
BULL. AUSTRAL. MATH. SOC. 2 0 M 3 0 , 03D20 , 2 0 M 0 5 , 20M20

VOL. 63 (2001) [167-175]

ON DIAGONAL ACTS OF MONOIDS

E.F. ROBERTSON, N. RUSKUC AND M.R. THOMSON

It is proved that the monoid Rn of all partial recursive functions of one variable
is finitely generated, and that Rn x Rs is a cyclic (left and right) Rs-act (under
the natural diagonal actions s(a,b) = (sa,sb), (a,b)s = (as,6s)). We also construct
a finitely presented monoid 5 such that S x S i s a cyclic left and right S-act, and
study further interesting properties of diagonal acts and their relationship with power
monoids.

1. INTRODUCTION

Let M be a monoid and let X be a set. We say that X is a right M-act if there
is an action (x, s) •-> xs from X x M into X with the property that x(st) = (xs)t and
xl = x where x € X, s, t € M are arbitrary and 1 is the identity of M. We define the
notion of a left M-act analogously. We say X is a bi M-act if it is both a right and a
left M-act and these actions are linked by

s(xt) = (sx)t (s,t € M, x 6 X).

A right M-act X is generated by a subset U C X if UM = X. Similarly a left
M-act X is generated by a subset U C X if MU = X. A bi M-act X is generated by a
subset U C X if MUM = X. A (right, left or bi) M-act is ct/c/tc if it is generated by a
single element.

For any monoid M, the set M x M can be made into a right, left or bi Af-act by
defining

(x, y)s = (xs, ys), s(x, y) = (sx, sy)

for all x,y,s € M; we refer to these acts as the diagonal right, left, and bi M-acts
respectively. In this paper we consider the question of finite generation of diagonal acts.
If M is infinite, can M x M ever be finitely generated as a right, left or bi M-act? In
the case of an infinite group G, we have that G x G is never a finitely generated right or
left G-act; furthermore, G x G is a finitely generated bi G-act if and only if G has only
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finitely many conjugacy classes. However, the monoid case is different, and we start with
a simple example, due to Bulman-Fleming and McDowell [1].

Let Tn be the monoid consisting of all mappings from N into N under composition.
Now Ts x TN is both a cyclic left and a cyclic right Tn-act. For, let a and /? be mappings
from N into N defined by xa = 2x, and xfi = 2x + 1. Then for any (/, g) € TN x TN
we have (f,g) = (a, 0)h where h : N -»• N is defined by (2m)h = mf, (2m + l)h = mg.
To show that Ts x TN is a cyclic left Tin-act, we first choose a bisection ip : N x N ->• N,
and let (A, fi) be its inverse, where A and /x are mappings from N to N. Then for any
(f,g) GTtixTti we have (f,g) = k(X,/j.) where k = {f,g)ip € TN.

However, we note that TN is not finitely generated, since it is uncountable. In
Section 2 we consider a smaller monoid Rs consisting of all partial recursive functions
from N into N. We show that Rs retains the cyclic diagonal act properties of TN, and
also that it is finitely generated (but not finitely presented). Based on this example, in
Section 3 we construct further diagonal acts with interesting properties.

In Section 4 we explore connections between diagonal acts and finitary power
monoids. Given two subsets A and B of a monoid M, we define their product AB
to be the subset {ab : a € A, b € B} of M. With this multiplication, the set of all finite
subsets of M becomes a monoid, which we denote by Vj{M) and call the power monoid
of M. In particular, we show that T/(Rs) is finitely generated.

2. PARTIAL RECURSIVE FUNCTIONS OF ONE VARIABLE

Let Rs be the monoid of all partial recursive functions of one variable under compo-
sition. For various facts about the set of all partial recursive functions, see for example
[2]. In the proof given in Section 1 that TN X TN is both a cyclic right and a cyclic left
TN-act, we see that a and 0 are recursive, while ip, A and fi may be chosen to be partial
recursive. Furthermore, if / and g are themselves partial recursive functions, then both
h and k are, and so the proof for TN will also work for Rs. So we have the following:

PROPOSITION 2 . 1 . RsxRs is both a cyclic right and a cyclic left Rs-act.

This time however we have:

THEOREM 2 . 2 . The monoid Rs is finitely generated.

PROOF: We use the fact that there exists a universal partial recursive function
<j> : N x N —> N such that for every partial recursive function / : N -» N there is some
i € N such that

x / = (*,*)* ( x € N ) .

We let ip : N x N -»• N be any partial recursive bijection, the standard enumeration of
N x N will do. Let A : N -» N and fi : N -> N be the partial recursive functions such
that (A, fi) is the inverse of ip. Thus (xA, xn)rp = x and ( i , y)ii>X = x, (z, y)xl>fj, = y. We
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define a : N -* N by
xa = (xA, {xX,Xfx)<j>)tj).

Then a is also partial recursive. We define ir and p as partial recursive functions from N
toNby

xp —

We claim that Rn = (?r, p, a, fi). Given a function / € Rn we find t such that x / = (i, x)<j>
for each x. We first note that

(1) (t, x)%l>p = ((t, x)^A + 1 , (i,

and that

(2) (i,x)tfa = ((i,x)VA, ((t.x^A, (i,x)^)<f>)rl> = (i, (i,

Then we have
= (0,
= (i,
= (i,(i,x)<f>)rPn (by (2))
= (i,x)0
= x/ , (by choice of i)

and so Rs is finitely generated as required. D

THEOREM 2 . 3 . The monoid Rn is not finitely presented.

PROOF: Suppose that Rn is finitely presented. Then it can be finitely presented in
terms of the generators 7r, p, a, p, and so we may assume that Rn = (TT, p, a, n \ Q) for
some finite set of relations Q. Let / be a partial recursive function that is not total,
and let m G N be such that xf = (m,x)<f) for all x. For simplicity we define </>n to
be the function mapping x to (n, x)4>. We let A be the singleton set containing / . By
a corollary of the Rice-Shapiro Theorem (see [2, Theorem 2.8 and Corollary 1]) the set
{n G N : 4>n G A} is not recursively enumerable: indeed, if it was, then any extension of /
would also be in A. Now <f>n = irfPan as in the proof of Theorem 2.2. If RN were finitely
presented then there would exist an algorithmic procedure V that always answers yes if
the two words irpF'cru and nfPaf* are equal in Rn, but does not necessarily terminate if
they are not equal. Indeed, one may start from np^an and systematically apply defining
relations until npPafi is obtained, which will happen if and only if the two words are
equal. It now follows that the set {n £ N : <j>n = <f>m} is recursively enumerable: an
algorithm for enumerating it consists of running V for all input pairs {4>m, 4>n) (n € N)
in parallel, and listing those n for which V terminates. We now conclude that the set
{n e N : <frn € A} is recursively enumerable, which is a contradiction. D
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3. FURTHER EXAMPLES OF FINITELY GENERATED DIAGONAL ACTS

THEOREM 3 . 1 . There exists an infinite finitely presented monoid P such that
P x P is a cyclic right P-act and a cyclic left P-act.

PROOF: We construct such a finitely presented monoid P which has Rn as a ho-
momorphic image. Let A = {p, r, s, m} be an alphabet, the letters p, r, s, m representing
the generators 7r, p, a, n of Rs respectively, and let / : A* -» Rs be the corresponding
epimorphism. (As usual, A* denotes the free monoid on A consisting of all words over
A including the empty word 1.) Let a, 6 € A* be such that af = a, bf = 0, where, as
before, a and 0 are the mappings given by xa = 2x and x0 = 2x + 1. For each x € A
let ux,vx € A* be such that (a,0)[uxf] = ({xf)a,0) and (a,0)[vxf] = (a, (xf)0). Also,
let w G A* be such that (a, 0)[wf] = (IN, IN), where IN denotes the identity mapping on
N. We now define Pi to be the monoid defined by the presentation

(3) ( p, r, s, m | aux = xa, bux = b, avx — a, bvx — xb (x € {p, r, s, m}), aw = bw — 1 ) .

Clearly, Pi is finitely presented and has i?N as a homomorphic image, so that it is infinite
We now prove that Pi x Pi is a cyclic right Pi-act. Indeed, for any toi,W2 € A*, with
wi = xix2 ...xk,w2 = yiy2• • • yn fa,Vj € A) we have

auXluX2... uXkvyi... vynw = xxauX2... uXkvm ... vVnw = ...

= xx...xkavyi... vynw = xi.

as a consequence of defining relations, and similarly

buXl... uXkvyi... vyilw = w2.

Therefore Pi x Pi is generated (as a right Pi-act) by (a, 6).

One can now use the same technique and the fact that Rs x ifo is a cyclic left
to add a further 18 relations to (3), obtaining a monoid P such that ifo is a homomorphic
image of P and P x P is both a cyclic right P-act and a cyclic left P-act. D

Our next construction is aimed at demonstrating the independence of properties of
M x M as a right M-act from those of M x M as a left M-act.

Given a monoid M we construct a new monoid C{M) as follows. Let M^ and
M^ be disjoint sets in 1-1 correspondence with M, where s «-> s ^ «-»• s(2) (s 6 M) are
bijections, and let C(M) = M^ U M^2\ We define multiplication on C(M) as follows:

= t{2)

This turns C(M) into a monoid with identity 1(1>; in [3], C(M) is called the constant
extension of M. Now we prove the following facts about C(M).
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THEOREM 3 . 2 . Let M be any monoid, and let C = C{M). Then

(i) C is finitely generated if and only ifMis finitely generated;

(ii) C xC is a finitely generated right C-act if and only ifM x M i s a finitely

generated right M-act;

(iii) ifMis infinite, then C x C is not a finitely generated left C-act.

Before proving this theorem, we make the following simple observation that we shall use

frequently in what follows.

LEMMA 3 . 3 . M x M is a finitely generated (right, left or bi) M-act if and only

if it can be generated byUxU for some finite subset U CM.

PROOF: If M x M is generated by a finite set Y C M x M then take

U = {s € M : (s,t) € Y or ( t , s ) e Y for some t € M}.

The converse is obvious. D

PROOF OF THEOREM 3.2: (i) Suppose that M = (X), and let X™ and X& be the

copies of X in M™ and M<2> respectively. We show that C = (X™ u X™). Indeed, if

t € C with t = s^ , and if s = X\... xn (ij € X) then

The converse follows from the fact that M(1) £ M and that C \ Mw = M(2> is an ideal

ofC.

(ii) It is easy to check that if M x M = (U x U)M then C x C = (Vx V)C where

V = f/(i) u Ui2). Thus if M x M is finitely generated as a right M-act then C x C i s

finitely generated as a right C-act. For the converse, we note that if the C-act C x C

is generated by a set V x V, then the M-act M x M is generated by U x U where

U={u<zM: v.W € V}.
(iii) Suppose CxC = c ( ( ^ 1 ) U *7<2>) x (U™ U 17®)) for some finite U C M.

Let ? € M be arbitrary. By hypothesis we can write (q^Kq®) = tP(uV\vM) for

some t £ M, u,v € U, i,j,k £ {1.2}. From the way the multiplication between the

elements of M^ and M(2> in C is defined, we see that i = j = 1, and k = 2. But then

q(2) _ t(i)w(2) _ y ^ jmjj so g = v € C/. Thus £7 = M is infinite and therefore C x C is

not a finitely generated left C-act. D

COROLLARY 3 . 4 . The monoid C = C(Rn) is finitely generated. Furtiermore,

C x C is finitely generated as a right C-act, but is not finitely generated as a left C-act.

We now describe another monoid construction. Given a monoid M we construct

D(M) to be the direct product of M with its opposite, M'. The elements of M' are in

1-1 correspondence s <->• s' (s € M) with M , and multiplication is given by sY = (ts);.

Then M ' (and hence .D(M)) is finitely generated (respectively finitely presented) if and
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only if M is finitely generated (finitely presented). We now prove the following facts
about D(M).

THEOREM 3 . 5 . Let M be any monoid, and let D = D(M).

(i) If D x D is a finitely generated right (or left) D-act then M x M is both
a finitely generated right M-act and a finitely generated left M-act.

(ii) If M x M is a finitely generated right M-act then D x D is a finitely

generated bi D-act.

P R O O F : (i) Suppose D x D = (U x U)D, where U is finite. We may assume that
U = V xV where V is some finite subset of M, and V is the corresponding finite subset
in M'. We claim that M x M is finitely generated by the set V x V both as a right and
a left M-act. Given p,q £ M, the hypothesis allows us to write

for some r,s € M,Vi€ V. Thus

(4) (p,p') = (vuv'2)(r,sr)

(5) (q,q') = (v3,v'4)(r,sr).

Equating first components in (4) and (5) we see that p = v^r, q = v3r, and so (p, q) =
(vi, vs)r e ( V x V)M. Equating second components in (4) we see that j / = v'2s' in M', and
so p = SV2- Similarly from (5) we obtain q = sv4, and so (p, q) = s(v2, v^) € M(V x V).

(ii) Suppose that M x M = (V x V)M, for some finite subset V of M. Then we
claim that D x D = D(U x U)D, where U = V x V is finite, and so D x D is a finitely
generated bi D-act. To see this, we take two arbitrary elements (a, V) and (c, d') of D,
where a, b, c, d € M. Since M x M is finitely generated as a right M-act, we can find
s,t G M and Vi,V2,v3, u4 e V such that (o, c) = (v\,v3)s and (b, d) = {v2,Vi)t. Then
V = Hv2 and d' = f u4 and so we have

(1,0 (fa, 4), fa. <))(«,!') = ((a,b'),(c,d'))

as required. D

COROLLARY 3 . 6 . The monoid D - D(C{Rn)) is finitely generated. Further-
more, DxD is a finitely generated bi D-act, but is not finitely generated as either a left
or a right D-act.

4. POWER MONOIDS

In this section we investigate links between diagonal acts and power monoids. First
however we prove:
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THEOREM 4 . 1 . IfVf(M) is £nitely generated, then M mast be finitely gener-
ated.

P R O O F : Suppose that Vj(M) is finitely generated with generators the finite sets
n

A\,... ,An- Then M is finitely generated by the set (J At. Indeed, given s € M, by
hypothesis we have

{s} = AjlAh...AJT

and so s = a i . . . o,. for any a* € Ajt. D

THEOREM 4 . 2 . Let M be any monoid. IfPf(M) is finitely generated then M x
M is a finitely generated bi M-act.

P R O O F : Suppose that Vf(M) is finitely generated by the finite sets Ay,... ,An-
We shall show that the bi M-act M x M is generated by the (finite) set U x U where

n
U = U Ai. Let p , q € M be arbitrary, and write

In particular, we have p = x\X2...xr,q = J/1J/2• • • Vr for some Xi,y< € A,;. Thus we have

(6) {p,q} = B1B2...BT

where Bi = {it, j/j} C Ajt C U has at most two elements. Clearly, there must exist at
least one set, Bm say, with precisely two elements. Consider the sets

X = B-i...Bm-i{xm}Bm+i ...BT

If |A"| = 2 then Bm can be replaced by just {xm} with (6) remaining valid. Similarly if
\Y\ = 2 then Bm can be replaced by {ym}. If |A"| = \Y\ - 1, then all B{ with i^m can
be replaced by one element sets {XJ}. Repeating this, if necessary, we obtain

{p,<l} = W • • • {zk-i}{xk,yk}{zk+i} • • •

for some k (1 ^ k < r) and some Zi 6 B< C U. Thus we have either

(p, q) = zx... z f c_i(i*, yk)zk+i • • • ZT G M(U x U)M

or
(p, q) = z i . . . 2jt-i(!/i,a;fc)zfc+i... Zr € M(1/ x [7)M,

completing the proof. D

THEOREM 4 . 3 . Let M be any finitely generated monoid such that M x M is a
cyclic right (or left) M-act. Then V/{M) is finitely generated.
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P R O O F : Suppose M = {X), and that M x M = (a,b)M. We shall prove that
Vf(M) is generated by the set Y = {{a, b}} U {{x} : x € X}. Suppose P e Vf(M). By
induction on \P\ we prove that P can be written as a product of sets from Y. If \P\ = 1
then P is easily seen to be a product of singleton sets. Suppose P = {p\,... ,pn+i}» and
that all sets with at most n elements can be generated by Y. Since M x M = (a, b)M
we may choose elements q\,... ,gn such that (a,b)$ = (j>i,Pi) for 1 < i ^ n - 1 and
(a,b)qn = (pn,Pn+i)- Then we have

{Pi, • • • ,Pn+i} = {a,b}{qx,... ,qn}

and our proof by induction is completed. D

COROLLARY 4 . 4 . Vf(Rs) is finitely generated.

We might hope that the converse to Theorem 4.3 held, that is, that if V/(M) is
nnitely generated then M x M i s a cyclic right or left M-act. In fact this is not the case,
as our next example shows.

PROPOSITION 4 . 5 . LetC = C(.RN) as in Corollary 3.4. Then Vf{C) is Snitely
generated, but C x C is not a cyclic right C-act, and is not even finitely generated as a
left C-act.

P R O O F : Corollary 3.4 gives that C x C is not finitely generated as a left C-act, but
is finitely generated as a right C-act. Suppose C x C were cyclic as a right C-act, that
is, that CxC= (o^, b^)C for i, j € {1,2}, o, b € Rn- Then for generating (p(1), g(1)) to
be possible we would need i = j< = 1, which would make generating (p^ , qW) impossible.
Thus C x C is not a cyclic right C-act.

We saw in Proposition 2.1 that Rn x Rn is a cyclic right Rs-act, with generator
(a, /?), and also a cyclic left ifo-act, with generator (A, /z). By Theorem 2.2 RN is finitely
generated, by the set X say. We shall show that the finite set

generates "Pf(C). Clearly we can generate all singleton sets - if / = f i . . . £r G ifo then
{/(1)} = {d1}} • • • {&>} and {/(»} = {d2)}{dl)} • • - { ^ } . Since R« x RN is a cyclic
left ifo-act we may prove, as in the proof of Theorem 4.3, that any subset P of Rn of n
elements may be written as P = { /}{A,M}"" 1 where / € /fo. Also, if P = {px, . . . ,pn}
then we may let Q = {qi,... ,qn} where qt is chosen so that qt(X, fi) = (pi,Pi), and we
see that P = Q{\ M}- SO we may actually write an n element subset as {/'}{A,/x}m for
any m ~£ n — 1.

Now given a finite subset Z of C we may write Z = [ /UV where C7 C RN
l) and

F C R%P are both finite. By the above, we may write
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for some f,g € RH, m € N. Then it is easy to see that

Thus all that remains to check is that we may generate the sets {p( 2 ) , l j^} for g € Rs.

Choosing h € Rs such that (a,0)h = {g, lN) we see that {g™, l £ } } = {cP\0W}{h<V}.

Thus Vf(C) is finitely generated as required. D

Various questions regarding the relationship between diagonal acts and power
monoids remain unanswered. For example, does the following generalisation of Theo-
rem 4.3 hold: if M x M is a finitely generated left or right Af-act (or perhaps even a
cyclic bi Af-act) then P/ (M) is finitely generated? Theorem 4.2 tells us that if Pf(M)

is finitely generated then M x M must be finitely generated as a bi M-act, but does
there exist a monoid M such that P/{M) is finitely generated, but M x M is not finitely
generated as a left or right M-act? One thing we have not investigated here at all is the
question of finite presentability of power monoids. If M is infinity can V/(M) ever be
finitely presented?
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