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Abstract Under certain assumptions on g(x), we obtain an asymptotic formula for computing integrals
of the form

F (x, α) =
∫ ∞

−∞
g(t)α exp

(
−

∣∣∣∣
∫ t

x
g(ξ) dξ

∣∣∣∣
)

dt, α ∈ R,

as |x| → ∞. We use this formula to study the properties (as |x| → ∞) of the solutions of the correctly
solvable equations in Lp(R), p ∈ [1, ∞],

−y′′(x) + q(x)y(x) = f(x), x ∈ R, (1)

where 0 � q ∈ Lloc
1 (R), and f ∈ Lp(R). (Equation (1) is called correctly solvable in a given space Lp(R)

if for any function f ∈ Lp(R) it has a unique solution y ∈ Lp(R) and if the following inequality holds
with an absolute constraint cp ∈ (0, ∞): ‖y‖Lp(R) � c(p)‖f‖Lp(R), ∀f ∈ Lp(R).)
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1. Introduction

This paper continues the authors’ work in [2,3,5]. We consider the equation

−y′′(x) + q(x)y(x) = f(x), x ∈ R, (1.1)

where f ∈ Lp(R), p ∈ [1,∞] (L∞(R) def= C(R)) and

0 � q ∈ Lloc
1 (R). (1.2)

By a solution of equation (1.1), we mean any function y such that y, y′ ∈ AC loc(R) and
equality (1.1) hold almost everywhere in R. We also assume that (1.1) is correctly solvable
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in Lp(R). This means (see [6, Chapter III, § 6, no. 2]) that the following assumptions both
hold:

(I) for a fixed p ∈ [1,∞], for any function f ∈ Lp(R) there is a unique solution
y ∈ Lp(R) of equation (1.1);

(II) there is an absolute positive constant c(p) such that the solution y ∈ Lp(R) of
equation (1.1) satisfies the inequality

‖y‖p � c(p)‖f‖p, ∀f ∈ Lp(R). (1.3)

Throughout the paper we assume that the above conditions hold. We always denote by
f an arbitrary function from Lp(R), p ∈ [1,∞], and by y the solution of (1.1) mentioned
in (I) and (II). We denote by c, c(·) absolute positive constants which are not essential
for exposition and may differ even within a single chain of computations. Finally, see § 2
for criteria under which (I) and (II) hold.

Our general goal is to study bounds for the solutions of (1.1) as |x| → ∞. To state the
problem more precisely, denote by Dp the set of solutions of (1.1) with f running over
the surface of the unit sphere Sp = {f : ‖f‖p = 1} in Lp(R), p ∈ [1,∞], and introduce
the following definition.

Definition 1.1. Suppose that equation (1.1) is correctly solvable in Lp(R), p ∈ [1,∞].
A continuous, positive function κp(x) for x ∈ R is called an asymptotic majorant for the
set Dp of the solutions of (1.1) if the following conditions hold:

(1) for any γ > 1 there exists a c(γ) such that for all |x| � c(γ) the inequality

|y(x)| � γκp(x) (1.4)

holds regardless of the choice of a solution y ∈ Dp;

(2) for any γ ∈ (0, 1) and any c, as large as we wish, there is a solution y ∈ Dp and a
point |x0| > c such that |y(x0)| > γκp(x0).

Thus, our goal is as follows: given p ∈ [1,∞], for a correctly solvable equation (1.1) in
Lp(R), find an asymptotic majorant κp(x) for the set Dp of the solutions of (1.1). For
brevity, the function κp(x) is called an asymptotic majorant for the solutions of (1.1).

Note that this problem seems to be new. It can be viewed as a next step after the
study of a natural problem of estimating the solutions y ∈ Dp in the uniform metric on
the whole real axis (see § 2). The difference between the two problems is clear: the new
setting requires a more detailed study of the uniform estimates of the solutions of (1.1)
at infinity. The ultimate goal of such a study of the asymptotic majorant κp(x) allows
one to find bounds, as sharp as possible (in the sense of Definition 1.1), containing all
integral curves of the set Dp as |x| → ∞. We believe that such a priori information
on the asymptotic behaviour at infinity of all solutions from the set Dp may be useful,
for example, for the analysis of computational algorithms for the numerical solution of
equation (1.1).
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We now give a general description of the results of the paper (see § 3 for the precise
statements). Let H̃ be a given set of coefficients q of equation (1.1). The set H̃ is char-
acterized by the condition that its elements satisfy certain local requirements of integral
type together with (1.2) (see § 3). We also need the Otelbaev average q∗ of the function
q (this is a special case of the Steklov average (see § 2)). With this notation, our main
result is the following equality (see Theorem 3.3):

lim
|x|→∞

sup
y∈Dp

q∗(x)1−1/2p|y(x)| = �(p), p ∈ [1,∞], (1.5)

which holds for all q ∈ H̃. Here

�(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if p = 1,

1
(p′)1/p′21/p

if p ∈ (1,∞), p′ =
p

p − 1
,

1 if p = ∞.

(1.6)

We emphasize that the relations (1.5) and (1.6) remain true regardless of the actual
choice of q ∈ H̃, although the class of coefficients H̃ is sufficiently large and contains,
for example, non-differentiable, slowly and rapidly increasing, oscillating functions. From
(1.5) and (1.6) it immediately follows that the asymptotic majorant κp(x) is given by
the following equality:

κp(x) =
�(p)

q∗(x)1−1/2p
, x ∈ R, p ∈ [1,∞], (1.7)

which represents a full solution of the initial problem for equation (1.1) with q ∈ H̃.
This solution can be viewed in the following as the final one, or as a subject for

further investigation, depending on the goal of the application of (1.7). This uncertainty
arises because q∗ in (1.7) is given as an implicit function (see § 2). Therefore, if one
needs more detailed information on κp(x), one must carry out a separate study of the
function q∗ which assumes the conditions on q be independent of the initial problem on
an asymptotic majorant for the solutions of (1.1). For example, for q ∈ H̃ one can apply
formula (1.7), without any additional restrictions on q, to the study of general properties
of the solutions of (1.1), because usually one does not need any explicit expression for
q∗ (see [5]). However, if, given equation (1.1) with q ∈ H̃, one has to find a concrete
expression for κp(x), then formula (1.7) is not very helpful. It only works in particular
cases where, given the initial function q, one can find the explicit value of q∗. Note that
a continuous and positive function κ̃p(x) for x ∈ R is an asymptotic majorant of the
solutions of (1.1) provided

lim
|x|→∞

κ̃p(x)
κp(x)

= 1, (1.8)

and κp(x) is an asymptotic majorant of the solutions of (1.1) (see Lemma 7.3).
The above conclusion allows us to rehabilitate formula (1.7). Indeed, according to (1.8),

in order to find an asymptotic majorant κ̃p(x), it suffices to replace q∗(x) in (1.7) with the
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principal part of its asymptotic expansion at infinity. Thus, we can find an explicit form
of an asymptotic majorant for the solutions of (1.1) under some requirements on q (in
addition to the condition q ∈ H̃). These requirements arise from any conditions under
which one can solve the technical problem of the proof of the asymptotic formula for
q∗(x) as |x| → ∞. Such a problem was considered in [3] for the case 1 � q ∈ Lloc

1 (R).
In § 6 we extend its solution given in [3] to the case (1.2) under new conditions that
are more convenient for practical verification (see Theorem 3.4). See § 7 for technical
details concerning application of Theorems 3.3 and 3.4. In particular, in § 7 we show that
equation (1.1) with the coefficient

q(x) = exp(x2) + exp(x2) cos(exp(x2)) (1.9)

is correctly solvable in Lp(R) for p ∈ [1,∞] and we find an explicit form for the asymptotic
majorant κp(x) of its solutions for all p ∈ [1,∞].

Let us now briefly describe the methods of the present paper. The main roles in the
proof of equality (1.5) are played by

(1) the Davies–Harrell representation for the Green function G(x, t) of equation (1.1)
via its diagonal values ρ(x) def= G(x, t)|x=t, x ∈ R (see § 2),

(2) a priori, sharp-by-order, two-sided estimates for ρ(x) due to Otelbaev (see § 2),

(3) an asymptotic formula for ρ(x) as |x| → ∞ (see § 2),

(4) a new asymptotic formula for computing integrals of the form

Gα(x) def=
∫ ∞

−∞
G(x, t)α dt, α > 0, x ∈ R, (1.10)

as |x| → ∞ (see Theorem 3.1); this formula, which plays an auxiliary role in the
present paper, is stated as a separate assertion which is a result that may be of
independent interest.

2. Preliminaries

In this section, we give a summary of results used in the proofs.

Theorem 2.1 (Chernyavskaya and Shuster [5]). Let p ∈ [1,∞] be given. Equa-
tion (1.1) is correctly solvable in Lp(R) if and only if there is a ∈ (0,∞) such that

q0(a) > 0, q0(a) def= inf
x∈R

∫ x+a

x−a

q(t) dt. (2.1)

In particular, one of the following assertions holds:

(A) for all p ∈ [1,∞] equation (1.1) is correctly solvable in Lp(R);

(B) for any p ∈ [1,∞] equation (1.1) is not correctly solvable in Lp(R).
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Let us introduce Otelbaev’s functions d and q∗ (see [10]). Assume that, together
with (1.2), the following assertion holds:∫ x

−∞
q(t) dt > 0,

∫ ∞

x

q(t) dt > 0 for any x ∈ R. (2.2)

For a given x ∈ R, consider an equation in d � 0:

d

∫ x+d

x−d

q(t) dt = 2. (2.3)

Equation (2.3) has a unique positive solution d(x) (see [2]). Set q∗(x) def= d(x)−2. The
equalities

q∗(x) =
1

d(x)2
=

1
2d(x)

∫ x+d(x)

x−d(x)
q(t) dt =

1
2h

∫ x+h

x−h

q(t) dt

∣∣∣∣
h=d(x)

show that q∗(x) is Steklov’s average (see [12]) of q with special average step h = d(x).

Theorem 2.2 (Chernyavskaya and Shuster [5]). Let p ∈ [1,∞] be given. Equa-
tion (1.1) is correctly solvable in Lp(R) if and only if conditions (2.2) and

q∗
0 > 0, q∗

0
def= inf

x∈R

q∗(x) (2.4)

both hold.

Remark 2.3. From the definition of q∗(x) it follows that the condition q∗
0 > 0 is

equivalent to the condition

d0 < ∞, d0
def= sup

x∈R

d(x). (2.5)

Since, under condition (2.1), requirement (2.2) holds automatically, we obtain the
following conclusion (see [5]).

Lemma 2.4. Under conditions (1.2) and (2.1), we have d0 < ∞.

Lemma 2.5 (Chernyavskaya and Shuster [2]). Suppose that conditions (1.2)
and (2.2) hold. Then there is a fundamental system of solutions (FSS) {u, v} of equa-
tion (2.6),

z′′(x) = q(x)z(x), x ∈ R, (2.6)

for which the following relations hold:

u(x) > 0, v(x) > 0, u′(x) < 0, v′(x) > 0 for x ∈ R, (2.7)

v′(x)u(x) − u′(x)v(x) = 1 for x ∈ R, (2.8)

lim
x→−∞

v(x)
u(x)

= lim
x→∞

u(x)
v(x)

= 0. (2.9)
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Below, the symbols {u, v} stand for an FSS of (2.6) with properties (2.7)–(2.9). Intro-
duce the Green function G(x, t) of equation (1.1):

G(x, t) =

{
u(x)v(t) if x � t,

u(t)v(x) if x � t.
(2.10)

Definition 2.6 (Chernyavskaya and Shuster [4]). Let p ∈ [1,∞] be given. The
inversion problem for equation (1.1) in Lp(R) is called regular if, together with require-
ments (I) and (II) (see § 1), the following holds:

(III) for any f ∈ Lp(R) the solution y ∈ Lp(R) of equation (1.1) is of the form

y(x) =
∫ ∞

−∞
G(x, t)f(t) dt, x ∈ R. (2.11)

Theorem 2.7 (Chernyavskaya and Shuster [4]). Suppose that conditions (1.2)
and (2.2) hold. Then, for any p ∈ [1,∞], the inversion problem for (1.1) is regular in
Lp(R) if and only if d0 < ∞ (see (2.5)).

Thus, we obtain the following conclusion.

Lemma 2.8. Let p ∈ [1,∞]. If equation (1.1) is correctly solvable in Lp(R), then, for
any f ∈ Lp(R), the solution y ∈ Lp(R) of (1.1) is of the form (2.11).

In connection with Lemma 2.8, note that the following two assertions play the main
role in the study of the properties of the solutions of equation (1.1).

Theorem 2.9 (Davies and Harrell [7]). Suppose that conditions (1.2) and (2.2)
hold. Then, for x, t ∈ R, the Green function G(x, t) of equation (1.1) admits the Davies–
Harrell representation

G(x, t) =
√

ρ(x)ρ(t) exp
(

−1
2

∣∣∣∣
∫ t

x

dξ

ρ(ξ)

∣∣∣∣
)

, ρ(x) def= G(x, t)|x=t = u(x)v(x). (2.12)

Theorem 2.10 (Chernyavskaya and Shuster [2]). Suppose that conditions (1.2)
and (2.2) hold. Then the diagonal value ρ(x) of the Green function G(x, t) of equa-
tion (1.1) satisfies Otelbaev’s inequalities:

1
4d(x) � ρ(x) � 3

2d(x), x ∈ R. (2.13)

Remark 2.11. We call relations (2.13) ‘Otelbaev’s inequalities’ because the estimates
of this type were first obtained in [11]. In [11] stronger requirements than (1.2) and (2.2)
were imposed on q, and another more complicated auxiliary function was used instead
of d.
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Let us give an example of a direct application of Theorems 2.9 and 2.10.

Lemma 2.12. Suppose that equation (1.1) is correctly solvable in Lp(R), p ∈ [1,∞].
Then the set Dp of solutions of (1.1) is uniformly bounded on the whole axis:

sup
x∈R

|y(x)| � c(p) < ∞ for all y ∈ Dp. (2.14)

Proof. From (2.5) and (2.13) it follows that

ρ(x) � 3
2d(x) � 3

2d0, x ∈ R =⇒ 1
ρ(x)

� 2
3d0

for x ∈ R.

Hence, from (2.12), (2.5) and (2.13) we get

G(x, t) =
√

ρ(x)ρ(t) exp
(

−1
2

∣∣∣∣
∫ t

x

dξ

ρ(ξ)

∣∣∣∣
)

� 3
2d0 exp

(
−|t − x|

3d0

)
, x, t ∈ R. (2.15)

By Lemma 2.8, estimate (2.15) and Hölder’s inequality for p ∈ (1,∞), p = 1 and p = ∞,
we now obtain, respectively,

|y(x)| �
∫ ∞

−∞
G(x, t)|f(t)| dt �

(∫ ∞

−∞
G(x, t)p′

dt

)1/p′

‖f‖p

� c

(∫ ∞

−∞
exp

(
−p′|t − x|

3d0

)
dt

)1/p′

= c(p) =⇒ (2.14);

|y(x)| �
∫ ∞

−∞
G(x, t)|f(t)| dt � c‖f‖1 =⇒ (2.14);

|y(x)| �
∫ ∞

−∞
G(x, t)|f(t)| dt �

∫ ∞

−∞
G(x, t) dt‖f‖C(R) � c

∫ ∞

−∞
exp

(
−|t − x|

3d0

)
dt

= c =⇒ (2.14).

�

Definition 2.13 (Chernyavskaya and Shuster [3]). Suppose that conditions (1.2)
and (2.1) hold. We say that a function q belongs to the class H (and write q ∈ H) if
there is a continuous function k(x) such that, for x ∈ R, the following relations hold:

(1) k(x) � 2 for x ∈ R, k(x) → ∞ as |x| → ∞;

(2) there is an absolute constant a ∈ [1,∞) such that, for x ∈ R, the inequalities

a−1k(x) � k(t) � ak(x) for t ∈ [x − k(x)d(x), x + k(x)d(x)] (2.16)

hold;
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(3) for x ∈ R, the inequality

Φ(x) def= k(x)d(x) sup
z∈ω(x)

∣∣∣∣
∫ z

0
[q(x + t) − q(x − t)] dt

∣∣∣∣ � c < ∞ (2.17)

holds; here ω(x) = [0, k(x)d(x)], x ∈ R.

Theorem 2.14 (Chernyavskaya and Shuster [3]). Suppose that conditions (1.2)
and (2.1) hold, q ∈ H, and k(x) is the function from Definition 2.13. Then, for all |x| � 1,
we have

ρ(x) = (1 + ε(x)) 1
2d(x), |ε(x)| � c√

k(x)
, (2.18)

|ρ′(x)| � c√
k(x)

. (2.19)

Remark 2.15. In [3], Definition 2.13 and Theorem 2.14 are given for the case

1 � q ∈ Lloc
1 (R). (2.20)

Minor technical changes in the proof allow one to keep the results of [3] when con-
dition (2.20) is replaced by conditions (1.2) and (2.1). These changes arise when the
inequality d0 � 1, which follows from (2.20) (see [3]), is replaced with a more general
inequality, (2.5) (see Lemma 2.4).

Lemma 2.16 (Chernyavskaya and Shuster [5]). Suppose that (1.2) and (2.2)
hold. Then the functions d(x) and q∗(x) are continuous for x ∈ R.

Theorem 2.17. Assume that one can represent q in the form q = q1 +q2, where q1(x)
is continuous for x ∈ R, q1(x) > 0 for x ∈ R, q2 ∈ Lloc

1 (R). Let A(x) = [0, 2q1(x)−1/2].
Consider the functions

h1(x) =
1√

q1(x)
sup

t∈A(x)

∣∣∣∣
∫ t

0
[q1(x + s) − 2q1(x) + q1(x − s)] ds

∣∣∣∣, (2.21)

h2(x) =
1√

q1(x)
sup

t∈A(x)

∣∣∣∣
∫ x+t

x−t

q2(s) ds

∣∣∣∣. (2.22)

If h1(x) → 0, h2(x) → 0 as |x| → ∞, then

d(x) =
1 + ε(x)√

q1(x)
, |ε(x)| � c(h1(x) + h2(x)). (2.23)

Remark 2.18. This result has been obtained in [3] under the additional condition
q1 � 1. The same proof given there (see [3]) is also valid here for Theorem 2.17.
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3. Statement of results

In this section, we present the main results of this paper. The following theorem contains
an asymptotic formula for computing integrals of the form

F (x, α) def=
∫ ∞

−∞
g(t)α exp

(
−

∣∣∣∣
∫ t

x

g(ξ) dξ

∣∣∣∣
)

dt, α ∈ R, (3.1)

as |x| → ∞.

Theorem 3.1. Let g(x) be positive and differentiable for x ∈ R, and suppose that
there is a function s(x) with the following properties:

(a) s(x) is continuous and positive for x ∈ R, and s(x) → ∞ as |x| → ∞;

(b) the equality

lim
|x|→∞

s(x)
xg(x)

= 0 (3.2)

holds;

(c) for all |x| � 1, we have
1

s(x)
� |g′(x)|

g(x)2
; (3.3)

(d) there is ν ∈ [1,∞) such that, for all |x| � 1, we have

1
ν

� s(t)
s(x)

� ν for t ∈ ∆(x) = [∆−(x), ∆+(x)] def=
[
x − s(x)

g(x)
, x +

s(x)
g(x)

]
. (3.4)

Then the following assertions hold:

(A) ∫ 0

−∞
g(t) dt = ∞,

∫ ∞

0
g(t) dt = ∞; (3.5)

(B) for all |x| � 1 and α ∈ R, we have

F (x, α) = 2g(x)α−1(1 + ε(x)), |ε(x)| � c(ν, α)
s(x)

, (3.6)

|c(ν, α)| � 5 + 2ν|α − 1|; (3.7)

(C) for x ∈ R, we have
F (x, 1) = 2. (3.8)

Definition 3.2. Suppose that (1.2) and (2.1) hold, and q ∈ H. Let K be the set of
functions k(x) each of which satisfies all the hypotheses of Definition 2.13. We say that q

belongs to the class H̃ (and write q ∈ H̃) if there is at least one function k(x) ∈ K such
that

lim
|x|→∞

√
k(x)d(x)

x
= 0. (3.9)
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Theorem 3.3. Suppose that (1.2) and (2.1) hold, and q ∈ H̃. Then for all p ∈ [1,∞],
equation (1.1) is correctly solvable in Lp(R) and, in addition, equality (1.5) holds. For
each p ∈ [1,∞], an asymptotic majorant κp(x) for the set Dp of the solutions of (1.1) is
given by equality (1.7).

The following technical assertion gives a practical device which simplifies the verifica-
tion of condition (2.1) for correct solvability of equation (1.1) in Lp(R), p ∈ [1,∞], and
allows one to find an asymptotic for the function d(x) as |x| → ∞. This information is
usually sufficient to check whether q ∈ H̃ and, if this is the case, to find an asymptotic
majorant for the solutions of (1.1) in an explicit form (see Example 7.2).

Theorem 3.4. Suppose that condition (1.2) holds and that q can be represented in
the form

q = q1 + q2, (3.10)

where q1(x) is a positive doubly differentiable function for x ∈ R, and q2 ∈ Lloc
1 (R).

Define

A(x) def=
[
0,

2√
q1(x)

]
, x ∈ R, (3.11)

ĥ1(x) def=
1

q1(x)3/2 sup
t∈A(x)

∣∣∣∣
∫ x+t

x−t

q′′
1 (ξ) dξ

∣∣∣∣, x ∈ R, (3.12)

ĥ2(x) def=
1√

q1(x)
sup

t∈A(x)

∣∣∣∣
∫ x+t

x−t

q2(ξ) dξ

∣∣∣∣, x ∈ R. (3.13)

Then, if
ĥ1(x) → 0, ĥ2(x) → 0 as |x| → ∞, (3.14)

then for every x ∈ R equation (2.3) has a unique positive solution d(x). Moreover, we
have

d(x) =
1 + ε(x)√

q1(x)
, |ε(x)| � 2(ĥ1(x) + ĥ2(x)) for |x| � 1, (3.15)

c−1√
q1(x)

� d(x) � c√
q1(x)

for x ∈ R. (3.16)

In addition, for p ∈ [1,∞] equation (1.1) is correctly solvable in Lp(R) if and only if

inf
x∈R

q1(x) > 0. (3.17)

4. Proof of the asymptotic formula for computing integrals of special type
at infinity

In this section we prove Theorem 3.1. In the following we assume that its conditions are
satisfied and do not include them in the statements of the auxiliary assertions.
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Proof of assertion (A) of Theorem 3.1. Both equalities of (3.5) are checked in a
similar way. Let us prove, for example, the second one. We need the following lemmas.

Lemma 4.1. Consider the segments

σ(x) = [x, σ+(x)] def=
[
x, x + γ

√
s(x)

g(x)

]
, γ ∈ (0,∞), x ∈ R. (4.1)

There exists γ ∈ (0,∞) such that, for all |x| � 1, the following relations hold:

σ(x) ⊆ ∆(x) (see (3.4)), (4.2)

2−1g(x) � g(t) � 2g(x) for t ∈ σ(x). (4.3)

Proof. Condition (a) of the theorem implies that

s0 > 0, s0 = inf
x∈R

s(x). (4.4)

Set γ = (2ν)−1√s0 (see (3.4)). Then inclusion (4.2) can be checked directly. Furthermore,
using (3.3), (4.2) and (3.4) for |x| � 1 and t ∈ σ(x), we get∣∣∣∣ 1

g(t)
− 1

g(x)

∣∣∣∣ =
∣∣∣∣
∫ t

x

g′(ξ)
g(ξ)2

dξ

∣∣∣∣ �
∫ t

x

|g′(ξ)|
g(ξ)2

dξ

�
∫ t

x

dξ

s(ξ)
� ν(t − x)

s(x)
� ν

s(x)
γ

√
s(x)

g(x)

=
1
2

√
s0

s(x)
1

g(x)
� 1

2g(x)
=⇒ (4.3).

�

Let γ be chosen as in Lemma 4.1. For a given x ∈ R, we construct the sequence of
points {xk}∞

k=1 and segments {σk}∞
k=1 as follows:

x1 = x, xk+1 = σ+(xk) = xk + γ

√
s(xk)

g(xk)
, σk = σ(xk), k ∈ N. (4.5)

Lemma 4.2. Let x ∈ R and let {σk}∞
k=1 be the segments constructed by (4.5). Then

the following relations hold:

σk ∩ σk+1 = xk+1, k ∈ N ; [x,∞) =
∞⋃

k=1

σk. (4.6)

Proof. The first equality of (4.6) immediately follows from (4.5). We prove the second
assertion of (4.6) ad absurdum. Assume that it does not hold. Then there is x0 ∈ (x,∞)
such that xk < x0 for all k ∈ N . Since, by construction, the sequence {xk}∞

k=1 is monotone
increasing, it converges to some z � x0. Hence,

∞ < x0 − x �
∞∑

k=1

(xk+1 − xk) =
∞∑

k=1

γ

√
s(xk)

g(xk)
=⇒ lim

k→∞

√
s(xk)

g(xk)
= 0.
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But since the functions s(z) and g(z) are continuous for z ∈ R, we conclude that

0 = lim
k→∞

√
s(xk)

g(xk)
=

√
s(z)

g(z)
�= 0 =⇒ a contradiction.

�

Lemma 4.3. We have ∫ ∞

0

g(ξ)√
s(ξ)

dξ = ∞. (4.7)

Proof. Let x0 � 1, suppose that for x � x0 the assertion of Lemma 4.1 holds, and
let {σk}∞

k=1 be the segments constructed by (4.5) for x1 = x0. Then, using Lemma 4.2,
(4.3) and (3.4), we get

∫ ∞

x0

g(ξ) dξ√
s(ξ)

=
∞∑

k=1

∫
σk

g(ξ) dξ√
s(ξ)

=
∞∑

k=1

∫
σk

g(ξ)
g(xk)

· g(xk)√
s(xk)

·

√
s(xk)
s(ξ)

dξ

�
∞∑

k=1

1
2
√

ν
· g(xk)√

s(xk)

∫
σk

dξ =
∞∑

k=1

γ

2
√

ν
= ∞ =⇒ (4.7).

�

We now obtain (3.5) from (4.7) and (4.4):

∞ � 1
√

s0

∫ ∞

0
g(ξ) dξ �

∫ ∞

0

g(ξ)√
s(ξ)

dξ = ∞.

�

Proof of assertion (C) of Theorem 3.1. Equality (3.8) is an immediate conse-
quence of equalities (3.5). �

Proof of assertion (B) of Theorem 3.1. The proof of equality (3.6) is based on
the study of integrals (4.8) and (4.9) for |x| → ∞:

J1(x, α) =
∫ ∞

x

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt, x ∈ R, α ∈ R, (4.8)

J2(x, α) =
∫ x

−∞
g(t)α exp

(
−

∫ x

t

g(ξ) dξ

)
dt, x ∈ R, α ∈ R. (4.9)

We need some auxiliary assertions.

Lemma 4.4. There exists an m � 1 such that, for |x| � m, the following inequalities
hold:

J1(x, α) � 3g(x)α−1, J2(x, α) � 3g(x)α−1. (4.10)
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Proof. Both inequalities are checked in a similar way. Let us prove the first estimate.
Condition (a) of the theorem implies that there exists an x0 � 1 such that the following
inequality holds:

|α − 1|
s̃(x)

� 1
2 for |x| � x0, s̃(x) = inf

|t|�|x|
s(t). (4.11)

Denote

W (x, b) def=
∫ b

x

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt, b � x, x ∈ R. (4.12)

Let b � x � x0. Integrating by parts, we get

W (x, b) = g(x)α−1 − g(b)α−1 exp
(

−
∫ b

x

g(ξ) dξ

)

+ (α − 1)
∫ b

x

g′(t)g(t)α−2 exp
(

−
∫ t

x

g(ξ) dξ

)
dt. (4.13)

From (4.13), (3.3) and (4.11) it follows that

W (x, b) � g(x)α−1 + |α − 1|
∫ b

x

|g′(t)|
g(t)2

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt (4.14)

� g(x)α−1 + |α − 1|
∫ b

x

g(t)α

s(t)
exp

(
−

∫ t

x

g(ξ) dξ

)
dt

� g(x)α−1 +
|α − 1|
s̃(x)

W (x, b) (4.15)

� g(x)α−1 + 1
2W (x, b). (4.16)

Then from (4.16), we get

W (x, b) � 2g(x)α−1 for b � x � x0. (4.17)

Thus, the integral J1(x, α) converges, and we have the following estimate:

J1(x, α) = lim
b→∞

W (x, b) � 2g(x)α−1, x � x0. (4.18)

Furthermore, repeating the proof of (4.17) for x � −x0, we get

W (x,−x0) � g(x)α−1 +
|α − 1|
s̃(x0)

W (x,−x0) � g(x)α−1 + 1
2W (x,−x0) =⇒

W (x,−x0) � 2g(x)α−1 for x � −x0. (4.19)

Below, we will need estimates for g(x)α−1 for x � −x0. To obtain them, we use (3.3).
Let ξ ∈ [x,−x0]. Then

− g(ξ)
s(ξ)

� g′(ξ)
g(ξ)

� g(ξ)
s(ξ)

=⇒

g(−x0) exp
(

−
∫ −x0

x

g(ξ)
s(ξ)

dξ

)
� g(x) � g(−x0) exp

(∫ −x0

x

g(ξ)
s(ξ)

dξ

)
, x � −x0.

(4.20)
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Denote
c1(x0) = max{g(−x0)−|α−1|, g(−x0)|α−1|}. (4.21)

From (4.20) and (4.21), it follows that

c1(x0)−1 exp
(

−|α − 1|
∫ −x0

x

g(ξ)
s(ξ)

dξ

)
� g(x)α−1 � c1(x0) exp

(
|α − 1|

∫ −x0

x

g(ξ)
s(ξ)

dξ

)
,

x � −x0. (4.22)

The required inequalities for g(x)α−1 now follow from (4.22) and (4.23):

c1(x0)−1 exp
(

−1
2

∫ −x0

x

g(ξ) dξ

)
� g(x)α−1 � c1(x0) exp

(
1
2

∫ −x0

x

g(ξ) dξ

)
, x � −x0.

(4.23)

In the next estimate of J1(x, d) for x � −x0, we use (4.18) and (4.19):

J1(x, α) =
∫ −x0

x

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt +

∫ x0

−x0

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt

+
∫ ∞

x0

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt

= W (x,−x0) + exp
(

−
∫ −x0

x

g(ξ) dξ

) ∫ x0

−x0

g(t)α exp
(

−
∫ t

x0

g(ξ) dξ

)
dt

+ exp
(

−
∫ x0

x

g(ξ) dξ

)
J1(x0, α)

� 2g(x)α−1 + exp
(

−
∫ −x0

x

g(ξ) dξ

)

×
[∫ x0

−x0

g(t)α exp
(

−
∫ t

x0

g(ξ) dξ

)
dt + 2g(x0)α−1 exp

(
−

∫ x0

−x0

g(ξ) dξ

)]
.

(4.24)

Denote by c2(x0) the constant in brackets from (4.24) and set c(x0) = c1(x0)c2(x0)
(see (4.21)). From (4.24) and (4.23), for x � −x0, we now get

J1(x, α) � g(x)α−1
{

2 + c(x0) exp
(

−1
2

∫ −x0

x

g(ξ) dξ

)}
, x � −x0. (4.25)

According to (3.5), there exists m � x0 such that

c(x0) exp
(

−1
2

∫ −x0

x

g(ξ) dξ

)
� 1. (4.26)

Therefore, for x � −m, using (4.25) and (4.26), we get

J1(x, α) � g(x)α−1
{

2 + c(x0) exp
(

−1
2

∫ −x0

−m

g(ξ) dξ

)}
� 3g(x)α−1.

Since (4.18) obviously holds for x � m � x0, the lemma is proved. �
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Corollary 4.5. For x ∈ R, the following estimate holds:

J1(x, α) � c(α)g(x)α−1, α ∈ R. (4.27)

Proof. Let m be chosen as in Lemma 4.4. The functions J1(x, α) and g(x)α−1 are
continuous and positive for x ∈ R, and therefore the function J1(x, α)g(x)1−α attains its
maximum M on the segment [−m, m]. Then by (4.10) we conclude that (4.27) holds for
c(α) = max{3, M}. �

Lemma 4.6. Let |x| � 1, t ∈ [x, ∆+(x)]. Then (see (3.4))

exp
(

− ν

s(x)

∫ t

x

g(ξ) dξ

)
� g(t)

g(x)
� exp

(
ν

s(x)

∫ t

x

g(ξ) dξ

)
. (4.28)

Proof. From (3.2), we get

∆+(x) = x +
s(x)
g(x)

= x

[
1 +

s(x)
xg(x)

]
−→

{
∞, if x → ∞,

−∞, if x → −∞.
(4.29)

Therefore, for all |x| � 1 for ξ ∈ [x, ∆+(x)], we can apply (3.3) and (3.4):

− νg(ξ)
s(x)

� −g(ξ)
s(ξ)

� g′(ξ)
g(ξ)

� g(ξ)
s(ξ)

� ν
g(ξ)
s(x)

=⇒

− ν

s(x)

∫ t

x

g(ξ) dξ � ln
g(t)
g(x)

� ν

s(x)

∫ t

x

g(ξ) dξ =⇒ (4.28).

�

Lemma 4.7. For |x| � 1, the following inequality holds (see (3.4)):

∫ ∆+(x)

x

g(ξ) dξ � s(x)
ν

ln(1 + ν). (4.30)

Proof. For t ∈ [x, ∆+(x)], using (4.28) we get

ν
g(x)
s(x)

� νg(t)
s(x)

exp
(

ν

s(x)

∫ t

x

g(ξ) dξ

)
=⇒

ν = ν
g(x)(∆+(x) − x)

s(x)
�

∫ ∆+(x)

x

νg(t)
s(x)

exp
(∫ t

x

νg(ξ)
s(x)

dξ

)
dt

= exp
(

ν

s(x)

∫ ∆+(x)

x

g(ξ) dξ

)
− 1 =⇒

exp
(

ν

s(x)

∫ ∆+(x)

x

g(ξ) dξ

)
� ν + 1 =⇒ (4.30).

�
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In the next lemma we consider the integral

J̃1(x, α) def=
∫ ∆+(x)

x

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt, x ∈ R.

Lemma 4.8. For all |x| � 1, the following relations hold:

J̃1(x, α) = g(x)α−1(1 + δ(x)), (4.31)

|δ(x)| � c(ν, α)
s(x)

, c(ν, α) � 1 + 2ν|α − 1|. (4.32)

Proof. According to (4.28), for |x| � 1 and t ∈ [x, ∆+(x)] we have

exp
(

−ν|α − 1|
s(x)

∫ t

x

g(ξ) dξ

)
�

(
g(t)
g(x)

)α−1

� exp
(

ν|α − 1|
s(x)

∫ t

x

g(ξ) dξ

)
. (4.33)

Furthermore, for all |x| � 1, obviously the following inequalities hold:

1
2 � 1 + ν|α − 1|

s(x)
, s(x) � 4. (4.34)

Therefore, from (4.33) and (4.34) it follows that

J̃1(x, α) = g(x)α−1
∫ ∆+(x)

x

(
g(t)
g(x)

)α−1

g(t) exp
(

−
∫ t

x

g(ξ) dξ

)
dt

� g(x)α−1
∫ ∆+(x)

x

g(t) exp
(

−
(

1 − ν|α − 1|
s(x)

) ∫ t

x

g(ξ) dξ

)
dt

= g(x)α−1
(

1 − ν|α − 1|
s(x)

)−1[
1 − exp

(
−

(
1 − ν|α − 1

s(x)

) ∫ ∆+(x)

x

g(ξ) dξ

)]

� g(x)α−1
(

1 − ν|α − 1|
s(x)

)

� g(x)α−1
[
1 +

2ν|α − 1|
s(x)

]
. (4.35)

Similarly, using (4.33), (4.34), (4.30) and well-known elementary inequalities (see [1,
Chapter 4, § 14], we get

J̃1(x, α) = g(x)α−1
∫ ∆+(x)

x

(
g(t)
g(x)

)α−1

g(t) exp
(

−
∫ t

x

g(ξ) dξ

)
dt

� g(x)α−1
∫ ∆+(x)

x

g(t) exp
(

−
(

1 +
ν|α − 1|

s(x)

) ∫ t

x

g(ξ) dξ

)
dt
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= g(x)α−1
(

1 +
ν|α − 1|

s(x)

)−1[
1 − exp

(
−

(
1 +

ν|α − 1|
s(x)

) ∫ ∆+(x)

x

g(ξ) dξ

)]

� g(x)α−1
(

1 +
ν|α − 1|

s(x)

)−1[
1 − 1

(1 + ν)s(x)/ν

]

� g(x)α−1
(

1 +
ν|α − 1|

s(x)

)−1(
1 − 1

s(x)

)

�
(

1 − 1 + ν|α − 1|
s(x)

)
g(x)α−1. (4.36)

Relations (4.31) and (4.32) follow from estimates (4.35) and (4.36). �

Lemma 4.9. For all |x| � 1, the following relations hold:

J1(x, α) = g(x)α−1(1 + ε1(x)), (4.37)

|ε1(x)| � c(ν, α)
s(x)

, c(ν, α) � 5 + 2ν|α − 1|. (4.38)

Proof. The following inequalities, where |x| � 1, are based on Lemma 4.9:

J1(x, α) =
∫ ∞

x

g(x)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt

�
∫ ∆+(x)

x

g(t)α exp
(

−
∫ t

x

g(ξ) dξ

)
dt

= J̃1(x, α)

= g(x)α−1(1 + δ(x)). (4.39)

Furthermore, to prove the upper estimate of J1(x, α), we use relations (4.31), (4.32),
(4.27), (4.33) and (4.34):

J1(x, α) = J̃1(x, α) + exp
(

−
∫ ∆+(x)

x

g(ξ) dξ

)
J1(∆+(x), α)

� g(x)α−1(1 + δ(x)) + c(α)g(∆+(x))α−1 exp
(

−
∫ ∆+(x)

x

g(ξ) dξ

)

= g(x)α−1
[
1 + δ(x) + c(α)

(
g(∆+(x))

g(x)

)α−1

exp
(

−
∫ ∆+(x)

x

g(ξ) dξ

)]

� g(x)α−1
[
1 + δ(x) + c(α) exp

(
−

(
1 − ν|α − 1|

s(x)

) ∫ ∆+(x)

x

g(ξ) dξ

)]

� g(x)α−1
[
1 + δ(x) + c(α) exp

(
−1

2

∫ ∆+(x)

x

g(ξ) dξ

)]
. (4.40)

From (4.30), it follows that, for |x| � 1, the following inequality holds:

c(α) exp
(

−1
4

∫ ∆+(x)

x

g(ξ) dξ

)
� 1. (4.41)
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Therefore, using (4.41) and (4.30) for |x| � 1, one can continue estimate (4.40):

J1(x, α) � g(x)α−1
[
1 + δ(x) + exp

(
−1

4

∫ ∆(x)

x

g(ξ) dξ

)]

� g(x)α−1
[
1 + δ(x) +

1
(1 + ν)s(x)/4ν

]

� g(x)α−1
[
1 + δ(x) +

4
s(x)

]

� g(x)α−1
(

1 +
5 + 2ν|α − 1|

s(x)

)
. (4.42)

The assertion of the lemma follows from (4.39) and (4.42). �

Remark 4.10. For x → ∞, Lemma 4.9 follows from the assertions given in [8, Chap-
ter II, § 2, no. 4]. The proof of (4.37) given above works both for x → ∞ and for x → −∞.

To prove assertion (B) of Theorem 3.1, note that one can prove the following lemma
in a similar way to Lemma 4.9,

Lemma 4.11. For all |x| � 1, the following relations hold (see (4.9)):

J2(x, α) = g(x)α−1(1 + ε2(x)), (4.43)

|ε2(x)| � c(ν, α)
s(x)

, c(ν, α) � 5 + 2ν|α − 1|. (4.44)

From Lemmas 4.9 and 4.11 and the obvious equality (see (3.11)),

F (x, α) = J1(x, α) + J2(x, α), x ∈ R,

we get assertion (B). The theorem is proved. �

5. Proof of the theorem on an asymptotic majorant

In this section we prove Theorem 3.3. From now on we assume that its hypotheses
are fulfilled and we do not include them in the statements of the auxiliary assertions.
Without additional comments, we denote by k(x) a function satisfying the requirements
of Definition 3.2. To prove equality (1.5), we need the following lemma.

Lemma 5.1. For any α > 0, for all |x| � 1, the following relations hold:

Gα(x) def=
∫ ∞

−∞
G(x, t)α dt =

d(x)α+1

α2α−1 (1 + ε(x)), (5.1)√
k(x)|ε(x)| � c(α). (5.2)

Proof. From (2.1), for Gα(x) we get

Gα(x) = ρ(x)α/2
∫ ∞

−∞
ρ(t)α/2 exp

(
−α

2

∣∣∣∣
∫ t

x

dξ

ρ(ξ)

∣∣∣∣
)

dt, x ∈ R. (5.3)
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By (2.18), in order to prove (5.1), (5.2), it suffices to obtain an asymptotic formula for
computing the integral F (x, α) (see (3.1)) with the following value of g(x):

g(x) =
α

2
1

ρ(x)
, x ∈ R. (5.4)

Let us verify that in this case one can apply Theorem 3.1. From (5.4) and (2.19), we get,
for all |x| � 1,

|g′(x)|
g(x)2

=
2
α

|ρ′(x)| � 2c

α

1√
k(x)

. (5.5)

Therefore, in connection with Theorem 3.1, we set

s(x) def=
α
√

k(x)
2c

, x ∈ R. (5.6)

Clearly, according to Definitions 3.2 and 2.13, the function s(x) satisfies condition (a) of
Theorem 3.1, and by (5.5) and (5.6) condition (c) also holds. Let us prove that condi-
tions (b) and (d) also hold. Condition (b) is checked with the help of (5.4), (5.6), (2.13)
and (3.9):

0 <
s(x)

|x|g(x)
=

√
k(x)ρ(x)
c|x| � 3α

2c

√
k(x)d(x)

|x| → 0 as |x| → ∞ =⇒ (b).

To check condition (d), note that from (2.13) and Definition 2.13 (1) it follows that, for
all |x| � 1, we have the inclusions

∆(x) =
[
x − s(x)

g(x)
, x +

s(x)
g(x)

]

=
[
x −

√
k(x)ρ(x)

c
, x +

√
k(x)ρ(x)

c

]

⊆
[
x − 3

2c

√
k(x)d(x), x +

3
2c

√
k(x)d(x)

]
⊆ [x − k(x)d(x), x + k(x)d(x)].

Therefore, using (2.16) we conclude that, for all |x| � 1 and t ∈ ∆(x), the following
inequalities hold:

1√
a

�
√

k(t)
k(x)

=

√
s(t)
s(x)

�
√

a =⇒ (d).

Thus, all the hypotheses of Theorem 3.1 are satisfied. Hence, by (5.3), (5.4), (3.6)
and (2.18), we have (see (5.4))

Gα(x) = ρ(x)α/2
∫ ∞

−∞
ρ(t)α/2 exp

(
−α

2

∣∣∣∣
∫ t

x

dξ

ρ(ξ)

∣∣∣∣
)

dt

= ρ(x)α/2
∫ ∞

−∞

(
α

2
1

g(t)

)α/2

exp
(

−
∣∣∣∣
∫ t

x

g(ξ) dξ

∣∣∣∣
)

dt
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= 2
(

α

2

)α/2

ρ(x)α/2g(x)−(α/2)−1
(

1 + O

(
1

s(x)

))

=
4
α

ρ(x)α+1
(

1 + O

(
1√
k(x)

))

=
4
α

(
d(x)

2

)α+1(
1 + O

(
1√
k(x)

))

=
d(x)α+1

α2α−1

(
1 + O

(
1√
k(x)

))
.

�

Let us now check (1.5). By Lemma 2.8 for p ∈ [1,∞] and f ∈ Lp(R), the solution
y ∈ Lp(R) of (1.1) is of the form (2.11). Fix x ∈ R. Then y(x) = (Tf)(x), where T is the
linear functional defined on Lp(R) according to (2.11):

y(x) = (Tf)(x) def=
∫ ∞

−∞
G(x, t)f(t) dt, f ∈ Lp(R). (5.7)

From Lemma 2.12, It follows that the functional T is continuous. Therefore, according
to general statements on the properties of linear continuous functionals defined on Lp(R)
(see [9, Chapter V, §§ 2.2, 2.3, Chapter VI, § 2]), we get

sup
y∈Dp

|y(x)| = ‖T‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ess sup
t∈R

G(x, t), for p = 1,

(∫ ∞

−∞
G(x, t)p′

dt

)1/p′

, p′ =
p

p − 1
, for p ∈ (1,∞),

∫ ∞

−∞
G(x, t) dt, for p = ∞.

(5.8)

From Lemma 5.1 and (5.8) for p ∈ (1,∞) and |x| � 1, it follows that

sup
y∈Dp

|y| = ‖T‖ =
(∫ ∞

−∞
G(x, t)p′

dt

)1/p′

=
[
d(x)p′+1

p′2p′−1

(
1 + O

(
1√
k(x)

))]1/p′

=
d(x)2−1/p

(p′)1/p′21/p

(
1 + O

(
1√
k(x)

))

=
�(p)

q∗(x)1−1/2p

(
1 + O

(
1√
k(x)

))
=⇒ (1.5). (5.9)
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Let now p = 1. First note that according to (2.10) and Lemma 2.5, the following relations
hold:

G(x, t) =

{
u(x)v(t), x � t,

u(t)v(x), x � t

= ρ(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(t)
v(x)

, x � t,

u(t)
u(x)

, x � t

� ρ(x), x ∈ R =⇒ ess sup
t∈R

G(x, t) = ρ(x), x ∈ R. (5.10)

Then (1.5) follows from (5.7), (5.8), (5.10) and (2.18). To prove (1.5) for p = ∞, we have
(according to (5.8)) to repeat the chain of computation (5.9) with p′ = 1. Equation (1.5)
is thus proved. The assertion of the theorem on the representation of the asymptotic
majorant κρ(x) of solutions of (1.1) in the form (1.7) is a standard consequence of
equality (1.5) and the definitions of limit and supremum. �

6. Proof of the asymptotic formula for computing Otelbaev’s function for
|x| → ∞

Below we prove Theorem 3.4. We need the following lemma.

Lemma 6.1. Under the conditions of Theorem 3.4, we have (see (2.21) and (3.12))

h1(x) � 2ĥ1(x), x ∈ R. (6.1)

Proof. The following relations are based only on the definition of h1(x) (see (2.21)),

h1(x) =
1√

q1(x)
sup

t∈A(x)

∣∣∣∣
∫ t

0
(q1(x + s) − 2q1(x) + q1(x − s)) ds

∣∣∣∣
=

1√
q1(x)

sup
t∈A(x)

∣∣∣∣
∫ t

0

∫ s

0

∫ x+ξ

x−ξ

q′′
1 (τ) dτ dξ ds

∣∣∣∣
� 1√

q1(x)
sup

ξ∈A(x)

∣∣∣∣
∫ x+ξ

x−ξ

q′′
1 (τ) dτ

∣∣∣∣ · sup
t∈A(x)

∫ t

0

∫ s

0
dξ ds

= 2ĥ1(x).

Equality (3.15) is implied now from (6.1) and Theorem 2.17. To prove (3.16), we note
that these inequalities hold when x /∈ [−c, c], c � 1 (see (3.15)). The function

f(x) def= d(x)q1(x), x ∈ [−c, c],

is continuous and positive for x ∈ [−c, c] (see Lemma 2.16). Hence, its minimum
m and maximum M on the segment [−c, c] are finite positive numbers. Let c1 =
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max{c, m−1, M}. Then c−1
1 � d(x)q1(x) � c1 for x ∈ R. Finally, criterion (3.17) for

correct solvability of equation (1.1) in the spaces Lp(R), p ∈ [1,∞], follows from (3.6)
and Theorem 2.2. �

7. Examples

In this section, we give examples of applications of Theorems 3.1, 3.3 and 3.4.

Example 7.1. Using Theorem 3.1, we find an estimate (for |x| → ∞) of the integral
F (x, α) with g(x) = exp(x2) , x ∈ R, α ∈ R (see (3.1)). In this case the function g(x) is
positive and differentiable for x ∈ R and, in addition,

|g′(x)|
g(x)2

=
2|x|
ex2 , x ∈ R. (7.1)

Let us verify that the function

s(x) =
ex2

8
√

1 + x2
, x ∈ R,

satisfies conditions (a)–(d) of Theorem 3.1. Indeed, s(x) is continuous and positive for
x ∈ R, s(x) → ∞ as |s| → ∞, and

lim
|x|→∞

s(x)
xg(x)

= lim
|x|→∞

1
8x

√
1 + x2

= 0,

1
s(x)

=
8
√

1 + x2

ex2 � 2|x|
ex2 =

|g′(x)|
g(x)2

, x ∈ R.

Hence, conditions (a)–(c) of the theorem hold and it remains to check that condition (d)
holds. Let us find ∆(x) (see (3.4)):

∆(x) =
[
x − s(x)

g(x)
, x +

s(x)
g(x)

]
=

[
x − 1

8
√

1 + x2
, x +

1
8
√

1 + x2

]
. (7.2)

Let t ∈ ∆(x). Then, by Lagrange’s formula, we have

s(t) = s(x) + s′(ξ)(t − x), x ∈ R, (7.3)

where ξ lies between t and x. Let

M(x) = max
t∈∆(x)

s(t)
s(x)

, m(x) = min
t∈∆(x)

s(t)
s(x)

. (7.4)

Furthermore, with our choice of s(x) we get

|s′(x)|
s(x)

=
∣∣∣∣2x − x

1 + x2

∣∣∣∣ = |x|
∣∣∣∣2 − 1

1 + x2

∣∣∣∣ � 2|x|, x ∈ R. (7.5)
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Therefore, from (7.3)–(7.5) it follows that

M(x) = max
t∈∆(x)

|1 +
s′(ξ)
s(x)

(t − x)|

� 1 + max
t∈∆(x)

|s′(ξ)|
s(ξ)

· s(ξ)
s(x)

· 1
8
√

1 + x2

� 1 +
M(x)

8
√

1 + x2
max

ξ∈∆(x)
2|ξ|

� 1 +
M(x)

4
√

1 + x2

[
|x| +

1
8
√

1 + x2

]

= 1 +
M(x)

4

[
|x|√

1 + x2
+

1
8(1 + x2)

]

� 1 +
M(x)

4
(1 + 1

8 ) = 1 + 9
32M(x) =⇒ M(x) � 32

23 , x ∈ R. (7.6)

Let us now use (7.6) to estimate m(x):

m(x) = min
t∈∆(x)

∣∣∣∣1 +
s′(x)
s(x)

(t − x)
∣∣∣∣

� min
t∈∆(x)

[
1 − |s′(ξ)

s(ξ)
· s(ξ)
s(x)

|t − x|
]

� 1 − M(x)
8
√

1 + x2
max

ξ∈∆(x)
2|ξ|

� 1 − 8
23

[
|x|√

1 + x2
+

1
8(1 + x2)

]

� 1 − 8
23 (1 + 1

8 ) = 14
23 > 1

2 , x ∈ R. (7.7)

Thus, using (7.6) and (7.7), we get

1
2 � m(x) � s(t)

s(x)
� M(x) � 2, t ∈ ∆(x), x ∈ R. (7.8)

Since all the hypotheses of Theorem 3.1 are satisfied, we conclude that, for α ∈ R and
all |x| � 1, the following equality holds:

F (x, α) =
∫ ∞

−∞
exp(αt2) exp

(
−

∣∣∣∣
∫ t

x

exp(ξ2) dξ

∣∣∣∣
)

dt

= 2 exp((α − 1)x2)(1 + O(x exp(−x2))). (7.9)

We emphasize that the constant in the symbol O(·) depends only on α and is absolute.

Example 7.2. Using Theorems 3.3 and 3.4, we find an asymptotic majorant κp(x)
for solutions of equation (1.1) with coefficient

q(x) = ex2
+ ex2

cos ex2
, x ∈ R. (7.10)
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Let us first establish correct solvability of this equation in Lp(R), p ∈ [1,∞]. To do this,
let us find asymptotic estimates of d(x) for |x| → ∞. According to (3.10), set

q1(x) = ex2
, q2(x) = ex2

cos ex2
, x ∈ R. (7.11)

Below we repeatedly use the following inequalities:

c−1 � q1(t)
q1(x)

=
et2

ex2 � c for t ∈ ∆̃(x), x ∈ R, (7.12)

c−1 � q′′
1 (t)

q′′
1 (x)

=
1 + 2t2

1 + 2x2

et2

ex2 � c for t ∈ ∆̃(x), x ∈ R, (7.13)

c−1 � |t|
|x| � c for t ∈ ∆̃(x), |x| � 1, (7.14)

c−1 � 1 + t2

1 + x2 � c for t ∈ ∆̃(x), x ∈ R. (7.15)

Here

∆̃(x) =
[
x − 4(1 + x2)

ex2/2 , x +
4(1 + x2)

ex2/2

]
, x ∈ R.

Elementary inequalities (7.12)–(7.15) are checked for |x| � 1 in the same way as (7.8),
and, on every infinite interval, estimates (7.12), (7.13) and (7.15) follow from continuity
and positivity for x ∈ R of the functions under consideration. According to Theorem 3.4,
we estimate ĥ1(x) and ĥ2(x) for |x| → ∞. We have (see (7.13))

ĥ1(x) =
1

q1(x)3/2 sup
t∈A(x)

∣∣∣∣
∫ x+t

x−t

q′′
1 (ξ) dξ

∣∣∣∣
=

2
e3x2/2 sup

t∈A(x)

∣∣∣∣
∫ x+t

x−t

(1 + 2ξ2)eξ2

(1 + 2x2)ex2 (1 + 2x2)ex2
dξ

∣∣∣∣
� c

1 + x2

ex2 , x ∈ R =⇒ ĥ1(x) � c
1 + x2

ex2 , x ∈ R.

Below, in order to estimate h2(x) for |x| � 1, we use the second main theorem (see [13,
Chapter 12, § 12, no. 3] and (7.14):

ĥ2(x) =
1√

q1(x)
sup

t∈A(x)

∣∣∣∣
∫ x+t

x−t

q2(ξ) dξ

∣∣∣∣
=

1
ex2/2 sup

t∈A(x)

∣∣∣∣
∫ x+t

x−t

2ξeξ2
cos eξ2

dξ

2ξ

∣∣∣∣
� c

|x|ex2/2 sup
[α,β]⊆∆̃(x)

∣∣∣∣
∫ β

α

2ξeξ2
cos eξ2

dξ

∣∣∣∣
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=
c

|x|ex2/2 sup
[α,β]⊆∆̃(x)

∣∣∣∣
∫ β

α

d(sin eξ2
)
∣∣∣∣

� c

|x|ex2/2 =⇒ ĥ2(x) � c

|x|ex2/2 , |x| � 1.

Thus, ĥ1(x) → 0, ĥ2(x) → 0 as |x| → ∞, and therefore by Theorem 3.4, we get

d(x) =
1 + ε(x)

ex2/2 , |ε(x)| � c

|x|ex2/2 for |x| � 1, (7.16)

c−1 1
ex2/2 � d(x) � c

ex2/2 , x ∈ R. (7.17)

In addition, since q1(x) = ex2 � 1 for x ∈ R, in this case equation (1.1) is correctly
solvable in Lp(R) for p ∈ [1,∞] (see (3.17)).

In order to apply Theorem 3.3, we now establish that q ∈ H̃. Set (see Definitions 2.13
and 3.2)

k(x) def= 2(1 + x2), x ∈ R. (7.18)

Let us check that with such a choice of k(x) all requirements of Definition 2.13 are
satisfied. Clearly, condition (1) of this definition is satisfied by the definition of k(x), and
condition (2) is satisfied because of (7.15)–(7.17). It remains to check inequalities (2.17).
Denote

Φ1(x) = k(x)d(x) sup
t∈ω(x)

∣∣∣∣
∫ t

0
[q1(x + ξ) − q1(x − ξ)] dξ

∣∣∣∣, x ∈ R, (7.19)

Φ2(x) = k(x)d(x)
[

sup
t∈ω(x)

∣∣∣∣
∫ x

x−t

q2(ξ) dξ

∣∣∣∣ + sup
t∈ω(x)

∣∣∣∣
∫ x+t

x

q2(ξ) dξ

∣∣∣∣
]
, x ∈ R, (7.20)

where, as in (2.17), ω(x) = [0, k(x)d(x)], x ∈ R. Then for x ∈ R, the following obvious
inequality holds:

Φ(x) = k(x)d(x) sup
t∈ω(x)

∣∣∣∣
∫ t

0
[q(x + ξ) − q(x − ξ)] dξ

∣∣∣∣ � Φ1(x) + Φ2(x), (7.21)

and to prove (2.17) it is sufficient to show that the functions Φ1(x) and Φ2(x) are uni-
formly bounded for x ∈ R. The following relations hold for |x| � 1 because of inequali-
ties (7.12), (7.14) and (7.16):

Φ1(x) � c(1 + x2)
ex2/2 sup

t∈ω(x)

∣∣∣∣
∫ t

0
[q1(x + ξ) − q1(x − ξ)] dξ

∣∣∣∣
=

c(1 + x2)
ex2/2 sup

t∈ω(x)

∣∣∣∣
∫ t

0

∫ x+ξ

x−ξ

q′
1(s) ds dξ

∣∣∣∣
=

c(1 + x2)
ex2/2 sup

t∈ω(x)

∣∣∣∣
∫ t

0

∫ x+ξ

x−ξ

2ses2
ds dξ

∣∣∣∣
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� c(1 + x2)|x|ex2/2 sup
t∈ω(x)

∣∣∣∣
∫ t

0

∫ x+ξ

x−ξ

ds dξ

∣∣∣∣
=

c|x|(1 + x2)3

ex2/2

� c < ∞, |x| � 1. (7.22)

Let us now estimate the first summand in (7.19). (The second one is estimated in a
similar way.) Now, for |x| � 1, we use the second mean theorem and (7.16):

k(x)d(x) sup
t∈ω(x)

∣∣∣∣
∫ x

x−t

q2(ξ) dξ

∣∣∣∣
� c(1 + x2)

ex2/2 sup
t∈ω(x)

∣∣∣∣
∫ x

x−t

2ξeξ2
cos eξ2

dξ

2ξ

∣∣∣∣
� c(1 + x2)

|x|ex2/2 sup
[α,β]⊆∆̃(x)

∣∣∣∣
∫ β

α

2ξeξ2
cos eξ2

dξ

∣∣∣∣
=

c(1 + x2)
|x|ex2/2 sup

[α,β]⊆∆̃(x)

∣∣∣∣
∫ β

α

d(sin eξ2
)
∣∣∣∣

� c(1 + x2)
|x|ex2/2 =⇒ Φ2(x) � c(1 + x2)

|x|ex2/2 � c < ∞, |x| � 1. (7.23)

Thus, according to (7.21)–(7.23), there exists c � 1 such that Φ(x) � c < ∞ for |x| � c.
Since the function Φ(x) is continuous for x ∈ R (see Lemma 2.16), Φ(x) is bounded on
the segment [−c, c] and is hence uniformly bounded for x ∈ R. Hence, q ∈ H. From (7.16)
we conclude that (3.9) holds,

lim
|x|→∞

√
k(x)d(x)

x
= lim

|x|→∞

√
2(1 + x2)(1 + ε(x))

xex2/2 = 0,

and therefore q ∈ H̃. According to Theorem 3.3, the asymptotic majorant κp(x) of solu-
tions of (1.1) is given by (1.7) for all p ∈ [1,∞].

We now need the following simple assertion.

Lemma 7.3. Suppose that for p ∈ [1,∞] equation (1.1) is correctly solvable in Lp(R)
and the function κp(x) is an asymptotic majorant of its solutions. Then, if a positive
and continuous function κ̃p(x) for x ∈ R satisfies condition (1.8), it is also an asymptotic
majorant of solutions of (1.1).

Proof. Let γ > 1. Choose ε > 0 so small that

γ1 = γ(1 + ε)−1 > 1.

From (1.8) it follows that there exists c1(ε) such that

κp(x) � (1 + ε)κ̃p(x) for |x| � c1(ε).
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From Definition 1.1, we find that there exists c2(γ1) such that, for all |x| � c2(γ1), regard-
less of y ∈ Dp, the following inequality holds:

|y(x)| � γ1κp(x).

Let c(γ) = max{c1(ε), c2(γ1)}. Then, for |x| � c(γ), we get

|y(x)| � γ1κp(x) � γ1(1 + ε)κ̃p(x) = γκ̃p(x), y ∈ Dp,

i.e. condition (1) of Definition 1.1 is satisfied.
Consider condition (2) of this definition for κ̃p(x). Suppose it is not satisfied. Then

there exists γ0 ∈ (0, 1) such that, for all |x| � c1(γ0) � 1, the following inequality holds:

|y(x)| � γ0κ̃p(x) for y ∈ Dp. (7.24)

Choose ε > 0 so small that γ1 = (1 + ε)γ0 < 1. From (1.8) it follows that there exists a
c2(ε) such that

κ̃p(x) � (1 + ε)κp(x) for all |x| � c1(ε). (7.25)

Let c(γ0) = max{c1(γ0), c2(ε)}. Then, from (7.23) and (7.24), for all |x| � c(γ0), regard-
less of y ∈ Dp, we get

|y(x)| � γ0κ̃p(x) � γ0(1 + ε)κp(x) = γ1κp(x) =⇒ a contradiction.

Condition (2) of Definition 1.1 is also satisfied, and therefore κ̃p(x) is an asymptotic
majorant of the solutions of (1.1). �

From Lemma 7.3, (7.16) and (1.7), we conclude that the function (see (1.6))

κp(x) =
�(p)

e(1−(1/2p))x2 , x ∈ R, p ∈ [1,∞],

is an asymptotic majorant of the solutions of equations of (1.1) in the case (7.10).
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