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Abstract

We show that any pseudo MV-algebra is isomorphic with an interval P(G, u), where G is an ^-group
not necessarily Abelian with a strong unit u. In addition, we prove that the category of unital £-groups
is categorically equivalent with the category of pseudo MV-algebras. Since pseudo MV-algebras are a
non-commutative generalization of MV-algebras, our assertions generalize a famous result of Mundici for
a representation of MV-algebras by Abelian unital ^-groups. Our methods are completely different from
those of Mundici. In addition, we show that any Archimedean pseudo MV-algebra is an MV-algebra.
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1. Introduction

Recently, Georgescu and Iorgulescu [11] introduced pseudo MV-algebras which are a
non-commutative generalization of MV-algebras introduced in 1958 by Chang [4] and
which are a generalization of a two-valued reasoning. A non-commutative general-
ization of reasoning can be found for example in psychological processes: In clinical
medicine on behalf of transplantation of human organs, an experiment was performed
in which the same two questions have been posed to two groups of interviewed peo-
ple: (1) Do you agree to donate your organs for medical transplantation after your
death? (2) Do you agree to accept organs of a donor if you need them? If the order of
questions was changed in the second group, the number of positive answers here was
much higher than in the first group.

According to [11], we say that a pseudo MV-algebra is an algebra (M;©, ~, ~, 0, 1)
of type (2, 1, 1, 0, 0) such that the following axioms hold for all x, v, z € M with an
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428 Anatolij Dvurecenskij [2]

additional binary operation O defined viay Ox = (x~ © y~)~

(Al) x © (y © z) = (x © y) © z;
(A2) x © O = O©JC =x;

(A3) J C © 1 = 1©JC = 1;

(A4) 1~ = 0; I" = 0;
(A5) (x-©y-)~ = (^~©v~)-;
(A6) x®x~~Oy=y®y~Ox=xOy-®y=yOx~®x;
(A7) xO(x-®y) = (x®y~)Oy,
(A8) (*- )~=*.

For example, if G is an £-group (not necessarily Abelian) and if u is a positive
element in it, then (F(G, u); ©, ~,~, 0, M), where

(1.1) r ( G , u ) : = { x & G : 0 < x < u ] ,

x © y := (x + y) A u, x~ := —x + u,

x Qy := (x — u + y) V 0, X ~ : = H - ; C ,

is a pseudo MV-algebra.
On the other hand, Rachunek [15] introduced non-commutative MV-algebras,

which in fact are equivalent with pseudo MV-algebras. The equivalence is given by the
fact that if (M; ©,©,", ~, 0, 1) is a pseudo MV-algebra, then (M; ©, ©', ^, ~, 0, 1),
where x ©' y := y Ox, and " =~, is a non-commutative MV-algebra. Conversely, if
(M; ©, ©,", ~, 0, 1) is a non-commutative MV-algebra, then (M; ©, ©', ~, ~, 0,1),
where x ©' y = y Ox and ~ = "", is a pseudo MV-algebra.

It is clear that classical MV-algebras are pseudo MV-algebras, and for them Mundici
[14] proved a crucial fact that any MV-algebra M is isomorphic with some T(G, M),
where G is an Abelian £-group with a strong unit u (a positive element u € G is
said to be a strong unit of G if given g e G, there exists an integer n > 1 such that
—nu<g<nu). In addition, he proved the categorical equivalence of the category
of MV-algebras with the category of unital ^-groups.

The aim of the present paper is to show that also any pseudo MV-algebra is
isomorphic with some unit interval T(G, u) given with a strong unit u of an £-group
G by (1.1)—(1.2), and that the category of unital ^-groups is categorically equivalent
with the category of pseudo MV-algebras. In addition, we show that any Archimedean
pseudo MV-algebra is a usual MV-algebra. Our method is completely different from
that used by Mundici, and it depends on Bosbach's notion of a semiclan [3]. Moreover,
we give positive answers to problems formulated in [9] and [7].

2. Partial addition in pseudo MV-algebras

Throughout the paper, we assume that (A/; ©, ~, ~, 0, 1) is a pseudo MV-algebra.
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If we define x < y if and only if x ~ © y = 1, then < is a partial order such that M
is a distributive lattice with xVy=x®x~Oy, and 0 < x < 1 (we recall that O has
a higher priority than ©). For basic properties of pseudo MV-algebras see [11].

Define a partial binary operation + on M via: x +y is defined if and only if x <y~,
and in this case x + y := x ®y.

It is clear that x + y is defined if and only if x < y~ if and only if y < x~. The
following has been proved in [7] or in [9].

PROPOSITION 2.1. The following properties hold in any pseudo MV-algebra M.

(i) x +0 = x =0+xforanyx € M.
(ii) x +x~ = 1 = x~ + x for any x € M.

(iii) lfx~ + y = 1, then y = x.
(iv) Ifx + y = 1, then y = x~~ andx = y~.
(v) Let x + y and (x + y) + z be defined in M. Then y + z and x + (y + z) are

defined in M, and (x + y) + z = x + (y + z). Similarly, ify + z andx + (y + z) are
defined in M, so are x + y and (x + y) + z.

(vi) If x + b — y, then b = x~ Oy.
(vii) Ifx + yi - x + y2, then >>, = y2.

(viii) lfx\ + y = x2 + y, then X\ = x2.
(ix) Ify — a + x, then a = y Qx~.
(x) Ifx Ay = 0, thenx+y andy+x are defined in M, andx+y = xVy = y+x.

PROPOSITION 2.2. (i) Ifa + bx and a-\-b2 exist in M, then a + ftv b2) is
defined in M, and a + (bx V b2) = (a + Z?,) V (a + b2).

(ii) If b\ + a and b2 + a exist in M, then (bt v b2) + a is defined in M, and
fa wb2) + a = {by + a) v (b2 + a).

(iii) If a + b\ and a + b2 exist in M, then a + (b\ A b2) is defined in M, and
a + (biA b2) = (a + bx) A (a + b2).

(iv) If bx + a and b2 + a exist in M, then {bx A b2) + a is defined in M, and
(Z>, A b2) + a = (bi +a)A (b2 + a).

PROPOSITION 2.3. For all x,y of a pseudo MV-algebra M, we have

(a) xQ(x Ay)~ =xOy-;
(b) x G (x A y)~ + y — x O y~ + y = x V y;
(c) (x A y)~ © y = x~ O y, x v y = x + (x A y)~ O y;
(d) (xVy)Oy-=xQ(x Ay)~ =xOy~;
(e) y~O(x v j ) = y~Qx = (x Ay)~Qx.

PROPOSITION 2.4. In anypseudo MV-algebra M we have the following cancellation

laws.
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(i) Ifa + bi <a + b2, then b\ < b2.
(ii) If a\ + b < a2 + b, then a\ < a2.

(iii) If a + b is defined in M, and if a\ < a and b\ < b, then a\ + b\ is defined in
M, and a\ + b\ < a + b.

The notion of a semiclan introduced by Bosbach [3] will be crucial for our reasoning.
We say that (C; A, +) is a semiclan if it is a A-semilattice and a partial groupoid

with respect to + such that the following axioms are satisfied:

(Cl) If a < b, then there exist x, y € C such that b = a + x and b = y + a.
(C2) Ifa+x, a + y e C,a+x =a + y, then* = >>,andif x + a, y + a e C,

x + a = y + a, then x = y.
(C3) Ifa+x, a+y e C,then(a+jt)A(a+y) = a+(jcAy),andif;c+a, y+a € C,

then (JC + a) A (y + a) = (x A y) + a.
(C4) a + b, (a + b) + c € Cifandonly if b + c, a + (b + c) e C, and in this case

we have (a + b) + c = a + (b + c).
(C5) If (a A b) + c = c and a v b exists, then a + b = av b = b + a.

It is clear that if G is an ^-group, then (G+; A, +) is a semiclan, and by Bosbach
[3, page 321], for any semiclan (C; A, +) there exists an ^-group G with the positive
cone G+ such that C can be embedded into some semiclan (G+; A, +) preserving +,
A, and all existing v in C.

PROPOSITION 2.5. Let (A/;©, ~, ~, 0, 1) be a pseudo MV-algebra and let + be
defined as above. Then (M; A, -f) is a semiclan, and, in addition, there exist an
l-group Go with the positive cone Gj and an injective mapping f : M ->• Gj such
that f preserves +, A, and V.

PROOF. Using Proposition 2.1-Proposition 2.4, we see that (M; A, +) is a semiclan.
Using the crucial result of Bosbach [3, page 321] mentioned above, we have the
assertion in question. •

3. Embedding of pseudo MV-algebras onto T(G,u)

In the present section, we show that any pseudo MV-algebra M is isomorphic with
some T(G, a).

Throughout this section, let / and Go from Proposition 2.5 be fixed.
Denote by Xo : = / ( M ) andX := {£"=i/(a-) : ax,... ,an € M, n> l}. Then

Xo is a lattice which is a sublattice of GQ . We claim below that X is also a sublattice
of Gj; for x, y e X, the expression x A V e X means that x A y taken in the ^-group
Go is an element of X.
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PROPOSITION 3.1. / / / ( a , ) + • • • + f(an) = f (b), where a , , . . . ,an,b € M, then
a\ + V an exists in M, and b = a\ + • • • + an.

PROOF. We will argue by the mathematical induction on n. If n = 1, the statement
is evident. Assume now that the statement holds for each i < n, and let f (at) +

\-f (an) + f (an+l) = f (b). Because b = bQ an~+1 + an+u we have / (b) =
f (bQ a~+l) + / (an+i). Using the cancellation property holding in any £-group, we
have / (a,) H \-f (an) =f(bQ a~+l), and consequently, b = bQ a~+l + an+l =
ai-\ \-an+an+l. O

PROPOSITION 3.2. / / / ( a , ) + • • • + / (a n ) < / (b), where a , an,be M, then
Oi + • • • + o.n exists in M, and a\ + • • • + an < b.

PROOF. We will follow the mathematical induction on n. If n = 1, the statement is
evident. Assume now that the statement holds for each / < n, and le t / (ai) + • • • +
/ (<Wi) < / (b). Then f(b)=f(bQ a"+1) + / (an+1), consequently, / (aO + • • • +
/ («n) < / (bQa~+l), which yields^ H \-an < bQa~+l. Hence, there exists a® € M
such that ao + (ai-\ \-an) = bQ a~+l. In view of/ (b) = f (ao) +f (ai -\ h
an)+f{an+\) and due to Proposition 3.1, we have* = ao + (aH \-an) + an+i- •

PROPOSITION 3.3. Given ax,... ,an e M, bx,... ,bm e M, there exist elements
c\,... ,cr € M and d\,... ,ds € M such that

(3.D

PROOF, (a) Let a, b e M. Then

By [11, Proposition 1.24], aQb~ AbQa' = O,andaQb-+bQa~ = bQa~+aQb~
Then

f(a)+f(b)=f(aQ(aOb-y)+f(aQb-)+f(bOa-)+f(aAb)

= /(n0(fl0 b~T) +f(bQa-)+f(aOb-)+f(aA b)

= f(aO(aOb-)-)+f(bOa-)+f(aO(aAbD+f(aAb)

= f (aO (aO b-)~) +f(bOa~) +f(a).
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Similarly, we have a — aAb + b~Qa, b = a~ Qb + (a~ Q b)~~ Q b.
By [ 11, Proposition 1.24] b~~ O a A a" Q b = 0, so that b~ Q a and a~ © b commute,

and

f(a) +f(b)=f(a A b) +f(b~Oa) +f(a~ O b) +f«a~ O b)~ O b)

= f(aAb) +f(a~ O b) +f(b~ © a) +/((o~ O 6)~ © *)

(b) Using the mathematical induction, we have guaranteed the existence of {cu} in M
such that the following chain of equalities hold

/(a)+/

(a).

(c) Similarly,

Combining (a)-(c), we have (3.1) and (3.2). •

PROPOSITION 3.4. Let A, B, U e X. If A A B e X, B - (A A B) e X, and

U A (B - (A A B)) e X, then (U + A)ABeX.

PROOF. Since A, B, U are elements of G j , we have

U A (B - (A A B)) + (A A B)

= (U + A A B) A B = (U + A) A (U + B) A B = (U + A) A B,

which proves the assertion in question. D

PROPOSITION 3.5. For all au... ,an,b e M, ( / ( « i ) H \-f(an)) Af{b) € X.

PROOF. The proof will follow the mathematical induction on n.
If n = 1, the statement is trivial. Suppose now that it holds for any

••• + / ( « , ) with 1 < i < n. Put A = f(a2) + • • • + /(«„+,) , 1/ = / ( a , ) , and
B = /(Z>). By induction, A A B e X. Since A A S < /(f t ) , we conclude by
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Proposition 3.2 that there exists an element v e M such that / (u) = A A B e Xo.
Moreover, B - (A A B) = / (b) - f (v) = f {b O v~) € Xo C X. Therefore,
U A (B - (A A B)) € Xo. Using Proposition 3.4, (1/ + A) A B 6 X, that is,

---+f(an+l))Af(b)eX. D

We now present the following form of the Riesz decomposition property.

PROPOSITION 3.6. Let / (c) < f (a{) -\ h f (an), where c,au... ,an e M.
Then there exists Ci,... , cn € M with c, < ait i = 1 , . . . , n, such that f (c) =
f(Cl) + •••+/(€„).

PROOF. Let us apply the induction on n. If n = 1, then c < ax. Suppose now that
the assertion holds for any i with 1 < i < n. Thus le t / (c) < / (a{) -\ \-f ( a n + i ) .
Define v = c O (b A c)~ e M, b — an+l, A = f (a{) + • • • + / (an), and A t =
if (a{) + •••+/(an)) A/ (v) . By Proposition 3.5, At G X, and since At < f (v),
there exists ao e M such that Ax — /(flo)- It is clear that do < v < c. Put
cn+i = a.Q O c. Then c = OQ + a£ Q c. Since / (ao) < A = f (a,) H 1- / (an),
by the induction hypothesis there exist c{,... ,cn e M with c,- < a,-, 1 < i < n, and

- - - + / ( c n ) = / ( o o ) < / (« ! ) + ••• +f(an). Then

+1) = / (c) < (A + / (&)) A (/(*) v / (c))

= (A +/(&))

= (A +/(*)) A

= (AAf(cQ(bAc)-))+f(b)=f(ao)+f(b),

which by entails / (cn+i) <f(b), and cn+i < Z> = an+1, and the proof is finished. D

PROPOSITION 3.7. Iff (c) < / (a,) H h / (an), where au... ,an,ceM, then
/(fli) + • • • + / (« . ) - / ( O 6 X and -f(c) + / ( a , ) + • • • + / (a n ) € X.

PROOF. Applying Proposition 3.6, we can find elements c{,... ,cn e M such that
c,;<fl,,i = l , . . . , n, and/(c) = / (c , ) + -•-+/(cn). Then/(c,) + - - -+/ (c_, ) <
/(a,) + - • • + / ( a n - i ) + / ( f l j - / ( c j = / ( « , ) + ---+/(an_,)+/(an©cn-). Using
Proposition 3.3, we can find elements x\,... , **, e M such that

)+ •••+/(f l- i

Successively repeating this procedure, we can prove the assertion in question. In the
same way we proceed for the second equality. •
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PROPOSITION 3.8. X is a lattice semigroup which is naturally ordered, that is, if
x, y e X andx < y , then —x + yeX and y — x € X.

PROOF. It is clear that X is a partially ordered semigroup, and by Proposition 3.7,
X is naturally ordered.

We show that X is a lattice. By Proposition 3.5, (f (a{) H + / (an)) A/ (b) e X
for all au ... , an, b e M. We have to prove that if (ax) H \-f (an)) A (f (&,) +
• • • + /(&*)) € X. We will apply the complete induction on it.

If k = 1, we apply Proposition 3.5. Suppose now that the assertion holds for any
j w i t h l < j < k . Put B = f (a,) + • • • + f (an) e X , A = f (b2) + • • • + f ( b k + l ) ,
U = f(bi). By the induction assumption, A A B e X, and by Proposition 3.7,
B - (A A B) 6 X. By Proposition 3.5, U A (B - (A A B)) e X, so that by Propo-
sition3.4, (/(«,) + • • • +f (an)) A(f (bt) + • • • +f (bk+l)) = (U + A) A B eX. D

We are now ready to prove the main theorem of Section 3.

THEOREM 3.9. Let (M; ©, ~, ~, 0, 1) be a pseudo MV-algebra. Then there exists
an l-group G with strong unit u such that M and F(G, u) are isomorphic pseudo
MV-algebras.

PROOF. Let Go and / be defined in Proposition 2.5. In Proposition 3.8 we have
proved that X is an ^-semigroup of GQ, SO: (i) X is left and right cancellative, (ii)
0 = / (0) is the neutral element, (iii) if x + y = 0 for x, y e X then x = 0 = y. By
Proposition 3.3, x + X = X +x for x € X. Applying now the Birkhoff theorem, [10,
Theorem II.4], we see that X is a positive cone of an £-group G. By the construction
of X, u := / (1) is a strong unit for G. In view of Proposition 3.2, T(G, u) = f (M).

Let a € M. Then or + a = 1 = a + a~ hence / (a") + / (a) = u =: / (1) =
/ (a) + / (a~) which gives / (a~) = f (a)- and / (a~) = / (a)~.

Let a . i e M b e given. Then a® b = a + a~ O (a ® b) = a + a~ Ab so that

f(a®b)=f(a)+f(a~Ab)=f(a)+f(ayAf(b)=f(a)(Bf(b),

where / (a) © / (fc) is now taken in T(G, u). It is clear that / (0) = 0 . •

REMARK 3.10. We note that if M is a commutative pseudo MV-algebra, that is,
a (& b = b(& a, a, b e M, then ~ =~, and M is an MV-algebra, and in Theorem 3.9
we have obtained that G is an Abelian £-group, which gives the most important part
of Mundici's representation of MV-algebras by F(G, u). Our proof is completely
different from Mundici's one who used the notion of good sequences. Another proof
of such a representation of MV-algebras can be found in [8], where it was obtained in
the frame of BCK-algebras using Wyler's [17] and Baer's [1] technique of words.
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4. Archimedean pseudo MV-algebras

We introduce Archimedean pseudo MV-algebras which will entail the commuta-
tivity of pseudo MV-algebras.

According to [7] and [9], we say that a pseudo MV-algebra M is Archimedean if
the existence of na := ax + • • • + an, where ax = • • • = an = a for any integer
n > 1, entails that a = 0. It is known that if M is a a -complete lattice, then M
is Archimedean, [9, Proposition 6.4.14]. In [9], it was proved that an Archimedean
pseudo MV-algebra M is commutative if (i) it is atomic, [9, Theorem 6.4.20], in
particular if M is finite, or if (ii) M is linear, [9, Theorem 6.4.23].

In the present section, we prove that any Archimedean pseudo MV-algebra is
commutative.

PROPOSITION 4.1. Let (M; ©, ~, ~, 0,1) be a pseudo MV-algebra. Letf and(G, u)
be those from Theorem 3.9. Then M is Archimedean if and only ifG is an Archimedean
l-group.

PROOF. Let G be Archimedean, then T(G, u) is an Archimedean pseudo MV-
algebra, so M is Archimedean.

Conversely, let M be an Archimedean pseudo MV-algebra, then T(G,u) is Archi-
medean.

To prove that G is Archimedean, it is sufficient to verify that if, for any n > 1,
ng < v for g > 0, g, v € G, then g = 0. Indeed, the general case of g e G follows
from the simple considerations: ng+ = (ng)+ = (ng) v O < « v 0 = v + which
implies g+ = 0 and, therefore, g = g+ — g~ = —g~ < 0.

Assume that ng < v for g, v e G+ and for each n > 1. Since / (M) generates the
positive cone G+, there exist finitely many elements v j , . . . , yk in M such that

(4.1)

The proof will use the induction on k.
Case 1. Assume that v = / (y) for some y e M. Since g < f (y), according to

Theorem 3.9, there is a unique x e M such that g — f (x).. Since nf (x) < f (y) for
any integer n > 1 and nf (x) e G+, applying Proposition 3.2, we conclude that nx
is defined in M for any integer n > 1. Hence nf (x) = f (nx) < f (y) which entails
nx < y for any n > 1. The hypothesis gives x = 0, and consequently g = 0.

Case 2. Suppose we have proved the problem in question for any element g e G+

and for any element v of the form (4.1), where the summation in (4.1) is over integers
< k. Assume now ng < v = 5Z*=1/(y,) + / ( y ) for n > 1, where y = yk+i e X.
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Then ng — f (y) < 5Z*=i/ 0*i) f°r any m t e g e r n > \. In lattice ordered groups we
have; (s v 0) = (sj) v (j - l)s v • • • v 5 v 0 for any integer; > 1 (see [2, page 293]).
Therefore, for all n, m > 1, we have

- / 0 0 ) vO]

= m(ng-f(y)) v (m - l)(n* - / 0 0 ) v • • • v (n* - / 0 0 ) vO

< [wng - / (y)] v [(m - \)ng - / (y)] v • • • V (ng - f (y)) v 0
k k k k

v Tf O*.-) v • • • v Yf(y,) v 0 =

Since (ng — / (y ) ) vO € G+ applying the induction hypothesis, we conclude that
(ng — f (y)) V 0 = 0 for any integer n > 1. Therefore, ng <f (y) for all n > 1. We
can now apply Case 1 to conclude g = 0. •

THEOREM 4.2. Any Archimedean pseudo MV-algebra is commutative, that is, an
MV-algebra.

PROOF. Suppose that M is isomorphic with T(G, u), where G is an ^-group with
strong unit u. According to Proposition 4.1, G is an Archimedean •£-group, and the
Archimedeanicity of G is according to [10, Corollary V.20] or [2, page 317] a sufficient
condition to be G a commutative ^-group. So that T(G, u) and M are commutative
pseudo MV-algebras. •

It is well known that any poset M has the MacNeille completion by cuts, say M.
M is a complete lattice in which M can be embedded preserving all existing joins and
meets in M. By Schmidt [16], the MacNeille completion M is (up to isomorphism) a
lattice in which M can be supremum-densely and infimum-densely embedded (that is,
for any element x € M there exist two subsets U, Q of M such that x = \J^4>(U) =
AM 4>(Q) (where <f> is the embedding of M into M preserving all existing joins and
meets in M).

THEOREM 4.3. A pseudo MV-algebra M has the MacNeille completion as a pseudo
MV-algebra if and only ifM is Archimedean.

PROOF. Suppose that the MacNeille completion M of a pseudo MV-algebra M is
a pseudo MV-algebra. Therefore as it was mentioned above, M is Archimedean, and
consequently, M is Archimedean.

Conversely, let M be an Archimedean pseudo MV-algebra. By Theorem 4.2, M is
commutative and an MV-algebra. Since an MV-algebra M is Archimedean if and only
ifM is semisimple, [9], by Hohle [12, Theorem 6.3], M is a complete MV-algebra. •
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Using the Scrimger 2-group, [6, page 20], we present an example of a countable
pseudo MV-algebra which is not commutative and hence not Archimedean.

EXAMPLE 4.4. Let G = (I x 1 x Z; +, (0, 0,0), <) be the Scrimger 2-group, that
is,

\(k1 + m2,m1+k2,ni+n2) if n2 is odd;
(ki,mi,nl) + (k2,m2,n2) := {

I (ki + k2, mi + m2, n{ + n2) if n2 is even.

Then 0 = (0, 0, 0) is the neutral element, and

I (—m, —k, —n) if n2 is odd;

(—k, —m, —n) if n2 is even,

and G is a non-Abelian ^-group with the positive cone

G+ = I x 1 x Z+o U I + x 1+ x {0},

or equivalently, (k{, m h «i) < (k2, m2, n2) if and only if (i) nx < n2, or (ii) nt = n2,
k\ < k2, mi < m2. Then

(k2,m2,n2) :=

(kuk2,ni) if «j > n2;

{ki v k2, mi v m2, «i V n2) if «i = n2;

(k2, m2, n2) if ni < n2,

and u — (1,1,1) is a strong unit for G. Consequently, the corresponding pseudo
MV-algebra is not Archimedean (for example, n( l , 1, 0) = (n, n, 0) e F(G, u) for
any n > 1) and has the form

T(G, «) = Z + x Z + x {0} U 2<! x Z<, x {1},

with
(k, m, 0) - = (1 - k, 1 - w, 1), (k, m, 0)~ = (1 - m, 1 - *, 1),

(k, m, 1)- = (1 - m, 1 - k, 0), (it, /n, 1)~ = (1 - Jfc, 1 - m, 0),

and

(*,, mi, 0) 0 (*2, m2, 0) = (*, -I- *2, m, + m2, 0),

(Jti, m,, 0) © (*2, wi2, 1) = ((mi + k2) A 1, (m2 + ki) A 1, 1),

(*i, m,, 1) 0 (fc2, m2, 0) = ((h + k2) A 1, (m, + wi2) A 1, 1),

(*1, « 1 , l )0(*2 , l f !2 , l ) = ( l . l . U -
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5. Universal group

We say that a partially ordered group (G; + , <, 0) with a mapping / : M -»• G+

is a universal group for a pseudo MV-algebra (M; O, ~, ~, 0, 1) if

(i) the positive cone G+ is generating for G, that is, G = G+ — G+;
(ii) / (M) generates G+ as a semigroup;
(iii) f(x+y)=f(x)+f(y) whenever x + y exists in M,x,y e M;
(iv) for any group K and any + preserving mapping h : M -*• K, there is a group

homomorphism <j> : G —*• K such that h — (p of.

The universal group, if it exists, is unique up to isomorphism, and </> from (iv) is a
unique group homomorphism with that property. We denote the universal group for
Mby& = (G,f).

In what follows, we show that if / and G are those from Theorem 3.9, then (G, / )
is a universal group for M.

Throughout the rest of this section, let / be any injective mapping from M into
the positive cone G+ of an ^-group G preserving + and A, and V. In other words,
/ is an embedding of the semiclan ( M ; A , + ) into the semiclan ( G + ; A , + ) , and
for it all results of the beginning of the present section are valid, too. Moreover,
/ (M) = r ( G \ u) for u = f (1), where G' is an ^-subgroup of G. .

We start with variations of the Riesz decomposition property.

PROPOSITION5.1. Letf (a,) + /(a2) = / (&i)+/ (W. auai,bubi e M. Then
there exist four elements C\\, cl2, c21, c2i € M such that

a2 = c2i + c22, b2 = c12 + c22.

Moreover, we may assume that cu A c2\ — 0, and under this condition the cy are
determined uniquely.

PROOF. We define cu '•= a\ A b\, ci2 := b^ O a{ = {by A a{)~ O a{ = cj", © a\,
c22 := a2 A b2, and c21 := a2 © b2 = a2 Q (a2 A b2)" = a2Q c22.

Then ax = C\\ + ci2 and a2 = c2l + c22. We now show that a2Qb2 = ax~ O b\. Put
y=f(al)+f(a2)=f(bi)+f(b2).Theny=f(b1)-f(bl) + y=y-f(b2) +
f (b2) = / {ax)—f (<3i)+y = y —f (a2) +f (a2). By the cancellation property holding
in €-groups, we have / (b2) = -f (bx) + y, f (by) = y - f (b2), f (a,) = y - / (a2),
and / ( a 2 ) = -f(ax) + y.

We claim f (c2i) = f (aj~ O ^i). Indeed, the equality aVb = a + a~Qb =
b © a~ + a implies / (a) v / (b) = f (a) + f {aT G b) = f (b Q a~) + f (a).
Therefore,/ (be a~) = Ov (f (b) - f (a)), / (a~ © b) = 0 v (-f (a) +f(b)). Then
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/ (eii) = / (a2 O b2) = 0 v (f (a2) - / (b2)) = 0 v ( - / (a,) + y - y + f (ft,)) =
0 v ( - / (a,) + / (ft,)) =f(a~Q bx). This implies a2 O 6^ = a7 © *i-

By symmetry we have

b2 © a2" = fe~ O «i = c12 = (Z?i A a,)~ O a! = cj~, © a,.

Thenc12Ac21 = cj", © ^ Ac^Qfli = cj~, © ( ^ A ax) — 0. Hence c12 + c21 =c2i+cl2,
so that/(a,) + /(a2) = /(c,,) +/(c12) + /(c21) + /(c22) = /(c,,) + /(c21) +

Uniqueness. Adding the elements f (cn) and / (c2x), respectively, to the equality
/ (cn) A / (c21) = 0, we obtain (f (cn) + f (c,2)) A (f (c,,) + / (c21)) = / (c,,), so
that Cn = ai A ft!, and similarly c22 = a2 A ft2. Using the cancellation property, we
see that c12 and c2i are defined consequently in the same way as at the beginning of
the present proof. •

The last proposition can be extended as follows.

PROPOSITION 5.2. Letf (ax)+- • • + / (am) = / (ft,)+- • • + / (ftH), where au ... ,am

and b\,... , bn are elements of M. Then there exist elements Cy in M for 1 < i < m
and 1 < j < n such that for all i and j at = ct\ + • —\- cin and bj = C\}•+ • —h cm;.
Moreover, we may assume that

(5.1) (c ,+ u + • • • + cmj) A (clV+i + • • • + cin) = 0

for all i < m and all j < n, and under this condition the c,y are uniquely determined.

PROOF. Using the classical result on the Riesz decomposition property [ 10, page 68]
holding in ^-groups, we can find unique elements c\j e G+ such that / (a,) =
cj, H h c'in and/(ft,) = c'Xj + • • • + c'mj which fulfill (5.1). Since/fo) > cj,. for
any i, j , we conclude from the fact f (M) — r (G\ / (1)) that there exists a unique
element c,y e M (for all i and all j) such that c'tJ = / (cy). Since / preserves A, we
have the assertions in question. •

THEOREM 5.3. Let (M; ©, O, ", ~, 0, 1) be a pseudo MV-algebra, and f and G
those from Theorem 3.9. Then (G,f) is a universal group for M.

PROOF. Assume that h is any order and + preserving mapping from M into a
group K. We define a mapping <j> : f (M) —> K by <p(f(a)) — h{a), a e M. If
f (a) — f (b), then a = b which entails that cp is a well defined mapping. In addition,
if a = a, j - • • • + « „ , then <£(/ (a)) = < £ ( / > , ) ) + ••• + 4>(f(an)). We extend 0 to a
mapping <£ : G+ —> K by

<£(/• ( « . ) + ••• + / ( « « ) ) = < / > ( / > . ) ) + •••
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for all au ... ,am e M.
We show that 0 is a well defined mapping. Suppose thus that

(5.2) / ( * ) + • • - + f (a*) = f ( b l ) + - - - + f ( b H ) ,

where bi,... ,bn e M. The proof will consists of three steps
Step 1. Let/(a,) + f (a2) = f (bx) +f(b2). By Proposition 5.1, there exist four

elements cn, c12, c2\, Cn e M with cl2 A c2i = 0 such that/(ai) = /(cn) +/(ci2),
fih) =/(cu)+/(c2,) , /(a2) =/(c21)+/(c22),and/(fe2) =/(c12)+/(c22). Then

/(c21) = 0,sothat/(c12)+/(c21)=/(c21)+/(c,2)and/i(c12) + ft(c21) =
+ h(c2i). Therefore,

d>(f (fli)) + W (fl2)) = </>(/ (CM)) +<p(f(cl2)) + <P(f(c2l)) + 4>(f (C22))

Step 2. Let now (5.2) hold. Choose, by Proposition 5.2, unique elements c,y in M,
<i <m,l <j <n, such that (5.3) hold, that is,

1=1 j=\ ;=1 i=\

We assert then that

i=i j=\ j=\ i=i

If /j = m = 2, by Step 1, we have (5.4). Suppose thus that the assertion is true for
integers m' and ri with m' < m, ri < n (n > 3), and write the equality (5.3) in the
form

By the Riesz decomposition property holding in ^-groups, there exist elements cy

in M (1 < i < m, 1 < j <n-2) and elements d\ € G+ (I < i < m) such that

/ (at) = f ( c n ) + • • • + / (cUn-2) + d[, f (bj) = f ( c , , ) + • • • + / (cmj)

for 1 < j < n - 2, a n d / ( V , ) + / (K) = d[ + --- + d'm. S i n c e d\ < f (at), in v i e w
of/ (M) — T(G', / (1)), there exists a unique element d, 6 M such that d\ — f (dt),
so that (5.3) holds. By the induction hypothesis, we have

n-2

„)) + • • • + 4>(f(cmj))] + [(Pdid,)) + • • - + <t>(f(dm))l
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Applying induction to / (bn _ ]) + / (bn) = f (d{)-\ \-f (dm), there exists elements Cy
in M, 1 <i<m,j =n-l,n, with the property dt = ci%n-X + cin, bj =cij-] (- cmj.
The induction hypothesis yields (ci+lj H \-cmj) A (ciJ+i -\ 1- c,,n_2 + </,-) = 0
for i < m and./ < n — 2 and (ci+i,n_i H h cmn_!) A cin = 0, respectively. Hence

4>(f(dm)) =

which entails that (5.3) and (5.4) hold, consequently $ is a well-defined mapping
on G+. Moreover, it is additive on G+.

Step 3. We extend now 0 to a mapping <j> from G into K by 0(a) = <f>(a+) — (j>(a~),
where a + := a V 0 and a~ := (—a) v 0. Then <p(—a) = —< (̂a) for any a € G. We
show that ^ is a group homomorphism from G into K.

( l ) L e t a = ax — a2 where ai,a2 € G+. Then^(a) = 4>{a,\) — <f>(a2).
Indeed, we have

a = a.\ — a2, a+ — a~ = a\ — a2, (a+ Afl" =
+ = a

<Ha2) =

—a~ +a+ = ax — a2, a+ + a2 = a~ + al

(2) If a = -by + hi, where bu b2 e G+, then 0(a) = -</>(*,) + <t>(b2).
Indeeda"1"—a~ = — Z>i+&2,thena+ = — bx+bi+a' and^+a"1" = &2+a~. Hence,

+ <p(a+) = (f>(b2) + 4>{a-) and 4>(a) = <f>(a+

(3) If a € G and b e G+, then 0(a + A) = 0(a) +
Indeed, 4>{a + b) = 4>{a+ -a~ + b) = 4>{-a~ + (a+ + b)) and by (2), <j>(a + b) =

(4) 4>(a -b) = 4>{a) - <p(b) if a € G, b € G+.
Calculate, <j>(a - b) = <p{a+- a~ - b) = 4>(a+ -(b + a')) and by (3), 4>(a - b) =

(5) Let a, b € G. Then (/i(a + b) = 0((a + ft+) - b~) = 0(a + ft+) -
4>(a) + <f>(b+) — <f>(b~) = 4>(a) +(j>(b), which finally proves that (G, / ) is a universal
group for M. •

THEOREM 5.4. Let u be a strong element of an t-group G. Then (G, id) is a uni-
versal group for the pseudo MV-algebra T(G, u), where id is the natural embedding
o/T(G, u) into G.

PROOF. It is clear that id preserves + , and T(G, u) is generating for G+. If now
h is any mapping from f (G, u) into a group K which preserves + , the mapping
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<j> : F(G, M) —>• K defined by <f>{a) = h(a) can be in analogous way as in the proof
of Theorem 5.3 uniquely extended to a group homomorphism 0 from G into K such
\hath(a) = (j>(a),a € F(G, u). D

6. Categorical equivalence

In this section, we show that the category of pseudo MV-algebras is categorically
equivalent with the category of unital ^-groups.

Let {P^VV be the category of pseudo MV-algebras whose objects are pseudo
MV-algebras (A/; ©, ~, ~, 0, 1) and morphisms are pseudo MV-homomorphisms, that
is, any mapping / from a pseudo MV-algebra (M; ©," ," , 0, 1) into (Mi; ©i, "', ~',
0i, 10 which preserves ©, ~, ~~, 0 and 1. Denote by <fttftf the category of unital i-
groups whose objects are unital ̂ -groups, that is pairs (G, u) where u is a distinguished
strong unit of an £-group G. Its morphisms are unital £-group homomorphisms, that
is, any mapping/ from a unital £-group (G, u) into a unital £-group (H, v) such that

= / (*)±/ (y) , ( i i ) / ( ; tVv) = f (x)vf(y) and f (x Ay) = / ( J C ) A / ( V ) ,

We define a mapping F : <%3?& ->• PJtV by: T : (G, u) i-̂ - T(G,«), for
any object (G, M) in ^JfSf, where r(G, M) is defined by (1.1), and if h is a unital
^-homomorphism from (G, u) into (//, t>), then F(/i)(a) := /i(a), a 6 F(G, M), is a
morphism from V(G, u) into F(//, v). It is easy to verify that F is indeed a functor
from ^J£?# into PJtV.

PROPOSITION 6.1. F is a faithful and full functor from the category ty &<£ into the
category &J?y of pseudo MV-algebras.

PROOF. Let h\ and /i2 be two morphisms from (G, u) into (H, v) such that F(/ii) =
r(h2). Then ht(x) = h2(x) for any x 6 F(G, M). Since F(G, u) generates G+, it is
clear that h\(x) = h2(x) for any x € G.

To prove that F is a full functor, suppose that / is a morphism from F(G, u) into
F(//, u), that is, / is a pseudo MV-homomorphism from F(G, u) into T(H, u). Then
/ preserves the partial addition + and A in F(G, M), and + coincides with the usual
group addition taken in G. Since F(G, u) generates G, using the same ideas as in the
proof of Theorem 5.3 for constructing the group homomorphism 4>, we can show that
/ can be uniquely extended to a group homomorphism/ from G into H.

We claim that / is a unital £-group homomorphism. The proof will proceed in
several steps, and it follows mainly ideas of Section 3.

Stepl. Leta, b, u0 € G+. If f\a A b) = f (a) A f(b) and if f\u0 A (b-(a A b))) =
f (u0) A f(b-(a A b)), then

/ ( ( a + MO) Ab)= f\a + «o) A f(b).
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Indeed, we have

M0A(i-( f lA ft)) + (a Ab) = (uo + a Ab) Ab

= (M0 + a) A (u0 + b) A b = (M0 + a) A b,

which gives

/((a + «o) A b) = /(«o A (b - (a A b))) +f(a A b)

= [/(Mo) A (/(ft) - (/(a) A/(ft)))] + (/(a) A/(ft))

= [(/(«o) + (/(«) A /(ft)))] A/(ft)

= (/(«o) +/(«)) A (/(«o) + /(&)) A/(6) = /(fl + Mo) A/(ft).

Step 2. / ( a A ft) = / ( a ) A/(f t) whenever a € G+ and * G F(G, M).
Since F(G, M) is generating for G+, a is of the form a = a, + • • • + an for some

a\,... ,aH € F(G, u). We will use the mathematical induction on n.
If n = 1, the statement is trivial. Suppose now that the statement holds for

any a' — a, + • • • + a, with 1 < i < n. Put a = at + • • • + an, u0 — an+1.

Then there exist vi,... , vk € F(G, M) such that b = (v\ + • • • + u*) + (a A b).
Since v := vl H \-vk < b € T(G, M), V G T(G, M). Hence u = 6 - (a A b).
Since / preserves meets in T(G, u), we have / («0 A u) = / (« 0 ) A / (v), so that
/(«o A (ft - (a A ft))) = /(MO) A/(ft - (a A ft)) = /(MO) A (/(ft) - (/(a) A/(ft))),
where we have used induction hypothesis for a and ft. By Step 1, / ((a + u0) A ft) =
/ ( a + M0) A /(ft), that is, / ( ( a , + • • • + an+I) A ft) = / ( a , + • • • + an+1) A /(ft) for
any n.

Step 3. f{a A ft) = f(a) A /(ft) whenever a, ft G G+.
Let a = ai + • • • + an, ft = b{ + • • • + bk. The proof will follow the complete

induction on k.
If k = 1, we apply Step 2. Suppose now that the assertion holds for any j with

1 < ; < it. Put B = a, A = ft, H h ft*, M0 = bk+i. By Step 2, / ( M 0 A (fi -
(A A B))) = /(M o) A/(B - (A A B)) and / ( A A B) = / (A) A / ( B ) . Therefore the
conditions of Step 1 are satisfied, so that/ ((A + M0) A B) = f(A + u0) A / ( B ) which
proves / ( (a , + • • • + an) A (ft, + • • • + bk+l)) = / ( a , + ••• + «„) A/(ft, + • • • + ft*+1)
for each n and each k.

Step 4. f(a Ab) = f(a) A /(ft) whenever a, ft e G. Then a = a+ — a~ and
ft = ft+-ft-,anda = -a"+a + , f t = -b~+b+. ByStep3,/((a++ft-)A(a-+ft+)) =
/ ( a + + ft~) A / ( a " + ft+). Subtracting /(ft") from the right-hand side and f\a~)
from the left-hand side, we obtain the assertion in question. •

PROPOSITION 6.2. The functor T from the category %'S£<S into the category
is right-adjoint.
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PROOF. We show that given a pseudo MV-algebra (Af;©, ~,~,0, 1) there is a
universal arrow ((G, u),f). That is, / is a pseudo MV-homomorphism from M
into T(G, u) such that if (H, v) is an object from <̂ _£?<f and of h is a pseudo MV-
homomorphism from M into Y{H, v), then there exists a unique morphism/* from
(G, u) into (//, v) such that r(f*)of =h.

Due to Theorem 5.3, there is a universal group (G , / ) for M such that / :
M —>• F(G, u) is a pseudo MV-isomorphism. In addition, if /i is a pseudo MV-
homomorphism from M into T(H, v), then /i is also a mapping from M into H
preserving + in M. Due to Theorem 5.3, there is a unique group homomorphism <p
from G into H such that </>(/ (a)) = h(a), a e M. Using ideas of the proof of Propo-
sition 6.1, <j> preserves also A in G so that /*=</> is a unital ^-group homomorphism
in question. •

Now we define the converting functor V from tPMV into ^ # by F(M) :=
(G(M), u), where (G(M), u) is that from Theorem 3.9, and if/ is a pseudo MV-
homomorphism from M into Mu then &(h) is a unique £-group homomorphism
derived in the proof of Proposition 6.2. Therefore, we conclude the following state-
ment.

PROPOSITION 6.3. Sf is a Junctor from the category tP^MV into the category
which is left-adjoint.

We can now prove the main statement of the present section.

THEOREM 6.4. F is a categorical equivalence of the category W&y of unital
l-groups and of the category ^jftV of pseudo MV-algebras.

PROOF. According to [13, Theorem IV.4.1 (i), (iii)], it is necessary to show that for
any pseudo MV-algebra (M; ©, ~, ~, 0,1) there is an object (G, u) in %!£<& such
that F(G, u) is isomorphic to M. To show that it is sufficient to take any universal
group (G, / ) of M, and take the object (G, «), where u = f (1). By Theorem 3.9, u
is a strong unit, and by Theorem 5.3, h is an isomorphism in question. •

Asa corollary we have the crucial result of Mundici [14,5] saying that the category
of Abelian unital ^-groups £/'2fJif& is categorically equivalent with the category

of MV-algebras which is here proved by a way different of Mundici's one.

COROLLARY 6.5. The restriction of F on srffy^^ defines a categorical equiva-
lence of Abelian unital (.-groups and the category ^~y of MV-algebras.
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