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Abstract. In this paper, we introduce the notion of complex product structures
on hom-Lie algebras and show that a hom-Lie algebra carrying a complex product
structure is a double hom-Lie algebra and it is also endowed with a hom-left symmetric
product. Moreover, we show that a complex product structure on a hom-Lie algebra
determines uniquely a left symmetric product such that the complex and the product
structures are invariant with respect to it. Finally, we introduce the notion of hyper-
para-Kahler hom-Lie algebras and we present an example of hyper-para-Kéhler
hom-Lie algebras.
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1. Introduction. A complex product structure on a Lie algebra is a pair {J, K}
of a complex structure and a product structure on the Lie algebra that anticommute.
This notion is an analogue of a hypercomplex structure on a Lie algebra, i.e., a pair of
anticommuting complex structures.

Complex product structures on Lie algebras were introduced by Andrada and
Salamon in [3]. Lie algebras carrying a complex product structure are closely related to
many important fields in mathematics and mathematical physics, such as Rota—Baxter
operators on pre-Lie algebras [11], geometric structures on compact complex surfaces
that are related to the split quaternions [7], paraquaternionic Kahler structures [S] and
nilpotent Lie algebras [2]. Recently, complex product structures have been extensively
investigated in [4, 6, 19].

Hom-Lie algebras were introduced by Hartwig, Larsson, and Silvestrov in order
to describe the structures on certain quantum deformations or q-deformations of the
Witt and the Virasoro algebras [8]. A g-deformation of vector fields is achieved when
replacing a derivation with a o -derivation d,,, where o is an algebra endomorphism of
a commutative associative algebra [9]. As this algebraic structure has a close relation
with discrete and deformed vector fields and differential calculus, it plays an important
role among some mathematicians and physicists [8, 10]. For example, some authors
have studied cohomology and homology theories in [1, 18], representation theory in
[15], and a matched pair of hom-Lie algebras [16].

The purpose of this paper is to introduce and study complex product structures
on involutive hom-Lie algebras, which are natural generalizations of complex product
structures on Lie algebras.
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The paper is organized as follows. In Section 2, we review some
definitions including hom-Lie algebra, hom-Lie subalgebra, double hom-Lie algebra,
representation of a hom-Lie algebra, and pseudo-Riemannian hom-algebra. In Section
3, we give notions of Hermitian and para-Hermitian structures. Then, we introduce
complex product structures on an involutive hom-Lie algebra. Also, we provide some
properties of these structures on hom-Lie algebras. In the following, some examples
of such structures are presented. In Section 4, we present the notions of a matched
pair and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie
algebras carrying a complex product structure can be written in terms of double
hom-Lie algebras endowed with a hom-left symmetric product. Moreover, we prove
that under certain conditions a complex product structure on a hom-Lie algebra
determines uniquely a hom-left symmetric product, such that the complex and the
product structures are invariant with respect to it (see Proposition 4.6). In Section 5,
we introduce a notion of a hyper-para-Kahler hom-Lie algebra and present an example
of hyper-para-Kdhler hom-Lie algebras.

2. Hom-algebras and pseudo-Riemannian metric on hom-Lie algebra. In this
section, we present the definitions of hom-algebra, hom-left symmetric algebra,
hom-Lie algebra and hom-Lie subalgebra. Then, we introduce a double hom-Lie
algebra and a pseudo-Riemannian hom-algebra.

Let V' be alinear space, - : V' x V' — V be a bilinear map (product) and ¢ : V' —
V be an algebra morphism. Then, (V, -, ¢y ) is called a hom-algebra. Forany u € V, the
left and the right multiplications by u are maps L,, R, : V' — V given by L,(v) = u - v
and R,(v) = v - u, respectively. The commutator on V is given by [u, v]=u-v —v - u.
If (V, -, ¢p) is a hom-algebra and for any u, v, w € V, we have

r(w) - (v-w) = (u-v)-pp(w),

then we say (V, -, ¢p) is a hom-associative algebra. A hom-left symmetric algebra is a
hom-algebra (V, -, ¢y) such that

assg, (u, v, w) = assg, (v, u, w),
where
assg, (u, v, w) = - v) - dp(w) — o) - (v-w).

Each hom-associative algebra is a hom-left symmetric algebra with assg, (4, v, w) = 0,
but the converse does not hold.

A hom-Lie algebra is a triple (g, [-, -], ¢4) consisting of a linear space g, a bilinear
map (bracket) [-,-]: g x g — g and an algebra morphism ¢, : g — g satisfying the
anti-symmetric property, i.e., [u, v] = —[v, u] and the hom-Jacobi identity property,
ie.,

Oupvow [pg(), [v, wl] =0,  Vu,v,w eg. ()

Also, it is called regular (involutive), if ¢, is non-degenerate (satisfies 4> = 1). A
subspace ) C g is called a hom-Lie subalgebra of g if ¢4(h) C b and [u, v] € b, for any
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u,v € h. Also, a subspace h C g is said to be an ideal of g if ¢4(h) C h and for u € h
and v € g we have [u, v] € b.

A homomorphism of hom-Lie algebras (g, [, ]4. , ¢g) and (¢', [, Iy, ¢¢) is a linear
map ¥ : g — g’ such that

Vopg=¢goy, Yluvlg=I[Yw) @)y,

for any u, v € g [16].

DEFINITION 2.1. A triple (g, b, h’) of hom-Lie algebras forms a double hom-Lie
algebra if b, b’ are hom-Lie subalgebras of the hom-Lie algebra (g, [-, -], ¢4) and g =
h @ b’ where, ¢ = bajy + Doy -

Let (g, [, -], ¢4) be a hom-Lie algebra. A representation of g is a triple (V, 4, p) in
which V' is a vector space, 4 € g/(V)and p : g — g/(V) is a linear map satisfying

{p(%(u)) od=Aopu),
p([u, vlg) 0 A = p(¢g(u)) 0 p(v) = p(Bg(v)) 0 p(u),

for any u, v € g. If we consider V'* as the dual vector space of V, then we can define a
linear map p* : g — gl(V*) by

2

< p @), v = — < a, pu)(v) >,
for any ue g,ve V,a € V*, where < p*(u)(«), v > is defined by p*(u)(x)(v). A
representation (V, 4, p) is called admissible if (V*, A*, p*) is also a representation of g

in which A* is the transpose of the endomorphism A. It is known that the representation
(V, A, p) is admissible if and only if [16]

{ Ao p(pg(w) = p(u)o A4, 3)
Ao p([u, v]g) = p() o p(Pg(v)) — p(v) 0 p(¢g(u)).

ExXAMPLE 2.2. Consider a 4-dimensional linear space g with an arbitrary basis
{e1, e2, e3, e4}. We define the bracket [-, -] and linear map ¢4 on g as follows:

le1, e3] = aes, [e2, e4] = —aes,
and
Bgler) = —ex, Pgler) = —e1, @Pgles) = es, ¢yles) = es.
The above bracket is not a Lie bracket on g if a # 0, because
[e1, [e2, e3]] + [ea, [e3, erll + [e3, [er, ea]] =[ea, —aeq] = a’e3.
It is easy to see that

[Pg(e1), pgle3)] =aes = gy([er, e3]),
[Pg(e2), pgles)] = — aeq = @y([e2, e4]),

i.e., ¢q is an algebra morphism. Also, we can deduce
[¢g(€[)v [ejv €k]] + [d’g(ej)’ [ekv e[] + [¢g(ek)’ [eiv e/]] =0, ivjr k=1,2,3,4.

Thus, (g, [, -], ¢4) is a hom-Lie algebra.
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A quadruple (g, [, -], ¢4, (-, -)) is called a pseudo-Riemannian hom-Lie algebra if
(g, [-, ], ¢g) is a finite-dimensional hom-Lie algebra and (-, -) is a bilinear symmetric
non-degenerate form, such that for any u, v € g, (¢4(u), ¢4(v)) = (u, v) or (pg(u), v) =
(u, pg(v)). In this case, we say that g admits a pseudo-Riemannian metric (-, -). It is
known that if ¢4 is an isomorphism, then exists a unique product - (is called hom-Levi-
Civita product) on it, which is given by Koszul’s formula

2u - v, gg(w)) = ([u, v], pg(w)) + ([w, v], @) + ([w, ul, Pg(v)), “)

which satisfies [, v]=u-v —v-u and (u-v, pg(w)) = —(Pg(v), u- w) (see [13], for
more details).

A quadruple (g, [, -], ¢4, @) is called a symplectic hom-Lie algebra if (g, [-, -], ¢4)
is a regular hom-Lie algebra and w is a bilinear skew-symmetric nondegenerate form
(is called a symplectic structure), which is a 2-hom-cocycle, i.e.,

do =0,  o(dg(), pg(v)) = w(u, v),

where, dw € A3g* is given by

do(u, v, w) = o(¢g(w), [v, w]) + @(Pg(v), [w, ul) + @(dg(w), [u, v]), )

for any u, v, w € g.

3. Complex product structures on hom-Lie algebras. In this section, we introduce
complex product structures on hom-Lie algebras. We also present an example of these
structures (see [13, 14] for more details).

An isomorphism K : g — g is called an almost product structure on an involutive
hom-Lie algebra (g, [, -], ¢g) if K* = Id, and ¢4 0 K = K o ¢g. Also, (g, [, ], ¢g. K) is
called an almost product hom-Lie algebra. In this case, we have g = g' @ g~', where

g == ker(pg o K — Idy), g = ker(¢pg o K + Id,).

If g' and g~' have the same dimension #, then K is called an almost para-complex
structure on (g, [+, -], ¢4) (in this case the dimension of g is even). An almost product
(almost para-complex) structure is called a product (para-complex) structure if

[(g 0 K)u, (¢g 0 K)v] = ¢g 0 K[(¢g 0 K)u, v] + ¢g o K[u, (pg 0 K)v]
—[u,v], Vu,veg. (6)

A quadruple (g, [, ], ¢4, J) is called an almost complex hom-Lie algebra if
(g.[-, ], ¢4) is an involutive hom-Lie algebra of even dimension J:g— g is an
isomorphism such that J> = —T. d, and ¢4 0 J = J o ¢ (J is called an almost complex
structure). An almost complex structure is called a complex structure if

[(Pg 0 Nu, (g 0 V] = ¢y 0 J[(¢g 0 D, v] + Pg o J[u, (pg © J)v] + [u, v],  (7)
forallu,v € g.

A Hermitian structure of a hom-Lie algebra (g,[-, ], ¢g) is a pair (J, (-, -))
consisting of a complex structure and a pseudo-Riemannian metric (-, -), such that
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foreachu,veg

((@g o Du, (¢g 0 J)v) = (1, ).

In this case, (g, [, -], ¢g. J, (-, -)) is called a Hermitian hom-Lie algebra. A Hermitian
hom-Lie algebra has a natural bilinear skew-symmetric nondegenerate form w, which
is defined by

o(u, v) = ((¢g o Ju, v).

PROPOSITION 3.1. Let (g, [-, ‘], ¢q, J, (-, -)) be a Hermitian hom-Lie algebra. If we
consider the product - as a hom-Levi-Civita product associated with metric {-,-) on g
given by (4), then

2{u - ¢g(Jv) = (¢g 0 J)(u - v), pg(w)) = de(u, v, w) — dw(u, ¢g(Jv), pg(Jw)).

Proof. By Koszul’s formula and the definition of w, we get

2(u- dpg(Jv), pg(w)) =([u, dg(JV)], pg(w)) + ([w, pg(JV)], pg(w)) + ([w, u], Jv)
=o([u, pg(Jv)], Jw) — o((pg o J)[w, pg(Jv)], Pg(u))
- a)([w, M], ¢g(v))1

and

=2{(¢g 0 ) - v), pg(w)) =2(u - v, (¢g 0 N)pg(w)) = ([u, v], (¢ 0 J)pg(w))
+ ([Ppg(Jw), v], ¢g(w)) + ([Ppg(Jw), u], pg(v))
= — o([u, v], ¢g(w)) — w((@g 0 N)Pg(Jw), v], pg(u))
— w(Jv, [pg(Jw), u).

On the other hand, we have

do(u, ¢g(Jv), pg(Jw)) = w(@g(w), [Pg(JV), pg(Jw)]) + @ (Jv, [pg(Jw), ul)
+o(Jw, [u, pg(Jv)]).

From the above equations, (5) and (7), we conclude the assertion. ]

DEFINITION 3.2. A para-Hermitian structure of a hom-Lie algebra (g, [-, -], ¢4) isa
pair (K, (-, -)) consisting of a para-complex structure and a pseudo-Riemannian metric
(-, -) such that foreachu, v € g

((¢g 0 K)u, (g 0 K)v) = —(u, ).

In this case, (g, [, -], ¢4, K, (-, -)) is called a para-Hermitian hom-Lie algebra. Also, it
defines a natural bilinear skew-symmetric nondegenerate form w given by

w(u, v) = ((¢g o K)u, v).

Similar to the proof of Proposition 3.1, we can prove the following.
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PROPOSITION 3.3. Let (g, [, -], ¢q. K, (-, -)) be a para-Hermitian hom-Lie algebra. If
we consider the product - as a hom-Levi-Civita product associated with metric (-, -) on g
given by (4), then

2{u - pg(Kv) — (g 0 K)(u - v), pg(w)) = dew(u, v, w) + dw(u, pg(Kv), pg(Kw)).

DEFINITION 3.4. A complex product structure on the hom-Lie algebra g is a pair
{J, K} of a complex structure J and a product structure K, such that Jo K = —K o J
(note that J o K = —K o J is equivalent to ¢g0J 0o K = —¢5 0 K o J, because ¢>§ =
1dy).

We consider the vector spaces g' = ker(¢y o K — Idg)and g=! = ker(¢g o K + 1dy)
as eigenspaces corresponding to the eigenvalues 1 and —1 of ¢4 o K, respectively.

THEOREM 3.5. Let {J, K} be a complex product structure on the hom-Lie algebra g.
Then,

(i) ¢q o J and J are isomorphisms between the eigenspaces g' and g,

(ii) ¢q o K is a para-complex structure on g,
(iii) g' and g~" are hom-Lie subalgebras of g,
(iv) (g, 9", g7") is a double hom-Lie algebra,
(v) Jopg =¢g10JandJ o pg1 = pgioJ.

Proof. Let u € g'. Then, the condition J o ¢pg0K =—¢g0KoJ implies J(u) €
g~ !. Thus, J(g') C g~'. Similarly, we get J(g~') C g'. So J*> = —Id, implies J(g') =
g~ !. Also, if we consider J(u) = J(v) for any u, v € g!, then J?> = —Id, results in
u = v. Thus, J is an isomorphism between g' and g~!. Similarly, the condition ¢4 o J o
$g0 K = —¢y 0 K o ¢y 0J implies that ¢4 o J is an isomorphism between g! and g~
Therefore, we have (i). From (i), we conclude that dimg' = dimg~" and so we have (ii).
We now prove (iii). It is easy to see that (6) implies that g' and g~! are Lie subalgebras
of g. Now, we let u € g'. Since (K o ¢¢)(u) = uand K o ¢y = ¢y o K, we imply that

(Ko ¢g)(¢g(”)) = (¢g oKo ‘Pg)(”) = ¢g(u)a

which gives ¢4(u) € g'. Similarly, we obtain ¢4(«) € g~!, for any «' € g~!. Hence, it
is easy to verify that g' and g~! are hom-Lie subalgebras. Therefore, we have (iii).
Here, we prove (iv). According to (iii), we can write ¢y :g' @ g~' — g' @ g7, as
Gg(u—+u') = g1 (u) + g1 () for any u € g', v/ € g~'. This shows that (g, g', g7') is
a double hom-Lie algebra. To prove (v), let u € g'. Then, the conditions Jg' = g~',
dg C al, g1 C g landJ o ¢g = ¢g o J, conclude J(¢y (1)) = ¢g-1(Ju). Similarly, we
have the second part. O

EXAMPLE 3.6. We consider the hom-Lie algebra (g, [, -], ¢4) introduced in Example
2.2. If isomorphisms J and K are determined as

J(e)) =eq4, J(er) =—e3, J(ez) =er, J(eq) = —ey,
K(e)) = —es, K(er) = —ei, K(e3) = —es, K(es) = —e3,

then we have

Je) = —KXe) = —¢gle) = —e;.  i=1,2,3.4.
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Moreover, using the above equations, we get

(Jo ¢g)el =e3 = (¢g o J)ey, (Jo¢g)€2 = —e4 = (¢g oJ)es,
(Jo ¢g)e3 =—e€ = (¢g oJ)es, (Jo ¢g)e4 = = (¢g o J)ey,

and

(K o ¢pgler =e1 = (¢g 0 K)ey, (Ko dgler =er = (¢g 0 K)ea,
(K o¢gles =—e3 = (dg 0 K)es, (Ko pgles = —eq = (g 0 K)ey.

Also, we have

(J o} K)61 =e3 = —(KO J)el, (JO K)62 = —€4 = —(K o J)€2,
(J o K)€3 =€ = —(K o J)€3, (J o K)€4 = —€) = —(K o J)€4.

Moreover, it follows that (6) and (7) hold. Therefore, {J, K} is a complex product
structure on g = g' @ g~ !, where g! = {e;, e} and g~ = {e3, e4}.

LEMMA 3.7. Let (g, [-, -], ¢4) be a hom-Lie algebra with a complex product structure
{(J, K}. If we consider g~' as an ideal in g, then g~ is abelian. Moreover, g' carries a
hom-left symmetric product given by

u-v=—(¢g 0N, pg-1(Jv)l, Yu,v e g ®)

1

Proof. Since g~! and g! are hom-Lie subalgebras of g, using (7), we get

[(pg1 0 il (Pgi 0 W] = (pg1 0 (g1 © ', V'] = (g1 0 N, (g1 0 )] = [/, V],

for all /', v' € g7'. Since g~' is an ideal in g and ¢ o J C g', we conclude that the

left-hand side of the above equation is in g' and the right-hand side of it is also in g~ .

Therefore, g~' is an abelian ideal. Now, if we consider u, v, w € g', then using (7) and
(8) we obtain

u-v—v-u=-—(pg o u, pg-1(Jv)] — (pg o Ny (Ju), v]
=[u, v] = [(pg-1 0 Nu, (pg-1 0 J)v].

Since g~! is an abelian ideal, then from the above equation we obtain
u-v—v-u=Iu,vl. 9)
Also, using the hom-Jacobi identity and (8), we get

bgi () - (V- w) — g1 (v) - (- w)

= —¢g1 () - (g 0 NV, pg-1(Jw)] + ¢q1 (v) - (pg1 0 I)ut, Pg-1(Jw)]
= —(pg 0 NPy (W), [v, pg-1(JW)] + (Pt © N)[Pgi (V). [, pg-1 (Jw)]]
= (¢g1 0 D(@g-1 0 Dby (w), [u, v]] = [u, v] - pg1 (w).
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Moreover, (8) and part (v) of Theorem 3.5 yield

gt (u) - pg1 (V) = = (D1 © g (W), (Bg-1 © gt (V)] = —(dg1 0 g (), Py 1(JV)]
= — (¢gl oJo ¢971)[u, ¢g—1 (Jv)]
= - ¢g‘((¢g‘ o JNu, d)g*‘(‘]v)]) = ¢g‘(u - ).

Consequently, (9) and the last equation imply [@g1(u), g1 (v)] = ¢gi1[u, v]. Therefore,
the product - is a hom-left symmetric product on g!. ]

EXAMPLE 3.8. We consider a 4-dimensional hom-Lie algebra (g, [-, -], ¢4) with an
arbitrary basis {e, 2, €3, 4}, where

[e1, ex] = aey + aey, [e1, e3] = ae3, [er, e3] = aes, [e1, es] = —ae3, [ea, es] = —aey,
and

¢g(el) = —e, ¢g(62) = —ey, ¢g(63) = —ée4, (]59(6’4) = —es.

If @ = 0, then the above bracket is a Lie bracket on g. Let isomorphisms J and K be
given by

J(e)) = —e3, J(e) = —es, J(ez)=er, J(es) = e,
K(e1) = —es, K(ex) = —ey, K(ez) =e4, K(es) = e3.

Then, we have
Fe) = —K(e) = —¢pole) = —e;,  i=1,2,3,4
Also, using the above equations, we infer

(Jo¢g)el =€4 = (¢g oJ)ei, (Jo ¢g)62 =e3 = (¢g oJ)es,
(Jo¢g)e3 =—6€ = (¢g oJ)es, (Jo¢g)e4 = —e = (¢g o J)ey,

and

(Kopgler =e; = (pg0 Ker,  (Koggles =er=(pg0K)e,
(Koggles =—e3 = (pg0K)es, (Kopgles = —es = (¢g o0 K)ey.

It is easy to see that (6) and (7) hold, i.e., J and K are complex and product structures
on (g, [, -], ¢q), respectively. Also, we obtain

(JOK)El =€4 = —(KOJ)El, (JO K)€2 =e3 = —(KOJ)EQ,
(J o K)€3 =€) = —(KO J)@}, (JO K)€4 =e = —(KO J)€4.

Therefore, the pair {J, K} is a complex product structure on g. Moreover, we can write

gasg=g' ®g!, where g! = {e], e} and g~! = {e3, e4}. Since g~! is an abelian ideal
in g, g! carries a hom-left symmetric product. If we denote this product with -, then
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using (8) we have

e1- ey =— (g oJ)er, pg-1(Jer)] = —(pg 0 J)[e1, e3] = —algpy o J)e3 = ae,
er-e1 = — (g o J)[ez, pg-1(Je)] = —(pgi o J)lea, es] = a(@gr 0 J)es = —aey,
e e =—aep, €y - ey = aej.

4. Matched pairs. In this section, we present the notions of a matched pair
and hom-bicrossproduct of hom-Lie algebras. Also, it is shown that hom-Lie algebras
carrying a complex product structure in terms of double hom-Lie algebras are endowed
with a hom-left symmetric product.

DEFINITION 4.1 ([16]). A pair of hom-Lie algebras (g, [-, -5, ¢¢) and (¢', [, -1g', ¢g')

with representations p : g — gl(g’) and p': g’ — gl(g) with respect to ¢y and ¢,
respectively, is called a matched pair of hom-Lie algebras if

P (g W)u, vlg =[p" )W), ¢g(v)]g + [Dg(w), p'W)()]g + p'(p(V)(W))(g(w)
= ' (p()(W))(¢g(v)),

P@g)lu', vy =[p)W), py (V)]y + by (), p()(W)]y + (0" (W) ()) (g ()
= p(p' ()W) (pg (V)

forany u, v € g, #/, v’ € g’. We denote a matched pair of hom-Lie algebras g and g’ by
(99 g/a pv 10/)

Given a matched pair (g, g’, p, p’) of hom-Lie algebras (g, [, ], ¢y) and
(g, [, ]lg» ¢g), We can construct a new hom-Lie algebra g D<lz, g=@og, o[, ],
where

@(L{, u/) = (¢g(”)’ ¢g’(“/))’
[(, /), (v, V)] = ([, v]g — ' (V)W) + ' ()W), [/, V']g — p()) + p()(V")).

We will call g NZ, g’ the hom-bicrossproduct of g and g’ (see [16], for more details).
Considering g = g @ {0} and g’ = {0} ® g, we observe that (g ® ¢’, g, g') is a double
hom-Lie algebra.

Conversely, if (g @ ¢/, g, ¢’) is a double hom-Lie algebra, then (g, ¢’, p, p’) forms a
matched pair of hom-Lie algebras g’ and g such that the representations p : g — g/(g’)
and p’ : g’ — gl(g) are given by

[u,u'] = pw/ — p' (W )u, Yueg u eg. (10)
From the above description, we can deduce the following.

COROLLARY 4.2. Let (g, ¢g, [, ) be a hom-Lie algebra with a complex product
structure {J, K. Then, there exist representations p : g' — gl(g™" Y and p’ : g~ — gl(g")
with respect to ¢g-1 and $g1, respectively, such that (g', g=", p, p') forms a matched pair
of hom-Lie algebras.

PrROPOSITION 4.3. Let (g, ¢q,[,-]) be a hom-Lie algebra with a complex
product structure {J,K}. Then, there exist representations p*:g' — gl(g') and
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p* g7! — gl(g™") with respect to ¢g and g1, respectively, such that
P (u) == —¢g oJopu)ogpgiold, p*W):=—¢g10J0p W)opg ol (11)
Also, we have
[, W] = —pg10J 0 p*(W) o g o J(W') + Ppgi 0 J 0 p™'(u) 0 g1 0 J(u), (12)

foranyu e g' andu € g~

Proof. Using Corollary 4.2 and isomorphisms ¢g-10.J : g — g~ ! and $gr0J
g~ ! — g!, we can consider p and p’ as (11). Now, we show that p* is a representation
with respect to ¢g1. Using (11), we have

p*(¢gl(u)) o ¢g1 = —¢gl oJo ,o(qbgl(u)) o ¢g—l oJo ¢gl.

Since p is a representation with respect to ¢y and ¢g o J =J o ¢y-1, the above
equation implies

p*((ﬁgl(u)) o ¢gl = — ¢g1 oJo ¢g—l (¢] ,o(u) oJo ¢gl
— ¢g] o ¢gl oJo p(u) o ¢)g—l oJ = ¢gl o p*(u).

Also, we get

P ([u, vlgr) o pg1 = — pg1 0 J 0 p([u, v]g1) 0 g1 0 J 0 Py
— g1 0J 0 p(¢g (1)) 0 p(v) 0 J 0 g
+ ¢gi 0 J 0 p(¢g1(v)) o p(u) o J o Pgr.

Applying ¢g-1 0 J 0 ¢y o J = —Idy in the last equation, we obtain

P ([u, vlg1) o pg1 =g 0 J 0 p(g1 (1)) o pg-1 0J 0 gt 0J 0 p(v) 0 pg-10J
—¢g 0o p(pgi(v) o dg1 0o opg oo p(u)opgr ol
= p"(¢g1 (W) 0 p*(v) — P (Bg1 (V) 0 p™(u).

Similarly, we can see that p*' is a representation with respect to ¢4-1. Equations (10)
and (11) imply (12). O

Applying (12), we can write p* and p*' as follows:

P = =1 (¢g 0 I, pg1(JV)),  p* W = =1 (Pg 0 I, g1 (JV]),  (13)

1 1

foranyu,v e g',u/,v € g ' where! : g — g' andn~! : g — g~! are the projections.

THEOREM 4.4. Let {J, K} be a complex product structure on a hom-Lie algebra
(9, @g. [, -]. Then, g! and g~ carry hom-left symmetric algebra structures.

Proof. We consider - : g' x g' — g' as a bilinear product on g' given by u - v :=
p*(u)v, where p* is determined in Proposition 4.3. Since p* is a representation with
respect to ¢ 1, we obtain

¢g1(u : U) = ¢g‘(p*(u)v) = p*(¢g‘(u))¢g‘(v) = d)g‘(u) : ¢g'(v)’
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and

Pgr(u) - (V- w) — @gi(v) - (- w) = p* (g1 (W)p* (V)W — p*(Pg1 (V) p* (Ww
= p*([u, v]g‘)(‘pgl(w)) = [u, U] : ¢gl(w)~

Also, (7) and (13) imply

u-v—v-u=p* v — p*u= —nl(gbg o J([u, pg-1(Jv)] + [¢g-1 (Ju), v]))
=1 ([u. v] — [pg-1 (J1), pg-1 (JV)]) = [u, v].

The two last equations imply
by () - (V- w) — @1 (V) - (- w) = (u-v) - pgr(w) — (V- 1) - pgi(w).

Therefore, g' carries a hom-left symmetric algebra structure. We define a bilinear
product - : g7!' x g7 = gl on g7! by «// - v/ := p*'(u/)v’. Similarly, it is shown that -
is a hom-left symmetric product on g~!. ]

Let (g, ¢g, [, -]) be a hom-Lie algebra with a complex product structure {J, K}. We
extend the hom-left symmetric products of g! and g~! to g by

wu+u) - +v)Y=u-v+ p + o'W +u -v. (14)

We consider two bilinear maps W :g' x g~' — End(g') and ¥*:g7' xg' —

End(g~") defined by

Wt yw =p (1 @)t~ w) — by () - p'(W
— P W g (w) + 0 (P Y(gr ().
W upw =p( W) - w') — g1t - p(v)w’
— P - by (W) + P (W) Pg1 ().

forany u,w e g', v/, w € g\
PROPOSITION 4.5. Let (g, ¢q, [, -]) be a hom-Lie algebra with a complex product
structure {J, K}. Then, the product - on g given by (14) is a hom-left symmetric product

if and only if W(u, u'Yw = W* ', u)w’ =0, for any u,w € g', ', w' € g~ .
Proof. Using (14), we get
Ga(u+ 1) - Pg(v + V) = (91 (1) + Pg-1 (1) - (g1 (v) + g1 (V1))

= $1(0) - D1 (V) + (g (W) B 1 (V) + P (g 1)y (V) + G 1 (1) - g1 (V)
= Bgiu- V) + b1 (V) + b1 (/W) + bg 1 (i - V') = $o((u+ 1) - (v +V')).
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Also, a direct computation yields
(+u)-(v+0) dg(w+w') = dglu+u) (v+0)-(w+w))
—((v+ V) w+u)) - pg(w+w)
+ogv+V) - (u+u) - (w+w)) =¥, v)w— Y, u)w
+ W, v)w' = W, ww' + p([u, vlg ) (gg-1 (w))
— p(pg () (p(W)w') + p(dg (V) (p(W)w')
+ 0/ ([, V]g-1) (@ (w)) — p'(pg-1(U))(0' (V' )w) + o' (-1 (V))(0' () w).

Since p and p’ are representations with respect to ¢4-1 and ¢, respectively, the above
equation reduces to

(w+u)- (v+0) - pg(w + w') = pg(u+ 1) - (v + V) - (w+w'))
—((v+V) - (u+u)) - pg(w+ w')
+pgv+V) - (u+u) - (w+w)) =¥, v)w— Y, u)w
+ U, v)w — v, ww'.
Therefore, we conclude the assertion. O

Let (g, ¢g. [-, -]) be a hom-Lie algebra. We consider

T(X,Y):=LyY—LyX—[X,7Y],
and call it the tensor torsion of g. Also, we define the tensor curvature /K of g as follows:
IC(X, Y) = L(f;g(X)OLY_L¢B(Y)OLX_L[X,Y]O¢91 (15)

forany X, Y € g.
Under the assumptions of Proposition 4.5, on a hom-Lie algebra (g, ¢g, [-, -]) with
a complex product structure {J, K}, we set

LYY =X-Y, VX, Yeg,

where - is the hom-left symmetric product on g that satisfies (14). Using (10), (14) and
Proposition 4.5, we can write

cP cP
[X.Y]=LY'Y - LY X,
cp cP cP cP cP
L%(X)OLY —L%(Y)OLX =L[X,Y]g o g,
which are equivalent to the vanishing of the torsion and the curvature tensors of (g, ).

PROPOSITION 4.6. Let (g, ¢g, [, -]) be a hom-Lie algebra with a complex product
structure {J, K}. Under the assumptions of Proposition 4.5, J and K are invariant with
respect to hom-left symmetric product - given by (14), i.e.,

L opgod =pgoJ oL,
L opgoK =pg0 Ko L§E,
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for any X € g. Moreover, the hom-left symmetric product - satisfying in two above
equations is unique.

Proof. Letu,v e g',u/, v € g~'. Then, (11) and (14) imply

LEE (@ 0 DN + 1) = -+ ) - (Bg-1(J0) + b (V)
= - G (TV) + p() g 1(T0) + /() (TV) + by 1 (T)
= B (Tp(0)) + by (T ) + byt (Sl - 0)) + b1 (T W)
= (g o NN+ ) - 0+ 1) = (bg 0 NLEL (0 + ).

Also, we conclude

LSy (fg 0 K)(v +0)) = (u + ) - (§g(Kv) + pg(KV)
=@w+u) w—V)=u-v—pup + o'WW —u -V
= (g o K)((u+1) - (v + ) = (bg 0 KILEE (v + V).
Finally, we show the uniqueness of hom-left symmetric product. Let > and e be two
such products and 4 is (1, 2)-tensor defined by Ay := L5 — L%. Since L5 0 ¢y 0 K =
pgo KoL and LY o g0 K = ¢y 0 K o L}, we obtain

AyopgoK =L opgoK —LyopgoK=¢s0KolLy —¢pgoKolL
=pgoKo(Ly —Ly)=¢g0KoAy.

Similarly, we have Ay o ¢y 0 J = ¢4 0 J 0 Ay. Moreover, 4 is symmetric, i.e.,
AxY =15Y — LYY = L5 X +[X, Y]y — Ly X +[Y, X]y = Ay X.
From the above equations, we deduce

Ap x)9g(KY) =(¢pg 0 K)Ay 1x)Y = (¢g 0 K)Aydg(JX) = (¢g 0 K)(pg 0 J)Ay X
= (¢g o J)((bg o K)AYX = _(d’g o J)(¢g o K)AXY
=— Ay, ux)Pg(KY),

which gives 4 = 0. ]

5. Hyper-para-Kihler hom-Lie algebra. In this section, we introduce hyper-para-
Kabhler structures on hom-Lie algebras. Also, we present an example of these structures.

DEFINITION 5.1. An almost complex structure J on a symplectic hom-Lie algebra
(9. [ -], g, Q) is called Q-tame if

QX, ¢g(JX)) >0, VX #0.
Also, J is called Q-compatible if it is Q-tame and

Qpg(JX), ¢pg(JY)) =X, Y), VX, Y eg.
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Using the condition Q-compatible of the structure J, we can define a Riemannian
metric (-, -) on g as follows:

(X, Y) = QX, ¢pg(JY)).

From the above equations, we conclude (¢4(JX), ¢4(JY)) 1= (X, Y).

DEFINITION 5.2. Let (g, [-, -], ¢4, 2) be a symplectic hom-Lie algebra. An almost
para-complex structure K on g is called 2-compatible if

Qpg(KX), py(KY)) = —Q(X, Y), VX, Y eg.

A pseudo-Riemannian metric associated with structure K is determined by
L X, Y »:= Q(¢4(KX), Y) that satisfies

L Pg(KX), pg(KY) >=— < X, Y > .

From Propositions 3.1 and 3.3, we deduce the following.

COROLLARY 5.3. Let J and K be complex and para-complex structures on a
symplectic hom-Lie algebra (g, ), respectively. If J and K are Q-compatible structures,
then we have

X pg(JY) = (pgo )X+, Y),
X K ¢g(KY) = (¢g o K)(X ‘K Y)’

where -, and -, denote the hom-Levi-Civita product associated with (-, -) and < -, - >,
respectively.

DEFINITION 5.4. A hyper-para-Kéhler hom-Lie algebra is a symplectic hom-Lie
algebra (g, [-, -], ¢4, ©2) endowed with a complex product structure {J, K}, such that
J, K are Q-compatible.

Using (-, -) and <, >, we have
(Pg(KX), Y) = Qpg(KX), pg(JY)) =< X, pg(JY) > .

By Theorem 3.5 and taking into account the above definition, we can easily conclude
the following:

(i) g' and g~! are subalgebras isotropic with respect to <, >, and Lagrangian

with respect to 2,
(i) (g, [ ], ¢g. (-, ), J) is a Hermitian hom-Lie algebra,
(iii) (g, [, ], ¢4, <, >, K) is a para-Hermitian hom-Lie algebra,
(v) forany X € g, X - . g' c g'and X -, g=' € g~! (see[13,14] for more details).

EXAMPLE 5.5. We consider the hom-Lie algebra (g, [, -], ¢4) introduced in Example
2.2 endowed with complex product structure given in Example 3.6. We now consider
the bilinear skew-symmetric nondegenerate form 2 as follows:

0040
0 00—-4
-400 0 |[°
0 40 0

A#0. (16)
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Then, we get

Q(pgler), pglez)) =4 = Qer, e3),  Qpgler), pgles)) = —A4 = Q(e, e4),
Q(pgler), pgler)) =0 = Qer, €2),  Qpgler), pyles)) = 0 = Qe eq),
Q(pg(e2), Pgle3)) =0 = Q(ex, €3),  QPg(e3), Pgles)) = 0 = Q(e3, eq),

and

Q[ei, 1. pgler)) + Qles, ex], pglen) + Q[ex. ei], dgle)) =0, i jk=1,2,3,4.

The above relations show that €2 is 2-hom-cocycle, and so (g, [+, -], ¢4, 2) is a symplectic
hom-Lie algebra. Using the above equations, we obtain

Qer, pg(Jer) = Q(ea, pg(Jez) = Qes, pg(Jes) = Qes, Ppg(Jes) = 4,
i.e., the complex structure J is a Q-tame. Also, we get

Q(¢g(]€[), ¢g(‘]ej)) ZQ(e[’ ej)? l’] = 17 25 37 4’
Q(¢Q(Kei)9 d)g(Kej)) = Q(eiv 6’]'), l,] = 17 2a 3s 47

Q(pg(Jer), pg(Je3)) =4 = Qey, e3),
Q(¢g(Jer), pg(Jes)) = — A = Q(ea, eq),

and

Q((ﬁg(Kel)’ ¢g(K€3)) =—A=—-Q(e, e3),
Q(¢pg(Ker), pg(Keq)) =4 = —Q(ea, e4),

i.e., the structures J and K are Q-compatible. Therefore, (g, [-, -], ¢4, ) is a hyper-
para-Kéhler hom-Lie algebra.
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