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Abstract

We consider the G/G/1 queue as an operator that maps inter-arrival
times to inter-departure times of points, given the service times. For
arbitrarily fixed statistics of service times, we are interested in the existence
of distributions of inter-arrival times that induce identical distributions on
the inter-departure times. In this note we prove, by construction, the
existence of one of such distribution.

QUEUEING THEORY

1. Introduction and notation

Consider a single-server first-come-first-served queue with infinite buffer (G / G /1). For any
j eN := {O, 1, 2, ... }, let t, e IR be the arrival time of the jth customer (tj ~ tj + 1) , T:j =
tj + 1 - tj e IR+ the inter-arrival time between the jth and the (j + l)th customer, and aj the
service time required by the jth customer. The random sequences {T:j , j e~} and {aj , j e ~}

are defined on some common probability space (Q, F, P).
Let Wj, j e ~ be the waiting time of the jth customer between arriving to the queue and

starting to be serviced. Assuming that the queue is initially empty (i.e., roo = 0), the sequence
{wj ' j e N} is specified by Lindley's equations: Wj +l = [wj + aj - T:j]+, j e~, Wo = O([x]+ :=
xl{x > O}, X e IR). The jth customer leaves the queue at time tt = tj + aj + wj e IR, and
r:t = tt+1 - tt e IR + is the inter-departure time between the jth and the (j + 1)th customer. The
sequence {T:t, j e ~} is inductively determined by the equations:

(1) je ~.

From the above we see that there is a well-defined, Borel-measurable mapping F: IR: x
IR:~ IR:, such that

(2) { T:t ' j e ~} = F ( { T:j , j e ~}, {aj , j e ~} ).

Let Po denote the distribution of {aj , j e~} and PTOits joint distribution with {T:j , j e ~}.

Analogously define PT and PT-. Observe that PT- is induced by PTOthrough (2).
The problem we want to study is the following. Given an arbitrarily fixed distribution of

{OJ, j eN}, say Po = P", does there exist a distribution PT of {T:j , j e ~}, such that PT = PT-?
The problem is motivated by the well-known fact that if the a/s are independent and
identically distributed with exponential distribution, and {T:j } is independent of {aj } and
forms a Poisson point process (M/M/l queue), then, under conditions of stationarity and
stability for the queue, {T:t} is also an identical Poisson process (i.e., the input to the queue
and the output are identically distributed).

In this brief note we prove, by construction, the existence of one such distribution PT ,

satisfying PT = PT.' for an arbitrarily chosen Po = r: The constructed distribution is rather
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special, but leads to the formulation, in Section 3, of a general conjecture about the class of
distributions with the above property.

2. The construction

Consider a countably infinite number of queues in series, indexed by the integers k e 1.
Customers leaving the kth queue join the (k + 1)th one. With the kth queue we associate the
sequence of service times {01, j eN}. The random sequences {01, j eN}, k e 1 are
independent and identically distributed with distribution Po, and are defined on the
probability space (COO, F", POO

) . All the queues are initially empty.
Let {t1, j e N} be the sequence of inter-arrival times and {w;, j e N} the sequence of

waiting times at the kth queue (w~ = 0 for every k e 1, since all the queues are initially
empty). Therefore,

(3) w;+I=[w;+o1-1';]+, jeN, k e Z.

The queues being in series, Equation (1) implies

(4) je N, keZ,

and Equation (2),

(5) {1';+1,jeN}=F({1';,jeN}, (o1,jeN}), «cz.
Define now the random mappings Fk({1'i , j e N}) = F( {1'i , j eN}, {a:' j E N}), k e 1, for

any {1'i , j e N} e IR:' and also, for any m, n e Z, m < n,

(6) <1>:' = [Fn- 1
0 Fn-.2

0 • • • 0 Fm+ 1
0 Fm]({0}:1" j e N}),

the symbol 0 denoting composition of mappings. Observe that <1>:' is the inter-arrival times
sequence {1';, j e N} at the nth queue, if the inter-arrival times sequence at the mth queue is
{-rj, j e N} = {0}:11, j eN}. This is equivalent to starting the queueing at queue m - 1 with
zero interarrival times, since {0}:1" j E N} = F m

-
1

( {1'j-l = 0, j E N}).

Theorem. The limit

(7) <l>n = {4>;, j E N} = lim <1>:'
m---+- oo

exists pathwise, for every n EZ. Moreover, the sequences {4>;, j EN}, n EZ are identically
distributed with distribution Pep and, for any nEZ,

(8) {4>;+" j E N} = F( {4>;, j EN}, {a'j, j E N}).

Proof. For any two sequences {xi' j eN}, {Yi' j E N} E IR:', define {xi' j E N}~ {Yi' j eN},
iff Xi ~Yi for every j E N.

Observe that, by (4), the function 1';+1(1';, w;, 0;, 0;+ I) is increasing in 1';, decreasing inw;, and 1';+1 ~ 07+1 for any k EZ, j E N. Also, by (3), the function W;+I(W;, 0;, 1':) is
increasing in w: and decreasing in 1': for any k EZ, i E N. Therefore, by induction on j we can
easily prove that, if {xi' j E N}~ {Yi' j E N}, then F( {xi' j E N}, {a:, j E N}) ~ F( {Yi' j EN},
{a;, j E~} ) ~ {01+11 j E N}, for any k E Z. In view of the above, it is easily seen that,
<1>:' ~ <1>:'-1 for any m, nEZ, m < n. So, <l>n = lim., oo <1>:' exists component-wise.

Since the sequences {a:, j EN}, k EZ are independent and identically distributed, <t>:,:zz
and <1>:' are identically distributed for any Z EZ. Therefore, taking the limits, we see that <t>n+z

and <l>n are identically distributed for any n, Z EZ. Let Pep be this common distribution.
Finally, by (6) we have <1>:,+1 = F(<I>:', {a'j, j E N}) for any m, nEZ, m < n. Also, the

function F is continuous in its first argument in the usual topology on IR:'. Therefore, taking
the limits as m~ -00, we get

<l>n+1 = F(<I>n, {a'j, j E N}) for any n E Z.

This completes the proof of the theorem.
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According to the theorem, <1>1 = F(<I>°, {a7, j E N}). The distribution of {a7, j E N} is Po and
the distribution of both <1>0 and <1>1 is Pq" providing a solution to the problem introduced in
Section 1.

An interesting observation is that, since the sequences {af, j EN}, k ElL are independent
and identically distributed, we have <I>~n and <I>~ identically distributed. Thus, taking the limits
n~ 00, we see that the distribution of <I>~ converges also to Pq, as n~ 00.

It is also interesting to note, that the previous construction would work analogously, if the
sequences a" = {af, j EN}, k ElL were not independent, but the sequence {ak , k ElL} was
just stationary with respect to the transformation (J{ ak} = {ak

+
1

} .

3. Conclusions and further research

In this note we have constructed, for an arbitrarily fixed distribution of the service times Po,
a distribution of the inter-arrival times that induces the same distribution of the inter
departure times. The construction is special indeed. In Equation (6) the interarrival times at
queue m have a rate equal to the service rate, rendering the queue m 'critical' (see Loynes
[2]), and the result about stable M1MII queues is not covered. In particular, the important
question of finiteness of the limit (7) has not been addressed. This could potentially be done
under more restrictive conditions on the service times. However, this is one of the very few
results on this problem, important in view of its connection to the analysis of tandem
networks with a large number of queues. Indeed, consider the queueing network of an infinite
number of queues in tandem, indexed by {I, 2, 3, ... }. Customers leaving the kth queue join
the (k + l)th one. The sequence {ak = {af, j EN}, k E {I, 2, 3, ... }} is stationary with
respect to the transformation (J{ ak} = {a"+1}. The previous sequence can be extended to the
corresponding one {a", k E lL}, which is again (J-stationary and agrees in distribution with the
original one on the positive integers (see Doob [1]). This corresponds to appending fictitious
queues to the system, indexed by negative integers. Initially (t = 0), there is an infinite
number of customers in the infinite-capacity buffer of the first queue and all the other
queues are empty. We let the system evolve according to the tandem queueing discipline,
the customers being dispersed to the following queues. This is equivalent to feeding customers
to the first queue from an infinite-capacity pool, without ever letting that queue become idle.
Following the notation used in the previous section, but working on the (J-stationary sequence
{a", k E Z} now, we note that the sequence of interarrival times in the nth queue is <I>~ and is
identically distributed to <1>;2, due to the stationarity of {a"}. Therefore, we see that passing
through a large number of consecutive queues (n~ (0), the sequence of interarrival times
{T:j En, j E N} eventually converges in distribution to the (J-invariant distribution Pq,.

Concerning the problem posed in this note, the following general conjecture is plausible,
supported by the result proven here. Consider a GIGII queue with sequence of inter-arrival
and service times {(T:j , aj ) , j E Z} being stationary and ergodic under the transformation
8#{(T:j , OJ), j E zj = {(T:j + 1, OJ+1), j E zj. As has been proven by Loynes [2], if E[oo] < E[T:o],
then there exists a unique finite, stationary sequence of waiting times {wj , j E Z}
corresponding to {( T:j , OJ)' j E Z} and thus a uniquely induced finite, stationary sequence of
inter-departure times {T:;, j E Z}, Also, E[ T:o] = E[ T:ci]. We conjecture that, given an
arbitrarily fixed stationary and ergodic sequence of service times {OJ, jElL} and a number
d > E[ 00], there exists a stationary and ergodic sequence of inter-arrival times {T:j , j E Z} with
E[ To] = d, such that the sequence of inter-departure times {T:;, j E Z} is distributed as the
sequence {T:j , j E Z}, This would be a direct generalization of the standard result about stable
MIMll queues.
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