by 3 with d2 ⩾ d1. Now condition (2.2) implies that d1 = d2 = 1 is
impossible, so d2 ⩾ 2 and thus d2 ⩾ 5. _erefore, we have a regular sequence ed1

1 ,
e3e(d2−3)/2

2 , (e32 + e23)d3/6 with degrees (d1 , d2 , d3).
(iii) For n = 4, note that RSn

1 ⊕ RSn
2 ⊕ RSn

5 is contained in the ideal generated by
e1 and e2. _is implies that a regular degree sequencemust satisfy

#{i ∶ d i ∈ {1, 2, 5}} ⩽ 2.

_is shows that the permissible degree sequences (1, 2, 5, 12δ), (2, 2, 5, 12δ), and
(2, 5, 5, 12δ) for δ ∈ N are not regular.

Now suppose that (d1 , d2 , d3 , d4) is a permissible degree sequence that is not of
the form (1, 2, 5, 12δ), (2, 2, 5, 12δ), or (2, 5, 5, 12δ). If (d1 , d2 , d3 , d4) has amatching,
then it is regular, and so we suppose that it has no matching. Condition (2.1) implies
that two of the d i are even, one is divisible by 3 and one is divisible by 4. Without loss
of generality, d3 and d4 are both even, d4 = 4δ is divisible by 4 and d2 ⩾ d1. Since
there is no matching, neither, d1 nor d2 is divisible by 3. _us either d3 is a multiple
of 6 or d4 is amultiple of 12.
First we consider the case where d3 = 6β is a multiple of 6. Since there is no

matching, both d1 and d2 are odd integers not divisible by 3. _us (2.2) implies that
d2 ⩾ 5. _erefore ed1

1 , e3e
(d2−3)/2
2 , (e32 + e23)β , eδ4 is a regular sequence of the required

degrees.
_uswemay suppose that d4 = 12δ is amultiple of 12. Nowwe adjust our labelling

as follows. We suppose that d3 is the largest of those elements of {d1 , d2 , d3} that
are even. Further we assume that d2 ⩾ d1. Furthermore, since there is no matching,
3 divides neither d1 nor d2.

Since d2 ⩾ 2, wemay write d2 = 2p + 3q, where p and q are non-negative integers.
Suppose ûrst that d3 ⩾ 4 and deûne

f ∶=
⎧⎪⎪
⎨
⎪⎪⎩

ed3/44 if d3 ≡ 0 (mod 4),
e(d3−6)/4
4 (e32 + e23) if d3 ≡ 2 (mod 4).

_en ed1
1 , e

p
2 e

q
3 , f , (e62 + e43 + e34)δ is a regular sequence of degrees (d1 , d2 , d3 , d4).

Finally we suppose that d3 = 2. _en d1 ⩽ d2 and either d2 = 2 or d2 is odd.
But the sequences (1, 2, 2, 12δ) and (2, 2, 2, 12δ) do not satisfy (2.2), so they are not
permissible. _erefore d2 must be odd. Since 3 does not divide d2, we have d2 ⩾ 5.
If d2 = 5, then d1 ∈ {1, 2, 5}, which is again not possible since we have excluded
sequences of the form (1, 5, 2, 12δ), (2, 5, 2, 12δ), and (5, 5, 2, 12δ). _erefore d2 ⩾ 7
if d3 = 2. _us wemay write d2 = 3p + 4q. _en ed1

1 , e
p
3 e

q
4 , e2 , (e43 + e34)δ is a regular

sequence of the required degrees.

Table 1 summarizes the regular sequenceswe have foundwhen n = 4. _e ûrst row
corresponds to amatching.

Note that we have in fact proved the following result.
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Degrees Symmetric Polynomials

d1 d2 d3 d4 f1 f2 f3 f4

d1 3β 2γ 4δ ed11 eβ3 eγ2 eδ4
d1 d2 ⩾ 5 6γ 4δ ed11 e3e(d2−3)/2

2 (e32 + e23)γ eδ4
d1 d2 ⩾ 2 4β 12δ ed11 e p2 e

q
3 eβ4 (e62 + e43 + e34)δ

d1 d2 ⩾ 2 4β + 2 ⩾ 6 12δ ed11 e p2 e
q
3 (e32 + e23)e

β−1
4 (e62 + e43 + e34)δ

d1 d2 ⩾ 7 2 12δ ed11 e p3 e
q
4 e2 (e43 + e34)δ

Table 1: Regular sequences of symmetric polynomials for n = 4

Corollary 2.6 Suppose that d2 , d3 , d4 are three positive integers such that 4 ∣ d4, d3 is
even, and 3 ∣ d2d3d4. _en there exist three symmetric polynomials f2 , f3 , f4 (as given
in Table 1) of degrees d2 , d3 , d4, respectively, such that e1 , f2 , f3 , f4 is a regular sequence.

Remark 2.7 Note that the degree sequence (2, 5, 2, 12) (which is not regular) has
the property that

(1 − t2)(1 − t5)(1 − t2)(1 − t12)
(1 − t)(1 − t2)(1 − t3)(1 − t4)

= 1 + t + t3 + 2t4 + 2t7 + t8 + t10 + t11

is a non-negative integer polynomial.

For larger values of n little is known. _e following statement was proved in [5,
Proposition 2.9] using sequences of power sums and homogeneous symmetric poly-
nomials.

Proposition 2.8 For every positive integer a, the sequence of consecutive degrees
(a, a + 1, a + 2, . . . , a + n − 1) is a regular degree sequence.

2.3 Regular Sequences With an Alternating Polynomial

A polynomial f ∈ R is said to be alternating if, for all σ ∈Sn , σ f = ± f , depending on
the sign of σ . As an example, the Vandermonde determinant

∆ ∶= det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

⋮ ⋮ ⋮ ⋮

1 xn x2
n . . . xn−1

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∏
1⩽i< j⩽n

(x j − x i) ∈ R

is clearly alternating. In fact, every homogeneous alternating polynomial in R is di-
visible by ∆, the quotient being a homogeneous symmetric polynomial.
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As noted in [10, Proposition 2.5], there exist regular sequences f1 , f2 , . . . , ft , g∆ in
R with f1 , f2 , . . . , ft , and g being symmetric polynomials. _ese sequences are closely
related to sequences of symmetric polynomials.

Lemma 2.9 Let f1 , f2 , . . . , ft , g , h ∈ R be homogeneous polynomials. _en the se-
quence f1 , f2 , . . . , ft , gh is regular if and only if both f1 , f2 , . . . , ft , g and f1 , f2 , . . . , ft , h
are regular.

Proof Suppose f1 , f2 , . . . , ft form a regular sequence. _en gh is not a zero-divisor
modulo ( f1 , f2 , . . . , ft) if and only if both g and h are not zero-divisors modulo
( f1 , f2 , . . . , ft).

_e following is an immediate consequence of Lemma 2.9.

Proposition 2.10 Let f1 , f2 , . . . , ft , g ∈ R be homogeneous symmetric polynomi-
als. _e sequence f1 , f2 , . . . , ft , g∆ is regular if and only if both f1 , f2 , . . . , ft , g and
f1 , f2 , . . . , ft , ∆ are regular.

Proposition 2.10 allows ruling out the existence of regular sequences of certain
degrees that contain an alternating polynomial.

Example 2.11 For n = 4, ∆ has degree 6. By _eorem 2.5 (iii), there is no regular
sequence of homogeneous symmetric polynomials f1 , f2 , f3 , g of degrees 1, 2, 5, 12δ.
_erefore, Proposition 2.10 implies there is no regular sequence f1 , f2 , f3 , g∆ of de-
grees 1, 2, 5, 12δ + 6.

Remark 2.12 _e polynomial ∆2k is symmetric for all positive integers k. More-
over, the sequence f1 , f2 , . . . , ft , ∆ is regular if and only if f1 , f2 , . . . , ft , ∆2k is regu-
lar [8, Corollary 17.8 a]. As a consequence, we can exclude the existence of regular
sequences in certain degrees. For example, there is no regular sequence of homo-
geneous polynomials f1 , f2 , f3 , ∆ with f1 , f2 , f3 symmetric of degrees 1, 2, 5, because
f1 , f2 , f3 , ∆2 would violate_eorem 2.5 (iii).

3 Regular Sequences and the Standard Representation

We begin this section by recalling some basic facts about the representation theory
of the symmetric group Sn over a ûeld of characteristic zero. We refer the reader to
[19, Chapter 2] for the details.

We write λ ⊢ a to denote that λ = (λ1 , λ2 , . . . , λr) is a partition of the integer
a, i.e., that λ1 + λ2 + ⋅ ⋅ ⋅ + λr = a and λ1 ⩾ λ2 ⩾ ⋅ ⋅ ⋅ ⩾ λr > 0. _e irreducible
representations of Sn are in bijection with the partitions of n; for λ ⊢ n, we denote
by Sλ the corresponding irreducible. Every ûnite-dimensional representation of Sn
decomposes into a direct sum of copies of the Sλ .

_e irreducible representation S(n−1,1) of Sn is o�en called the standard rep-
resentation. It can be described as the Sn-stable complement of the subspace
spanned by e1 inside the representation R1 = ⟨x1 , x2 , . . . , xn⟩. _e polynomials
x1 − xn , x2 − xn , . . . , xn−1 − xn give an explicit basis of the complement.
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Let m = (x1 , x2 , . . . , xn) be the irrelevant maximal ideal of R. In this section, we
study regular sequences f1 , f2 , . . . , ft ∈ R such that the ideal I = ( f1 , f2 , . . . , ft) is
stable under the action ofSn and I/mI contains a copy of the standard representation.
As shown in [10,Proposition 2.5], there are two possibilities: I/mI ≅ S(n−1,1) or I/mI ≅
S(n−1,1) ⊕ S(n), where S(n) is the one-dimensional trivial representation.

3.1 Regular Sequences of Type S(n−1,1)

Here we prove the existence of regular sequences of type S(n−1,1) in every positive
degree.

LetVd ⊂ An denote the aõne variety cut out by the xd1 −xdn , xd2 −xdn , . . . , xdn−1−xdn ,
and xn = 1, i.e., Vd = {(z1 , z2 , . . . , zn) ∈ An ∶ zdi = 1, zn = 1}.

_eorem 3.1 Let d be a positive integer. _e polynomials

xd1 − xdn , xd2 − xdn , . . . , xdn−1 − xdn
form a regular sequence of type S(n−1,1).

Proof _e polynomials in question form a basis of the Sn-stable complement
of the one-dimensional invariant subspace spanned by xd1 + xd2 + ⋅ ⋅ ⋅ + xdn inside
⟨xd1 , xd2 , . . . , xdn ⟩. It is clear from the comments at the beginning of the section that
this complement is isomorphic to S(n−1,1).

To prove xd1 − xdn , xd2 − xdn , . . . , xdn−1 − xdn form a regular sequence, we extend it by
adding the polynomial xdn . It is clear that the two ideals

(xd1 − xdn , xd2 − xdn , . . . , xdn−1 − xdn , xdn) and (xd1 , xd2 , . . . , xdn−1 , xdn)

are equal and that the latter is generated by a regular sequence. _us the extended
sequence, and so also the original, is a regular sequence.

3.2 Regular Sequences of Type S(n−1,1) ⊕ S(n)

Let I ⊆ R be an Sn-stable homogeneous ideal such that I/mI ≅ S(n−1,1) ⊕ S(n). _en
I admits a generating set g1 , g2 , . . . , gn−1 , f such that
● deg(g i) = d for i = 1, 2, . . . , n − 1 and the vector space spanned by g1 , g2 , . . . , gn−1

is a representation ofSn isomorphic to S(n−1,1);
● deg( f ) = a and f ∈ RSn .
We are interested in understanding the possible choices of degrees d and a for which
such an ideal I can be generated by a regular sequence. For simplicity, we restrict to
the case g i = xdi − xdn for i = 1, 2, . . . , n − 1. _is is the instance of regular sequence
described in _eorem 3.1. _erefore our main question becomes: when can a sym-
metric polynomial f of degree a be chosen so that xd1 −xdn , xd2 −xdn , . . . , xdn−1−xdn , f is a
regular sequence? Such a regular sequence containing n elements is always maximal.

Deûnition 3.2 Let n, d , a be three positive integers. We say the triple (n, d , a) is
good if there exists f ∈ RSn

a such that xd1 − xdn , xd2 − xdn , . . . , xdn−1 − xdn , f is a regular
sequence. Otherwise (n, d , a) is called bad.
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Remark 3.3 Clearly, if (n, d , a) is good, then there exists a regular sequence of type
S(n−1,1) ⊕ S(n) with S(n−1,1) in degree d and S(n) in degree a. However, the converse
is not true in general. For example, the triple (5, 6, 1) is bad because x6

1 − x6
5 , x6

2 − x6
5 ,

x6
3 − x6

5 , x6
4 − x6

5 , e1 is not a regular sequence. However, if we set

g i =
5

∑
j=2
e j(x6− j

i − x6− j
5 ) for i = 1, 2, 3, 4,

then g1 , g2 , g3 , g4 , e1 is a regular sequence. _e assertions about these sequences of
polynomials can be veriûed computationally using the so�wareMacaulay2 [13], and
the code provided in Appendix A.

Observe that, if f ∈ R is homogeneous, then xd1 − xdn , xd2 − xdn , . . . , xdn−1 − xdn , f is
a regular sequence if and only if f does not vanish on Vd .
For apositive integer a, the power sumPa = xa1 +xa2+⋅ ⋅ ⋅+xan is ahomogeneous sym-

metric polynomial of degree a. Furthermore, given a partition λ = (λ1 , λ2 , . . . , λr)
of a, we write Pλ for the symmetric polynomial∏r

t=1 Pλ t of degree a. _e set of Pλ
where λ = (λ1 , λ2 , . . . , λr) is a partition of a whose parts λ i do not exceed n is a basis
of RSn

a as a complex vector space [20, Proposition 7.8.2]).

Lemma 3.4 _e triple (n, d , a) is bad if and only if there exists a point Q ∈ Vd such
that Pλ(Q) = 0 for every partition λ ⊢ a.

Proof If such a point Q exists, then it is clear that (n, d , a) is bad. Suppose then that
(n, d , a) is bad. Enumerate the partitions λ ⊢ a whose parts do not exceed n, and de-
note them by λ(1) , λ(2) , . . . , λ(t). Introduce the homogeneous symmetric polynomial
f ∶= ∑t

i=1 π iPλ(i) of degree a. Since (n, d , a) is bad, there exists Q ∈ Vd such that

0 = f (Q) =
t

∑
i=1

π iPλ(i)(Q).

Since the coordinates of Q are algebraic numbers, Pλ(i)(Q) is algebraic for all i =
1, 2, . . . , t. _en f (Q) = 0 implies Pλ(i)(Q) = 0 for all i = 1, 2, . . . , t, because π is
transcendental. _e result follows.

_e following is an immediate consequence of Lemma 3.4.

Corollary 3.5 _e triple (n, d , a) is bad if and only if there exists a point Q ∈ Vd
such that f (Q) = 0 for every f ∈ RSn

a .

Lemma 3.4 suggests it might be useful to understand the vanishing of power sums
at roots of unity. _e following result is due to Lam and Leung [15,_eorem 5.2].

_eorem 3.6 Let d be a positive integer and let Γ(d) denote the numerical semi-group
generated by the prime divisors of d. _en there exist d-th roots of unity z1 , z2 , . . . , zn
(not necessarily distinct) such that z1 + z2 + ⋅ ⋅ ⋅ + zn = 0 if and only if n ∈ Γ(d).

Note that Γ(1) ∶= {0} here.
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Corollary 3.7 Let a, d be positive integers and let g ∶= gcd(a, d). _en there exist
d-th roots of unity z1 , z2 , . . . , zn (not necessarily distinct) such thatPa(z1 , z2 , . . . , zn) =
0 if and only if n ∈ Γ(d/g).

Proof Assume there exist d-th roots of unity z1 , z2 , . . . , zn such that

Pa(z1 , z2 , . . . , zn) = 0.

Note that zai is a (d/g)-th root of unity. _en za1 +za2 +⋅ ⋅ ⋅+zan = Pa(z1 , z2 , . . . , zn) = 0
implies n ∈ Γ(d/g) by _eorem 3.6.
Conversely, if n ∈ Γ(d/g), then _eorem 3.6 implies the existence of (d/g)-th

roots of unity w1 ,w2 , . . . ,wn such that w1 + w2 + ⋅ ⋅ ⋅ + wn = 0. Since g = gcd(a, d),
we have 1 = gcd(a, d/g). By Bezout’s identity [16, Proposition 5.1], there exist integers
u, v such that au + (d/g)v = 1. Note that z i = wu

i is a d-th root of unity. _erefore we
get

0 =
n

∑
i=1

w i =
n

∑
i=1

wau+(d/g)vi =
n

∑
i=1

(wu
i )
a(wd/gi )v = Pa(z1 , z2 , . . . , zn).

Remark 3.8 Let ζd be a primitive d-th root of unity. _e Galois group of the cy-
clotomic ûeld Q(ζd) is isomorphic to (Z/dZ)×, the group of units modulo d. An
element of (Z/dZ)× is represented by the class of an integer s coprime to d. Let γs
denote the corresponding Galois automorphism ofQ(ζd), which is deûned by ûxing
Q and sending ζd to ζ sd . If z is a d-th root of unity, then z is a power of ζd , therefore
γs(z) = zs .

Now let Q = (z1 , z2 , . . . , zn) ∈ Vd . We have that

Ps(Q) = zs1 + zs2 + ⋅ ⋅ ⋅ + zsn = γs(z1) + γs(z2) + ⋅ ⋅ ⋅ + γs(zn)
= γs(z1 + z2 + ⋅ ⋅ ⋅ + zn) = γs(P1(Q)).

_erefore Ps(Q) = 0 if and only if P1(Q) = 0.

3.3 Numerical Criteria for Good and Bad Triples

_roughout the rest of this section (n, d , a) is intended to be a triple of positive in-
tegers. We present criteria to decide whether (n, d , a) is good or bad in the sense of
Deûnition 3.2.

Proposition 3.9 Let g ∶= gcd(a, d). If n ∉ Γ(d/g), then (n, d , a) is good. In partic-
ular, if n ∉ Γ(d), then (n, d , a) is good for every a.

Proof If n ∉ Γ(d/g), then Pa does not vanish on Vd by Corollary 3.7, thus (n, d , a)
is good. _e second assertion follows from the fact that Γ(d/g) ⊆ Γ(d) for any divisor
g of d.

Remark 3.10 _e proof of Proposition 3.9 uses a power sum as the symmetric poly-
nomial of degree a. It seems thatwemight be able to use_eorem 3.6 to handlemore
cases by using some other symmetric polynomial f . While it is possible that n ∈ Γ(d)
and f ∈ RSn is homogeneous having m terms with m ∉ Γ(d), this only happens in
two cases.
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_e ûrst case is f = en , the n-th elementary symmetric polynomial,which consists
of a single term and does not vanish on Vd . In particular, this shows that if n divides
a, then (n, d , a) is good.

_e second case is essentially when d is a power of a prime. See Corollaries 3.20
and 3.21 below. In fact, suppose two distinct primes p, q divide d, n ⩾ p+ q, n ∈ Γ(d)
and let f be a non-constant symmetric polynomial having m terms. _en n ⩾ p + q
implies that (n

2) ⩾ (p − 1)(q − 1). _us, if m ⩾ (n
2), then m ⩾ (p − 1)(q − 1), which

implies m ∈ Γ(pq) [18,_eorem. 2.1.1]. Since Γ(pq) ⊆ Γ(d), we deduce that m ⩾ (n
2)

implies m ∈ Γ(d). _erefore, if m ∉ Γ(d), then m < (n
2). Since we are assuming

n ∈ Γ(d), this implies that f = λen for some scalar λ.

Proposition 3.11 Deûne S ∶= {q ∶ q ∣ d , n ∉ Γ(d/q)}. If a lies in the numerical
semi-group generated by S, then the triple (n, d , a) is good.

Proof By the hypothesis, we can write a = ∑r
i=1 λ i , where λ i ∈ S for i = 1, 2, . . . , r

and λ1 ⩾ λ2 ⩾ ⋅ ⋅ ⋅ ⩾ λr . _en λ = (λ1 , λ2 , . . . , λr) is a partition of a and Pλ is a
symmetric polynomial of degree a.

Since λ i ∈ S, we have that λ i ∣ d, hence gcd(λ i , d) = λ i . Moreover, n ∉ Γ(d/λ i).
_erefore Corollary 3.7 implies that Pλ i does not vanish on Vd . Since this holds for
all indices i = 1, 2, . . . , r, we conclude that Pλ(Q) does not vanish on Vd . _erefore
(n, d , a) is good.

Remark 3.12 Note that d ∈ S always. Furthermore, if d = pb1
1 pb22 ⋅ ⋅ ⋅ pb tt is the prime

factorization of d, then the set {d/pb ii ∶ p i ∤ n} is a subset of S.

Remark 3.13 Proposition 3.11 remains true if we use S ∪ {n} instead of S. In fact,
if a lies in the numerical semi-group generated by S ∪ n, then a = b + cn, where
b, c are positive integers and b lies in the numerical semi-group generated by S. By
the proof of Proposition 3.11, there exists λ ⊢ b such that Pλ does not vanish on Vd .
At the same time, the elementary symmetric polynomial en does not vanish on Vd .
_erefore Pλecn is a homogeneous symmetric polynomial of degree a that does not
vanish on Vd .

Proposition 3.14 Suppose that n ∈ Γ(d) and a ∉ Γ(d). _en (n, d , a) is bad.

Proof Since n ∈ Γ(d), there exists Q ∈ Vd such that P1(Q) = 0 by _eorem 3.6. If
λ = (λ1 , λ2 , . . . , λr) ⊢ a, then some part λt is coprime to d since a ∉ Γ(d). Hence,
by Remark 3.8, we have Pλ t(Q) = 0 and thus Pλ(Q) = 0. _e reasoning holds for all
λ ⊢ a. _erefore (n, d , a) is bad by Lemma 3.4.

Proposition 3.15 Let g ∶= gcd(d , n). If g ∤ a, then (n, d , a) is bad.

Proof Let ω be a primitive g-th root of unity and deûne Q = (ω,ω2 , . . . ,ωn) ∈ Vd .
Observe that ω i = ω i+g j for all i , j ∈ Z. Hence, using the auxiliary variable y, we have

n
∏
i=1

(y − ω i) = [
g
∏
i=1

(y − ω i)]
n/g

= (yg − 1)n/g .
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On the other hand ∏n
i=1(y − ω i) = ∑

n
j=0(−1)

je j(Q)yn− j . By comparing the two
expressions, we deduce that e j(Q) = 0 whenever g ∤ j. _us the only symmetric
polynomials potentially not vanishing at Q are the ones in the subring C[e j ∶ g ∣ j].
Note how the degree of any element in this subring is divisible g. Since g ∤ a, (n, d , a)
is bad by Corollary 3.5.

Proposition 3.16 Let g ∶= gcd(d , n) and assume that a ⩾ (n−g)(d−g)
g . _en (n, d , a)

is bad if and only if g ∤ a.

Proof If g ∤ a, then the triple is bad by Proposition 3.15.
Assume g ∣ a and let a′ = a/g, n′ = n/g, and d′ = d/g. _e inequality in the

assumption gives a′ = a
g ⩾

n−g
g

d−g
g = (n′−1)(d′−1). By [18,_eorem 2.1.1], a′ belongs

to the numerical semi-group generated by d′ and n′. _uswe canwrite a′ = sd′+ tn′,
for some non-negative integers s and t. Multiplying by g, we obtain a = sd + tn. _is
equality implies that the homogeneous symmetric polynomial f ∶= Ps

d e
t
n has degree

a. For all Q ∈ Vd , we have Pd(Q) = n /= 0. Moreover, en does not vanish on Vd .
_erefore f does not vanish on Vd and the triple (n, d , a) is good.

3.4 Triples and Prime Factors

Here we analyze the property of a triple (n, d , a) being good or bad in relation to
certain prime factors of n, d, and a. We begin by developing some technical results.

Let z1 , z2 , . . . , zn be d-th rootsofunity and consider thepointQ = (z1 , z2 , . . . , zn) ∈
An . For an integer v, we say that Q is v-symmetric if, given a primitive v-th root of
unity є, there exists τ ∈ Sn such that (єz1 , єz2 , . . . , єzn) = (zτ(1) , zτ(2) , . . . , zτ(n)). In
other words, Q is v-symmetric if rotating each of the complex coordinates z i by 2π/v
radians produces a point in the Sn-orbit of Q. Note that v ∣ d because 1 = zdτ(1) =
єdzd1 = єd and є is primitive.

Lemma 3.17 _e point Q ∈ Vd ⊂ An is v-symmetric if and only if v ∣ n and e j(Q) = 0,
for all j such that v ∤ j.

Proof First suppose that Q is v-symmetric. _e coordinates of Q split into orbits
under the cyclic group of order v acting on the complex plane by rotation. Since
Q ∈ Vd , we have z i /= 0 for all i. _erefore all of the above orbits have cardinality v
and v ∣ n.

Since Q is p-symmetric, there is a primitive v-th root of unity є such that, up to
reordering, we may write z jv+i = є iω j for 1 ⩽ i ⩽ v, 1 ⩽ j ⩽ n/v, and for some d-th
roots of unity ω j . Using the auxiliary variable y, we have

n

∑
j=1

(−1) je j(Q)y j =
n
∏
i=1

(y − z i) =
n/v
∏
j=1

v
∏
i=1

(y − є iω j) =
n/v
∏
j=1

ωv
j

v
∏
i=1

(y/ω j − є i)

=
n/v
∏
j=1

ωv
j ((y/ω j)

v − 1) =
n/v
∏
j=1

(yv − ωv
j ).

_us e j(Q) = 0 whenever v ∤ j.
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Conversely, suppose that v ∣ n, Q ∈ Vd , and e j(Q) = 0 whenever j ∤ v. We have
∏

n
i=1(y − z i) = ∑

n
j=1(−1)

je j(Q)y j = f (yv), where f is a polynomial in one variable.
At the same time∏n

i=1(y−єz i) = єn∏n
i=1(y/є−z i) = єn f ((y/є)v) = f (yv). _erefore,

comparing factors, we deduce that Q is symmetric.

Lemma 3.18 Suppose Q = (z1 , z2 , . . . , zn) ∈ Vd is vm-symmetric and

(zv
m

1 , zv
m

2 , . . . , zv
m

n )

is v-symmetric. _en Q is vm+1-symmetric.

Proof Proceeding as in the proof of Lemma 3.17, Q being vm-symmetric implies the
existence of a primitive (vm)-th root of unity є such that, up to reordering, we may
write z jvm+i = є iω j for 1 ⩽ i ⩽ vm , 1 ⩽ j ⩽ n/vm , and for some d-th roots of unity ω j .
Using the auxiliary variable y, we have

(3.1)
n
∏
i=1

(y − zv
m

i ) =
n/vm

∏
j=1

vm

∏
i=1

(y − ωvm
j ) =

n/vm

∏
j=1

(y − ωvm
j )v

m
= (

n/vm

∏
j=1

(y − ωvm
j ))v

m
.

Since (zv
m

1 , zv
m

2 , . . . , zv
m

n ) is v-symmetric, Lemma 3.17 implies

(3.2)
n
∏
i=1

(y − zv
m

i ) = f (yv),

for some polynomial f in one variable. _e only way to reconcile equations (3.1) and
(3.2) is if∏n/vm

j=1 (y − ωvm
j ) = g(yv), for some polynomial g in one variable. _erefore

wemust have
n
∏
i=1

(y − z i) =
n/vm

∏
j=1

vm

∏
i=1

(y − z jvm+i) =
n/vm

∏
j=1

vm

∏
i=1

(y − є iω j)

=
n/vm

∏
j=1

(yv
m
− ωvm

j ) = g((yv
m
)v) = g(yv

m+1
).

Using Lemma 3.17 again, we conclude that Q is vm+1-symmetric.

Proposition 3.19 Let p be prime and suppose that all points Q ∈ Vd ⊆ An with
P1(Q) = 0 are p-symmetric. Let g ∶= gcd(d , n) and assume p ∣ g. _en (n, d , a) is
bad if and only if g ∤ a.

Proof If g ∤ a, then (n, d , a) is bad by Proposition 3.15.
We prove the other implication by contradiction. So suppose that g ∣ a. Let n =

prn′, d = psd′, and a = pta′, where gcd(p, n′) = gcd(p, d′) = gcd(p, a′) = 1. Set
k = min{r, s}. Since pk ∣ g, the condition g ∣ a implies pk ∣ a and therefore k ⩽ t.

_e hypothesis p ∣ g implies s ⩾ 1; hence p ∈ Γ(d). At the same time, p ∣ g also
implies r ⩾ 1; hence n ∈ Γ(d). _us, by _eorem 3.6, there exists Q ∈ Vd ⊆ An such
that P1(Q) = 0. By the hypothesis, Q is p-symmetric. However, Q is not pk+1-sym-
metric because either pk+1 ∤ n or pk+1 ∤ d. _erefore, there is an integer m, with
1 ⩽ m ⩽ k, such that Q is pm-symmetric, but not pm+1-symmetric.
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Now suppose that Ppm(Q) = 0. _en we would have

P1(zpm

1 , zpm

2 , . . . , zpm

n ) = Ppm(Q) = 0.

Our hypothesiswould imply that (zpm

1 , zpm

2 , . . . , zpm

n ) is p-symmetric. However, Lem-
ma 3.18 would give that Q is pm+1-symmetric, contradicting our choice of m. _ere-
fore Ppm(Q) /= 0. _us the homogeneous polynomial (Ppm)a

′ pt−m
has degree a and

does not vanish at Q. We conclude that (n, d , a) is good by Corollary 3.5.

In [15], Lam and Leung consider sequences z1 , z2 , . . . , zn with each z i a d-th root of
unity and whose sum is 0, that is, points Q = (z1 , z2 , . . . , zn) ∈ Vd such that P1(Q) =
0. _ey showed that if d = pr is a prime power, then Q must be p-symmetric [15,
Corollary 3.4]. _is yields the following corollary of Proposition 3.19.

Corollary 3.20 Suppose d = ps for some prime p and positive integer s. Let g ∶=
gcd(d , n). _en (n, d , a) is bad if and only if g ∤ a.

Proof If p ∣ g, then the result follows from [15, Corollary 3.4] and Proposition 3.19.
Assume p ∤ g. In this case, g = 1 ∣ a, so we must show that (n, d , a) is good.

Note that p ∤ g implies p ∤ n. Hence n ∉ Γ(d) = ⟨p⟩. _erefore (n, d , a) is good by
Proposition 3.9.

Lam and Leung also showed that if (z1 , z2 , . . . , zn) is not p-symmetric for all
primes p dividing d, then n ⩾ p1(p2 − 1) + p3 − p2, where p1 < p2 < p3 are the three
smallest primes dividing d [15, _eorem. 4.8]. _is yields the following corollary of
Proposition 3.19.

Corollary 3.21 Suppose that at least two distinct primes divide d and that n < p+ q,
where p and q are the smallest two distinct primes dividing d. Let g ∶= gcd(d , n). _en
(n, d , a) is bad if and only if g ∤ a.

Proof Let d = ps∏
m
i=1 q

s i
i be the prime factorization of d, where p < q1 < q2 < ⋅ ⋅ ⋅ <

qm . Suppose that Q = (z1 , z2 , . . . , zn) ∈ Vd is such that P1(Q) = 0. Since

p(q1 − 1) + q2 − q1 ⩾ 2(q1 − 1) + q2 − q1 = (q2 − 1) + q1 > p + q1 > n,

[15, _eorem. 4.8] implies that every non-empty minimal subset I ⊂ {1, 2, . . . , n}
such that ∑i∈I z i = 0 corresponds to a v-symmetric point (z i ∶ i ∈ I), where v is a
prime dividing d. Moreover, v divides the cardinality of I. Clearly, we can partition
{1, 2, . . . , n} into a disjoint union I1 ⊔ I2 ⊔ ⋅ ⋅ ⋅ ⊔ It of such minimal subsets. _us
n = #I1 + #I2 + ⋅ ⋅ ⋅ + #It . Since the cardinality of each I j is either p or some q i , the
hypothesis n < p + q1 implies we must have either t = 1 and n = #I1 = q i for some i,
or else #I j = p for all j and n = tp.

_us, there are two possibilities: either n = q i for some q i or else n = pt. In the
former case, q i ∣ g and every Q ∈ Vd with P1(Q) = 0 is q i-symmetric. In the latter
case, p ∣ g and every Q ∈ Vd with P1(Q) = 0 is p-symmetric. _us the hypotheses of
Proposition 3.19 are satisûed (either with the prime q i or with p).
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3.5 Generating Good and Bad Triples

We illustrate how to obtain more good and bad triples from the ones already at our
disposal.

Proposition 3.22 Let k be a positive integer.
(i) If (n, d , a) is bad, then (n, kd , a) is also bad.
(ii) If (n, d , a) is bad, then (kn, d , a) is also bad.
(iii) If (n, d , a) is bad, then (kn, kd , ka) is also bad.

Proof Suppose that (n, d , a) is bad. By Corollary 3.5, there is a point

Q = (z1 , z2 , . . . , zn) ∈ Vd ⊂ An

such that f (Q) = 0 for all f ∈ RSn
a . Assertion (i) follows immediately sinceVd ⊂ Vkd .

For the second assertion, choose a point Q = (z1 , z2 , . . . , zn) ∈ Vd . Deûne the
point Q′ = (z′1 , z′2 , . . . , z′kn) ∈ Vkd ⊂ Akn by z′i+n( j−1) ∶= z i for 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ k.
Assume, by way of contradiction, that there exists f ′ ∈ C[x1 , x2 , . . . , xkn]

Skn
a such

that f ′(Q′) /= 0. _e polynomials Pλ where λ is a partition of a whose parts do not
exceed kn form a basis of C[x1 , x2 , . . . , xkn]

Skn
a . _en f ′(Q′) /= 0 implies that there

exists a partition λ = (λ1 , λ2 , . . . , λr) ⊢ a withPλ(Q′) /= 0. HencePλ t(Q′) /= 0 for all
t = 1, 2, . . . , r. SincePλ t(Q′) = kzλ t

1 +kzλ t
2 +⋅ ⋅ ⋅+kzλ t

n = kPλ t(Q),we havePλ t(Q) /= 0
for all t = 1, 2, . . . , r, and thereforePλ(Q) /= 0. BecauseQ ∈ Vd is arbitrary, Lemma 3.4
shows (n, d , a) is not bad. _is contradicts the assumption, thus proving (ii).

Now we prove part (iii). By contradiction, assume (kn, kd , ka) is not bad. Given
Q ∈ Vd , we will construct f ∈ RSn

a such that f (Q) /= 0, which will prove (n, d , a)
is not bad. Consider the primitive d-th root of unity ζ ∶= e2πi/d . We have Q =

(ζb1 , ζb2 , . . . , ζbn) for some positive integers b1 , b2 , . . . , bn . Letω ∶= e2πi/(kd); observe
that ω is a (kd)-th root of unity and ωk = ζ . Deûne the point Q′ = (z′1 , z′2 , . . . , z′kn) ∈
Vkd ⊂ Akn by z′k( j−1)+i ∶= ωb j+id for 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ n. Since we have
assumed that (kn, kd , ka) is not bad, by Lemma 3.4, there exists a partition λ =
(λ1 , λ2 , . . . , λr) ⊢ ka such that Pλ(Q′) /= 0. In particular, Pλ t(Q′) /= 0 for all
t = 1, 2, . . . , r.

Using the auxiliary variable y, we can write

kn
∏
t=1

(y − z′t) =
n
∏
j=1

k
∏
i=1

(y − ωb j+id) =
n
∏
j=1

k
∏
i=1

ωb j(y/ωb j − ω id)

=
n
∏
j=1

ωkb j
k
∏
i=1

(y/ωb j − (ωd)i).

Since ωd is a primitive k-th root of unity, the k elements (ωd)1 , (ωd)2 , . . . , (ωd)k are
all the k-th roots of unity. _erefore we get ∏k

i=1(y/ωb j − (ωd)i) = (y/ωb j)k − 1.
Combining the two previous equations, we obtain

kn
∏
t=1

(y − z′t) =
n
∏
j=1

ωkb j[(y/ωb j)k − 1] =
n
∏
j=1

(yk − ζb j).
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On the other hand, we have ∏kn
t=1(y − z′t) = ∑

kn
j=0(−1)

je j(Q′)ykn− j . By comparing
these expressions, we deduce that e j(Q′) = 0 whenever k ∤ j. _is implies that every
homogeneous polynomial inC[x1 , x2 , . . . , xkn]

Skn whose degree is not divisible by k
vanishes at Q′.

_us the above integers λ1 , λ2 , . . . , λr are all divisible by k, and we set ct ∶= λt/k
for all i = 1, 2, . . . , r. We have

Pλ t(Q
′) = Pkc t(Q

′) =
kn

∑
s=1

(z′s)kc t =
n

∑
j=1

k

∑
i=1

(ωb j+id)kc t =
k

∑
i=1

n

∑
j=1

(ωk)(b j+id)c t

=
k

∑
i=1

n

∑
j=1

ζ(b j+id)c t =
k

∑
i=1

n

∑
j=1

(ζb j)c t =
k

∑
i=1

Pc t(Q) = kPc t(Q).

We deduce that Pc t(Q) /= 0 for all i = 1, 2, . . . , r. Deûne f ∶= ∏r
t=1 Pλ t/k ∈ R and

observe that f is an element of RSn
a with f (Q) /= 0. _is concludes the proof.

As the following example illustrates, (n, d , a) being bad does not imply that any
one of (n, d , ka), (n, kd , ka), or (kn, d , ka) is bad.

Example 3.23 Consider (n, d , a) = (8, 15, 4). Since 8 = 5 + 3 ∈ Γ(d) = Γ(15) and
4 ∉ Γ(d), we see that (8, 15, 4) is bad by Proposition 3.14.

Let k = 2. _e triples (n, d , ka) = (8, 15, 8) and (n, kd , ka) = (8, 30, 8) are good
because e8 clearly does not vanish on V15 nor on V30.

Now consider the triple (kn, d , ka) = (16, 15, 8). Observe that

S = {q ∶ q ∣ 15, 16 ∉ Γ(15/q)} = {3, 5, 15},

hence the numerical semi-group ⟨3, 5⟩ generated by S contains ka = 8. _erefore,
(16, 15, 8) is good by Proposition 3.11.

Remark 3.24 Consider the triple (n, d , a) and let g ∶= gcd(n, d). By Proposi-
tion 3.15, (n, d , a) is bad if g ∤ a. _us we suppose that g ∣ a. By Proposition 3.22
(iii), if (n, d , a) is good, then (n/g , d/g , a/g) is also good.

Proposition 3.25 Let k be a positive integer.
(i) If (n, d , a) is good, then (n, d , ka) is also good.
(ii) If (n, d , a) is good, then (n, kd , ka) is also good.

Proof Suppose that (n, d , a) is good. _is implies that there exists f ∈ RSn
a that

does not vanish on Vd . Assertion (i) now follows since f k ∈ RSn
ka also does not vanish

on Vd .
To prove (ii), deûne

f ′(x1 , x2 , . . . , xn) ∶= f (xk
1 , xk

2 , . . . , xk
n) ∈ RSn

ka .

For every point Q′ = (z1 , z2 , . . . , zn) ∈ Vkd , the point Q = (zk
1 , zk

2 , . . . , zk
n) lies in Vd ;

moreover, f ′(Q′) = f (Q) /= 0. _us (n, kd , ka) is good.

As the following example illustrates, (n, d , a) being good does not imply that any
one of (kn, d , a), (n, kd , a), (kn, kd , a), (kn, d , ka), or (kn, kd , ka) is good.
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Example 3.26 Consider (n, d , a) = (4, 15, 1). Since n = 4 ∉ Γ(d) = Γ(15) = ⟨3, 5⟩,
we see that (4, 15, 1) is good by Proposition 3.11.

Now consider k = 2 and (kn, d , a) = (8, 15, 1). Since 8 ∈ Γ(15) and 1 ∉ Γ(15), we
see that (8, 15, 1) is bad by Proposition 3.14. _e triple (n, kd , a) = (4, 30, 1) is bad for
similar reasons. _en (kn, kd , a) = (8, 30, 1) is bad as well by Proposition 3.22 (ii).

We claim the triple (kn, d , ka) = (8, 15, 2) is also bad. Using the fact that (8, 15, 1)
is bad, we deduce that there exists Q ∈ V15 such that P1(Q) = 0. Since 2 and 15 are
coprime,Remark 3.8 impliesP2(Q) = 0. Given thatP2 andP(1,1) = P2

1 form a basis of
the symmetric polynomials of degree 2, their simultaneous vanishing at Q implies the
claim by Lemma 3.4. Finally, the claim just proved, togetherwith Proposition 3.22 (i),
imply that (kn, kd , ka) = (8, 30, 2) is bad.

4 Regular Sequences of Type S(2,2) ⊕ S(4) ⊕ S(4)

_roughout this section we ûx n = 4, so R = C[x1 , x2 , x3 , x4].
As proved in [10, Proposition 2.5], there exist regular sequences g1 , g2 , f1 , f2 in R

such that g1 , g2 form a basis of a graded representation isomorphic to S(2,2) and f1 , f2
are symmetric polynomials. If I ⊂ R is the ideal generated by g1 , g2 , f1 , f2, then I/mI
is isomorphic to S(2,2) ⊕ S(4) ⊕ S(4). Setting a ∶= deg(g1) = deg(g2), c ∶= deg( f1),
and d ∶= deg( f2), we seek the possible tuples (a, a, c, d) corresponding to regular
sequences g1 , g2 , f1 , f2 of type S(2,2) ⊕ S(4) ⊕ S(4).

4.1 Sequences in Low Degree

We recall some facts of invariant theory; more details can be found in [2, Chapter 3,4].
_ere is an isomorphism R ≅ RS4 ⊗C R/(e1 , e2 , e3 , e4) of gradedS4-representations.
_e symmetric group acts trivially on RS4 . On the other hand, the coinvariant alge-
bra R/(e1 , e2 , e3 , e4) is isomorphic to the regular representation of S4. We worked
out the graded character of R/(e1 , e2 , e3 , e4) in [10, Example 3.1]. In particular,
R/(e1 , e2 , e3 , e4) contains two copies of the irreducible representation S(2,2), one in
degree 2 and one in degree 4.

Let us ûnd an explicit description of these two representations. Specht’s original
construction shows that the polynomials

(4.1) (x1 − x2)(x3 − x4), (x1 − x3)(x2 − x4)

span a copy of S(2,2) inside the degree 2 component of R [9, §7.4, Example 17]. Now
observe that the polynomials

(4.2) (x2
1 − x2

2)(x2
3 − x2

4), (x2
1 − x2

3)(x2
2 − x2

4)

behave in the same way under the action ofS4. _erefore, they span a copy of S(2,2)
inside the degree 4 component of R. Note also that the polynomials in (4.1) and (4.2)
do not belong to the ideal (e1 , e2 , e3 , e4). _erefore, their residue classes span the
desired copies of S(2,2) inside R/(e1 , e2 , e3 , e4).
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Using the isomorphism R ≅ RS4 ⊗C R/(e1 , e2 , e3 , e4) together with our construc-
tion above, we can establish the following fundamental fact: any copy of S(2,2) con-
tained inside the degree a component of R is spanned by

g1 = h(x1 − x2)(x3 − x4) + h′(x2
1 − x2

2)(x2
3 − x2

4),

g2 = h(x1 − x3)(x2 − x4) + h′(x2
1 − x2

3)(x2
2 − x2

4)

(4.3)

for some symmetric polynomials h of degree a − 2 and h′ of degree a − 4.
_us, when searching for degree tuples (a, a, c, d) corresponding to regular se-

quences g1 , g2 , f1 , f2 of type S(2,2) ⊕ S(4) ⊕ S(4), we can assume that g1 , g2 have the
form given in equation (4.3).

We consider the cases where a ⩽ 4 ûrst. Clearly, wemust have a ⩾ 2.

Proposition 4.1 Let a = 2 or 4. A regular sequence of type S(2,2) ⊕ S(4) ⊕ S(4) with
degree tuple (a, a, c, d) exists if and only if cd ⩾ 2. If a = 3, then no such sequence
exists.

Proof Let a = 2. We form polynomials g1 , g2 as in equation (4.3). By degree consid-
erations, h is a unit and h′ = 0. _erefore, wemay take

g1 = (x1 − x2)(x3 − x4), g2 = (x1 − x3)(x2 − x4).

Now we need symmetric polynomials f1 , f2 such that g1 , g2 , f1 , f2 is a regular se-
quence. Note that f1 , f2 cannot both be linear, otherwise they would be scalar multi-
ples of e1. However, ifwe assume that d = deg( f2) ⩾ 2, thenwe canwrite d = 2p+ 3q,
where p, q are non-negative integers, and set f1 ∶= ec1 , f2 ∶= e p2 e

q
3 . _e sequence

g1 , g2 , f1 , f2 is regular with degree tuple (2, 2, c, d).
Now let a = 4. We need h′ to be a unit. In fact, we can take h′ = 1 and h = e2; this

gives

g1 = e2(x1 − x2)(x3 − x4) + (x2
1 − x2

2)(x2
3 − x2

4),

g2 = e2(x1 − x3)(x2 − x4) + (x2
1 − x2

3)(x2
2 − x2

4).

Again f1 , f2 cannot both be linear. In fact, choosing the same f1 , f2 as before gives a
regular sequence g1 , g2 , f1 , f2 with degree tuple (4, 4, c, d) for d ⩾ 2.
Finally let a = 3. In this case, h′ = 0 while h is a scalar multiple of e1. _us g1 , g2

have a common factor and do not form a regular sequence.

4.2 Sequences With a ⩾ 5

Here we obtain general results about regular sequences g1 , g2 , f1 , f2 of type S(2,2) ⊕
S(4) ⊕ S(4) with degree tuple (a, a, c, d) and a ⩾ 5. We still refer to the form of g1 , g2
given in equation (4.3).

Lemma 4.2 Let

h1 ∶= h + h′(x1 + x2)(x3 + x4), h2 ∶= h + h′(x1 + x3)(x2 + x4),

so that g1 = (x1 − x2)(x3 − x4)h1 and g2 = (x1 − x3)(x2 − x4)h2. _e sequence
g1 , g2 , f1 , f2 is regular if and only if the sequences

573

https://doi.org/10.4153/CJM-2017-035-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-035-3


F. Galetto, A. V. Geramita, and D. L. Wehlau

(i) h, h′ , f1 , f2,
(ii) (x1 − x2)(x3 − x4), (x1 − x3)(x2 − x4), f1 , f2,
(iii) (x1 − x2)(x3 − x4), h2 , f1 , f2
are regular.

Proof By Lemma 2.9, g1 , g2 , f1 , f2 is regular if and only if

(1) h1 , h2 , f1 , f2,
(2) (x1 − x2)(x3 − x4), (x1 − x3)(x2 − x4), f1 , f2,
(3) (x1 − x2)(x3 − x4), h2 , f1 , f2,
(4) h1 , (x1 − x3)(x2 − x4), f1 , f2
are regular. Note that (2) and (3) are the same as (ii) and iii) above. Moreover, the
transposition (2 3) ∈ S4 permutes (3) and (4), therefore it is enough to assume (3) is
regular. _us the statement of the lemma will follow if we can prove that (i), (ii), and
(iii) are regular if and only if (1), (2), and (3) are regular.

Let us show that if (1) is regular, then (i) is regular. Since we have an equality of
ideals (h1 , h2 , f1 , f2) = (h1 , h2 − h1 , f1 , f2) and (1) is regular, h1 , h2 − h1 , f1 , f2 is also
regular. Notice that

(4.4) h2 − h1 = h′(x1 − x4)(x2 − x3).

_is implies that h1 , h′ , f1 , f2 is regular. We deduce that (i) is regular, because of the
equality (h1 , h′ , f1 , f2) = (h, h′ , f1 , f2).

Now assume that (i) and (iii) are regular and let us prove that (1) is regular. Since (i)
is regular, the equality (h, h′ , f1 , f2) = (h1 , h′ , f1 , f2) implies that h1 , h′ , f1 , f2 is reg-
ular. As previously observed, (iii) being regular implies (3) and (4) are regular. Note
that (34)h1 = h1. _erefore, applying (34) to (4), we obtain the regular sequence
h1 , (x1 − x4)(x2 − x3), f1 , f2. Since both h1 , h′ , f1 , f2 and h1 , (x1 − x4)(x2 − x3), f1 , f2
are regular, we can multiply their second elements to obtain a new regular sequence.
By equation (4.4), this sequence is simply h1 , h2 − h1 , f1 , f2. Finally the ideal equality
(h1 , h2 − h1 , f1 , f2) = (h1 , h2 , f1 , f2) allows us to conclude that (1) is regular.

By Lemma 4.2, a necessary condition for g1 , g2 , f1 , f2 to be a regular sequence of
type S(2,2) ⊕ S(4) ⊕ S(4) and degrees (a, a, c, d) is that (a − 2, a − 4, c, d) is a regular
degree sequence. In fact, we will show this condition is also suõcient when a ⩾ 5.

Proposition 4.3 Let a ⩾ 5. Suppose that (a−2, a−4, c, d) is a regular degree sequence
for n = 4. _en there exists a regular sequence of type S(2,2) ⊕ S(4) ⊕ S(4) and degrees
(a, a, c, d).

Proof First we suppose that a is even. _en both a − 2 and a − 4 are even, and
exactly one of them is divisible by 4. Also (2.2) implies that 3 ∣ (a−2)(a−4)cd. Since
c = d = 1 is impossible by condition (2.2), we can assume without loss of generality
that c ⩾ 2; in particular, we can write c = 2p+ 3q for some non-negative integers p, q.

We claim that the sequence (a − 2, a − 4, c, d) corresponds to (at least) one of the
rows of Table 2. If 3 ∣ cd, then without loss of generality, 3 ∣ c and (a − 2, a − 4, c, d)
corresponds to either row 1 or row 2 according to whether 4 ∣ a − 4 or 4 ∣ a − 2.
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Row Degrees Symmetric Polynomials

a − 2 a − 4 c d h h′ f1 f2

1 4α + 2 4α 3γ d e2α+1
2 eα4 eγ3 ed1

2 4α 4α − 2 3γ d eα4 e2α−1
2 eγ3 ed1

3 12α + 2 12α 2p + 3q d (e32 + e23)e3α−1
4 (e62 + e43 + e34)α e p2 e

q
3 ed1

4 6α + 2, (2 ∤ α) 6α 2p + 3q d e(3α+1)/2
4 (e32 + e23)α e p2 e

q
3 ed1

5 6α, (2 ∤ α) 6α − 2 2p + 3q d (e32 + e23)α e(3α−1)/2
4 e p2 e

q
3 ed1

6 12α 12α − 2 2p + 3q d (e62 + e43 + e34)α (e32 + e23)e3α−2
4 e p2 e

q
3 ed1

Table 2: a even

If 3 ∣ a − 4, then (a − 2, a − 4, c, d) corresponds to either row 3 or row 4 according
to whether 4 ∣ a − 4 or 4 ∣ a − 2.

If 3 ∣ a − 2, then (a − 2, a − 4, c, d) corresponds to either row 5 or row 6 according
to whether 4 ∣ a − 4 or 4 ∣ a − 2.

In each case, Table 2 contains possible choices of polynomials h, h′ , f1 , f2. One can
easily verify that in each case the given choices make h, h′ , f1 , f2 a regular sequence
(see Remark 4.4). _e polynomials g1 , g2 are obtained using equation (4.3). Using
Lemma 4.2, we conclude that in each case, g1 , g2 , f1 , f2 is a regular sequence of type
S(2,2) ⊕ S(4) ⊕ S(4).

Next suppose that a is odd. _en a − 2 and a − 4 are also odd. By (2.2), with-
out loss of generality, we may assume that 2 ∣ c and 4 ∣ d. Also (2.2) implies that
3 ∣ (a − 2)(a − 4)cd. We claim that that the sequence (a − 2, a − 4, c, d) corresponds
to (at least) one of the rows of Table 3. If 3 ∣ a−2, then (a−2, a−4, c, d) corresponds
to row 1. If 3 ∣ a − 4, then (a − 2, a − 4, c, d) corresponds to row 2. If 3 ∣ c, then

Row Degrees Symmetric Polynomials

a − 2 a − 4 c d h h′ f1 f2
1 3α 3α − 2 2γ 4δ eα3 e(3α−3)/2

2 e1 (e21 + e2)γ eδ4
2 3α + 2 3α 2γ 4δ e(3α−1)/2

2 e1 eα3 (e21 + e2)γ eδ4
3 4α + 1 4α − 1 6γ 4δ eα4 e1 e2α−2

2 e3 (e32 + e23)γ (e41 + e4)δ

4 4α − 1 4α − 3 6γ 4δ e2α−2
2 e3 eα−1

4 e1 (e32 + e23)γ (e41 + e4)δ

5 4α + 1 4α − 1 2γ 12δ e2α2 e1 eα−1
4 e3 (e21 + e2)γ (e43 + e34)δ

6 4α − 1 4α − 3 2γ 12δ eα−1
4 e3 e2α−2

2 e1 (e21 + e2)γ (e43 + e34)δ

Table 3: a odd
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(a − 2, a − 4, c, d) corresponds to either row 3 or row 4 according to whether a ≡ 3
(mod 4) or a ≡ 1 (mod 4). If 3 ∣ d, then (a−2, a−4, c, d) corresponds to either row
5 or row 6 according to whether a ≡ 3 (mod 4) or a ≡ 1 (mod 4).

In each case,Table 3 lists apossible choice for thepolynomials h, h′ , f1 , f2. As above
one can easily verify that the given choicesmake h, h′ , f1 , f2 a regular sequence. Again
the polynomials g1 , g2 are obtained using equation (4.3). Using Lemma 4.2, we con-
clude that, in each case, g1 , g2 , f1 , f2 is a regular sequence of type S(2,2) ⊕ S(4) ⊕ S(4).

Remark 4.4 For each line inTable 2 andTable 3, one can prove that the polynomials
h, h′ , f1 , f2 form a regular sequence using Lemma 2.9 and [8, Corollary 17.8 a]. As an
example,we show that the polynomials in row 3 of Table 2, speciûcally (e32 + e23)e3α−1

4 ,
(e62 + e43 + e34)α , e

p
2 e

q
3 , and ed1 , form a regular sequence.

By Lemma 2.9 and [8, Corollary 17.8 a], it is enough to show that the sequences

e32 + e23 , e62 + e43 + e34 , e2 , e1 , e32 + e23 , e62 + e43 + e34 , e3 , e1 ,
e4 , e62 + e43 + e34 , e2 , e1 , e4 , e62 + e43 + e34 , e3 , e1 ,

are regular.
Let us show the ûrst sequence is regular. _e ideal it generates is equal to e23 ,

e43 + e34 , e2 , e1, therefore it suõces to show that these generators form a regular se-
quence. Using [8, Corollary 17.8 a] again, it is enough to prove that e3 , e43 + e34 , e2 , e1
is regular. Because of the ideal equality (e3 , e43 + e34 , e2 , e1) = (e3 , e34 , e2 , e1), we only
need to prove that e3 , e34 , e2 , e1 is regular. _is follows immediately from [8, Corol-
lary 17.8 a] and the fact that the elementary symmetric polynomials form a regular
sequence.

_e other sequences are handled similarly.

In summary, we have the following result.

_eorem 4.5 _ere exists a regular sequence of type S(2,2) ⊕ S(4) ⊕ S(4) and degrees
(a, a, c, d) if and only if
(i) a = 2 or 4 and (c, d) /= (1, 1), or
(ii) a ⩾ 5 and (a − 2, a − 4, c, d) is a regular degree sequence.

A Macaulay2 code

We present here theMacaulay2 code used to produce the example in Remark 3.3.

needsPackage "Depth"
R=QQ[x_1..x_5]
e=apply(5,i->sum(apply(subsets(gens R,i+1),product)))
l=apply(4,i->x_(i+1)^6-x_5^6)
g=apply(4,i->sum(apply(4,j->e_(j+1)*(x_(i+1)^(4-j)-x_5^(4-j)))))
isRegularSequence(l|{e_0})
isRegularSequence(g|{e_0})
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