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ON THE TRACE OF HECKE OPERATORS
FOR CERTAIN MODULAR GROUPS

MASATOSHI YAMAUCHI

Introduction.

The trace of Hecke operators with respect to a unit group of an order
in a quaternion algebra has been given in Eichler [1], [2] in the case when
the order is of square-free level. The purpose of this note is to study the
order of type (g1, ¢s gs) (see text 1.1), in the case, of cube-free level, and to
give a formula for the trace of Hecke operators in the case g; = 2.

Notation.

Z, Q, R denote the ring of rational integers, the field of rational num-
bers, and the field of real numbers, respectively. Q, denotes the p-adic
closure of @ and Z, the ring of integers in Q,. R being a ring, My(R) de-
notes the full matrix ring over R of degree 2.

1. The order of type (q;, ¢ ¢s)

1.1. Let A be a quaternion algebra over @ and ¢} = d(A4/Q) be its dis-
criminant. For every prime number », 4,® Q, is a division algebra over
Q

Q, or A, MyQ,) according as plq, or plq,. Let g, g, be square-free posi-
tive integers such that (¢, ¢;) =1 for i #j, 1<i, j=<3. We then define
the order © of type (g1, ¢», ¢s) which satisfies the following properties:

i) 9O, = D@Z17 is a maximal order in A, if pfq,q.q;,

ii) 9, is the unique maximal order in the division algebra A, if p/g,,

i) 0,2 ((? )eMiz,)lc=0 (mod )}, if pla,

iv) D, = {(Z g)eMz(Z,,HCEO (mod pz)], if plqs,
In this note we consider the order of type (g, g gs) exclusively.
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1.2. The local properties of the order of type (g, ¢ 1), in our nota-
tion, have been investigated by [1], [2]. So we study the property of O,
for plg,. After fixing the isomorphism we assume O, = [(Z l?)eMz(Zp)ICEO
{mod p2)}, and write symbolically ©, = <g’7;) g:). Let U, be the unit group
of O,; then according to the elementary divisor theory, we find that every
double coset U,aU, modulo scalar matrix (a€D,) is one of the following

types:
» o O, @ U5 5e)Un
® 03 D0, @=), @ U, L, @=,
® Us(ye 3, @=0), ® Us(pe 0)Us (@=2),
@ U5 P (a=0), ® U8 9e)Us (a=1),
O U, TP,

and the degree (the number of left representatives) of U,alU, is calculated
for the above nine cases as follows:

€L 9% (2 % 8 p*—2p*Y, @) p*—p*Y
6 »% 6 p*7% (7)) p*tt—1p% (8 p*—p°,

9 2@ ‘“;)g?"l“ =1 ifais odd,

(p — 1)(p®*"* — p —2)
p+1 ’

if a is even.

By decomposing these double cosets into the sum of left representatives, we
see that every integral left ©,-ideal with norm »” is one of the following

types;

(1) D,,(ga ;;), t mod p°, a+b=mn, a b=0,

(ii) D,,(go g’a>, t mod p**%, a-+b=mn, a=0, b=2,
(i) sp(giﬂv ‘]’)b), 1=v=<p—1, atb=mn a>1 b=0,
@) 0,5 &), 1sv=p—1 a+b=n a=0, b2
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; a+1 b —1=0 d pr-e-b-2
(V) Dp<£a+2x £b+1y>9 ry (mo » )’
2y —1 %0 (mod pr-e—-),

z, y mod pre~*"l gz, y : units,
a+b+2=<mn, a b=0.

2. The case ¢; =2
2.1. Hereafter we assume ¢; =2, hence O is of type (qi, gz 2).

Lemma 1. The group of integral two-sided O, =0 ® Z, ideals modulo scalar
z
tdeals is isomorphic to the symmetric group of degree 3, hence its order is 6.
Proof. Since for any integral two-dsied D, ideal It = D,a = aD; (a€D,),

the degree of U,aU, should be 1, hence the generator a of M is, according
to the elementary divisor theory given in 1,2, one of the following forms:

=0 D=0 o) e=( 2 == 2)
$ﬂ=<i (l)), &:té=n$7r=(i 0,

We see easily that (x¢)® = (&) =¢, and z?=¢ =, modulo scalar matrix.
Hence we obtain Lemma 1.

2.2. Let g be an order in a quadratic field K = Q/4d) (d : a squarefree
integer); then we may put g = Z[1, w] and o = fo, (f >0) where [1, o,] is
the canonical Z-basis of the maximal order g, in K, namely

{ Q+va)2, ifd=1 (mod 4),

Wy = __

vd ., ifd=2, 3 (mod 4).

The discriminat D of g is D = f2D,, where D, =d or 4d according as d=1

or 2, 3 mod 4. Now for a prime p, we define the modified Legendre symbol
as follows:

5

2.3. Let K be a quadratic subfield of A and g be an order in K; then
we say g is optimally embedded in © if g =9ONK. It is easy to see that g
is optimally embedded in © if and only if g, = 9,nK, for every p. Now
we shall prove the following theorem which is essential to give a formula

1 { 1, if Dp?eZ and Dp~2=0, 1 (mod 4),

(”f)D—) the Legendre symbol, otherwise.
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for the trace of Hecke operators, and this was proved for the order of type
(Qu G2 1) bY [2]-

TrEOREM 1. Let O and O’ be order of type (qi, qu 2) and g be an order of
a quadratic subfield of which is optimally embedded in both © and O'. Then there
exists an ideal o of @ such that Oa = aQ’. Conversely, if g is opiimally embedded in
O and if there exists an g-ideal such that Oa = oD’ then g is also optimally embedded
wm Q.

Proof. The second assertion holds trivially as it is contained in [2). So
we examine the local behaviour of orders to prove the first assertion. For
p =2, we may assume O, = D®Zz Z2 Zz) Since D} is isomorphic to

D,, there exists a€ A4, such that a lﬁga = Sz. Under this situation we shall
show that there exists =g ® Z, such that D,8 = 0;. First, we assume a =
z

( (r >0). Put g, =21, o], and fix v to be v = (20 g>692 after a sui-
table translatlon; since g, is embedded in O, optimally, we see (b, ¢, d), =1,
where (, , ), denotes the g-c-d-in Z,. g, is also optimally embedded in a~!
D = 0}, and ava™ = /2”2c 2-117) hence (2774, 27¢, d) = 1. For the proof
of existence of =g, such that D,8 = D5, we consider three cases.

case 1. (d, 2) =1. Take p=g, such that,8=2'—*d+w=(‘21;_d gr .

Then fa™! = (2 —d b X 2_r> (ZT —d f—rb). Since 2" — d is a unit in
Zz, Ba—l = SEUz hence 2ﬁ ,532801 = Sa = aD, = ﬁD,.

case 2. (d, 4) =2. Take p=2""2—d + w=g, then fa™! = Z;H —d 2—72 .

Now put  =ér = i (1) (n : an element which generates a two-sided D;-ideal

by Lemma 1), then Ba~lp~! = (2-’b 2727 — 24[’) where # =22 —d, As
(d, 4 =2, 2"b and ¢ — 2 are both units in Z, and 271(2"'u — 2-"b)Z,. There-
fore Ba !t = €U, DB = Vapr = 70,a = paD}; = O3,

case 3. (d, 4 =4. Takef=—d+ v<Eg, B = (;;d 8), and z = (2 (1)>, then
Ba~iz™! = (7 ‘.6b 4_11), in this case 27"b, and ¢ are units in Z,, Ba”z"! =¢e€
U, hence D, = Oma = 20sa = zaD} = 0;. Thus we have proved the exi-
stence of Beg, such that 0.8 = g0} for the case a = (0 27) As for the se-
cond step, we shall show that if the above assertion is true for an a€A4,,
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then the assertion is true also for the following elements: (1) «; : the left re-
presentative of U,al,, (2) af : here 7 a generator of a two-sided integral O,-
ideal (3) a™'. Because, for the type (1) by a suitable element ecU,, a = a,
and g is optimally embedded in © andin «;7'O«;. Then &' ge is optimally
embedded in © and in «7'Da =9’. For the type (2), 7g,7~! is optimally em-
bedded in 707 = O and in «'Oa = O’. For the type (3), alg,a is opti-
mally embedded in a™'Qa =90’ and in ©. Hence in any case there exists
B=g, such that 0,8 =p89;. Let 1r=<2 (1)>, &= g ;) be as in Lemma 1.

Then for a = <ga gb), our assertion is true by (1), this is also valid for the

following elements and the left representatives of their double cosets with U,
a +1 a a

on account of (1) and (2). az = (29+2 g , af = (28 %b+1>’ axé = (29#2 ng)»

abné = %::; 29+l>- After all we only have to check for « =<i 1+§r>.

According to the condition that g, = ZJ1, ], with o = ( 4 fl,)EDgg g; is opti-
mally embedded in O, and in a, and we see easily that 4 is a unit in Z,.
: . _ _ o« . 1 r
Take 8= —d + weg,; then —2r*2pa~! = <8c2(d + 2b) 2—b4-lc_(1( +.+2?))d), hence
there exists eeU, such that —2r*%fa~! = (ﬁ {m) (f:a unit in Z,). Since
our assertions holds, for a’ =(g {m), it is easy to see that ©.8 = fa™'O,0.
This completes our that proof there exists f=g, such that 0,8 = g0} for any
ac A, which satisfies Oj = a™'O,e.  For other prime p #2, it is proved in
[2] that there exists 8,=ga, such that ©,8, = 8,95 and B, is a unit for al-
most all primes p. Hence the g-ideal a = ng,8, serves our theorem with

52=ﬁ-

2.4, Let g and D be as in 2.2, and O be of type (g1, ¢» 2), then the
criterion for g, = D,NK, is described as follows.

LemMmA 2. g, is optimally embedded in O, if and only if {—?—} =1.

Proof. Suppose g, =0,NK, put O, = (‘% gz), g, = Z,[1, 0], and o =,

% %)e9. Then the discriminant of g, in Z, is ¢* + 16bc.  Hence if (d,

2) =1, then d*=1 (mod 8), this implies {—?—] = (ﬁéﬁéc—) =1, andif (d,2)

=2, then (d?2+ 16bc)/4 = (d[2)* + 4bcEZ, andas 0, 1 (mod 4), therefore {-—12—)—]

=1. Conversely, if {iz)—] =1, we can show that g, = ZJ[1, ] is optimally
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embedded in an order ©; which is isomorphic to D; = (Z4§ g:) Put namely
0= (2 Z), then the discriminant of g, is d?+ bc. If (d, 2) =1, then @?=1

(mod 8), hence yDEZ, and o satisﬁes(m . -Z'/D )(w _d _Zm =0, Con-
sider o'’ = (gc VDQ €90,; then ¢" = ZJ[1, 0] is embedded in D, optimally,
and 0" and o' =0 — d _;]/D satisfy the same quadratic equation hence there

exists a€ A4, such that ao’a™ =w'’. So, ZJ1, w]=g is embedded in a 0.«
optimally. In the case (d, 2) =2, D/4 should be=0, 1 mod 4 hence bc=0
(mod 4), or=1 (mod 4). In the former case, take #’, c'eZ, such that &' is
a unit and bc =b'¢’. Then o' = (2' Z,) and o satisfy the same equation and
ZJ1, o'] is embedded optimally in O,. In the latter case, bc=1 (mod 4)
implies d =0 (mod 4). Put o’ = (ZI 2;) and take a/, b, ¢/ such that o' and
o satisfy the same equation, namely, &/, ¢’ = d/2 +/({dJ2)* + bc — 46’ . Then,
since (d/2)%2+ bc=1 (mod 4) we can take b’€Z, such that (d/2)? 4 bc — 40’ =1
(mod 8), hence we see &/, ¢e’Z,. Therefore g = Z,[1, '] is optimally embed-

ded in O,. This completes the proof of Lemma 2.

2.5. Let G be the group of integral two-sided O, ideals modulo scalar
matrix which is calculated in Lemma 1, and g, = D,NK, as in Lemma 2,
and let H(g,) be the subgroup which is defined as follows H(g,) = {MsG|M
= 0,8, B=g,}. Namely, H(g,)is the subgroup consists of all two sided ideals
generated by g-ideals.

Lemma 3. Let D be the discriminant of g and define 8(D) = (g,) =[G : H(gy)),
then

2, if D/A€Z and D|4=5 (mod 8),
8D) = {

3, otherwise.

Proof. Put O, = <(€§ §§>’ @2 =21, 0}, and o = 26 Z) Then, by
Lemma 1, (D) =2 if H(g,) = {¢, éx, x£} and (D) =3, otherwise. Hence if
(D) =2, UswU, = UstU, or Usw — d)U, = U,exlU,, therefore (b, 2) = (¢, 2) =1
and (d, 4 = 2. As the discriminant of g, is d2 -+ 16bc, we obtain D/4eZ and
D/4=5 mod 8since (d/2)*=1mod 8. Conversely, if D/4=5 mod 8 itis easy
to see (d, 4 =2 and (b, 2) = (¢, 2) =1, hence U,oU, = UmeU, therefore (D)
= 2. Thus we obtain our Lemma 3.
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2.6. We remark the following two lemmas which are special cases of
16, §3.10, §3.11], and these lemmas are necessary to prove the theorem 2.

LemMa 4. The class number h of an order of type (q., qs gs) is the same the
class number of a maximal order in A. Hence if A is indefinite, h = 1.

LemMa 5. Let © be as in Lemma 4 and I an integral two-sided O-ideal.
Let beZ and acO such that Na =b mod* IMNZ). Then there exists an element
BeD such that p=a mod M and NB =0b. Here mod* means the multiplicative
congruence.

By Lemma 5 we note that © contains an element of norm —1.

Now we assume A is indefinite g and is an order in an imaginary quad-
ratic subfield K of A optimally embedded in ©. Then for a unit e€D ege
is also optimally embeeddd in O. Let us denote the set of orders {e™'ge;
norm (¢) = 1} by simply (a), and call it the proper classes of orders. Then
we obtain

TueorREM 2.  The number of proper classes of orders (g) which is optimally
embedded in an order O of type (q1, qo 2) and s isomorphic to a given order g, in K
15 equal to

SO+ (S (= (B (a4 (2 ey
awhere D, denotes the discriminant of g,, and h(D,) the class number of g,-ideals, and
&(Dy) is defined in LEMMA 3.

Proof. This theorem 1s proved by the same method as in [2, Satz 7] by
virtue of Lemma 2 and 3. So we only sketch the proof. Namely, let g be
an order, isomorphic to g, and optimally embedded in ©. Since the class
number of D-ideals is 1 by lemma 4, there exists a=A such that g = ag,a™.
Then g is optimally embedded in © and in a™O«, hence there exists g,-ideal
such that Da = aa™'Da. Therefore M = Daa™! is a two-sided O-ideal. We
make correspond to every pair of class of orders ((g), (g,)) the pair ((I), (a)),
where (%) is the class of I the group of two sided D-ideals modulo two sided
D-ideals which is generated by g-ideals, and (a) is the ideal class of a. This
correspondence is one to one if and only if O contains a unit with norm
—1, and this is so our case by Lemma 5. Hence the classes of orders (g}
which are optimally embedded in © and isomorphic to (g,) is equal to the
aumber of pairs (M), (a)). Combining lemma 2 and 3 with Eichler’s result
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for the local behaviours of O, at plg.qs, this number is given by

(01 | B DB 0= (B0 (2o

lay 4

This completes the proof.

3. The trace of Hecke operators for I'}i(4g,)

3.1. In this paragraph we assume that A is indefinite. We regard
I'{1(4g;) as a subgroup of SL,(R) after a fixed isomorphism A(?Rz My(R),
and we define a linear transformation T(I"el’) in S,(I"), where Si(I") is the
complex vector space of cusp forms of weight & with respect to the group.
[ =TI{1(g). Let namely I'al’ =u§11‘ay be a disjoint sum; then, for feS I}
we set
_;‘- d

2 jle, 2)7 f(a(2)

v=1

(T(Iral')f)(z) = (Na)

a2+ b,

Where ol,,(z) = W’

for a, = (g Z), :€H and j(a,, 2) = (¢,z + d.).

We shall give the trace of T(I"al’) following Shimizu’s treatment [3] and
Eichler’s [1] in the representation space Sy(I") fo I' = I'{1(4¢,), in the case n
= Na is prime to 4g,.

3.2. If kis even and greater than 2, {rT(I"al’) is obtained in [4, Theo-
rem 1], which is as follows:

trT(lal) = to+ ti+ ta+ 2y

to = ";1. vol (%). el/7)

k
k- 122 —_—
1 \pil— p'i! !

t=— 3 Way: (F1D) " pa—pa N %

k

L 2 Min {| 04,1, | P2, [}1*! I
== B Tlay: (= |oa—pal N %
T S d(a,) \'**
ty = 151_13)1 2 a,%}c,(m(all))

where C(resp. : C;, Cs) is a complete system of inequivalent elliptic elements
(resp. : hyperbolic elements leaving a parabolic point of I" fixed, parabolic
elements) in I'al’ with respect to the equivalence relation
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a~a' & a’ = +var! for rerl.
{(a)) is the group of all rerl’ such that «; = 47,77, and pa, pé, are chara-
cteristic roots of «,. Furthermore, d(a,), m(a,) are defined as follows; for the
fixed point z of @,eC; we can find g=GLy(R) such that gz = oc; then every
element 8 leaving » fixed is written in the form g8g~'(z) = 2 &= mB with a non
negativ number m(f), and d(a) is the least positive value of m(8) when 8
runs over ['(«). Lastly, vol (&) denotes the volume of the fundamental do-
main for the group I'%(4¢,), which is easily obtained by the group index re-
lation; [I'9(1) : I'(4¢,)] = 6(ge + 1) and the volume of the fundamental domain
for the group I'a(l), namely ‘
vol (&) =2r I (p —1)- II (p + 1),
Pla Plgs

and elyn) =1 or 0 according as Yz Z or not.

3.3. First we shall determine C,. For an equivalence- class a,€C,, let
K., be the imaginary quadratic field generated by the eigen-value of «, over
Q, and put g = K.,,NO. Then g is an order of K., which is optimally em-
bedded in ©. We know that there is an one to one correspondence between
the equivalence classes {e;} of C, and the proper classes of orders (g), which
are optimally embedded in O and contain an elliptic element with norm =
= Na. By virtue of theorem 2, we see

1 Rl o 2

B @) (T por— 07 N

- e -0 (FDERC-(5D

-k

x 11 1—|-[—§—]>-£%EZ—,,IC:L(NM ’

Plge

swhere the sum YV runs over all orders g¢ which contain an elliptic element
vy with norm N« ==#u, and D is the discriminant of g, o, p’ are eigenvalues
of v, and E(g) denotes the group of units in g. We remark that [I'(a,) : E
{g)] = 2 since O contains an element with norm —1 [see 3,4.3].
Hence we obtain
b=t PO D RO 5D

Pl

-4

x II(1+ [%]),ﬂ%—i_ﬂ_’:"-l D)o

’
las o

https://doi.org/10.1017/50027763000014410 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014410

146 MASATOSHI YAMAUCHI

where 3 runs over all s, f with |s| <2/% and with D= (s2 —4n)f2=0, t
mod 4 (f >0), and p, p’ are the roots of the equation ?— sz + n =0.

3.4. t5 t; appear only if A= M,(Q). In this case, if » runs through
all divisors of 4q, other than itself, then the est of all !, together with oo
forms a complete system of I'-inequivalent parabolic points. Let C,. (resp.

C;.) be an equivalent class in C, (resp. C;) which fixes the point co. Let 7

0
r

=1 or not, where rd —4g,»"'b =1. Then we see C, = UcC,.07' (2 =2, 3).

By [3, Lemma 4.2, 4.3], we can take for C,. thesetof all « = <8 Z) with ad

d—a
7

be a divisor of 4¢, and put o, =(£ @ rdb> or (2 " ) according as (7, 4¢,r™")

=n,0<a<d, 0<b=< In this case [I'(e) : {£1}] =2 or 1 according,

as 2b=0 mod (¢ —d) or not. We note that #; appears only if » = Na is a
square integer; in this case we can take as C,. the set of @, all such that
a,=<‘/g’_ fné) b>0, b€Z. Furthermore d(a,)-m(a,)™ = b4 for all a.

Hence we obtain

k k
1—5 ) 1
ty = =320 %, N da = —32% 2 31 gk,
ad=n - aln
55 o<ei

and if Yy, €Z,

t, = —3.2. limi2<@)“’ - 3.2,

-0 2 >0
where ¢ denotes the number of prime factors of g,.

3.5. If k=2, regarding T(I"al') as a modular correspondence of the
Riemann surface ® = U {cusps}, T(I"al’) induces an endomorphism of the
i-th Betti group B‘®) of ® (i =0, 1, 2). Then the trace of the representa-
tion of I'al’ by the Betti group of R is & T(I'al’) = tr* T al’) — tr*1(al’)
+ tr*T(lal’), where tr*T(lal’) is the trace of the endomorphism induced
by T(I'al’) on BY®R). We see tr°T(al’) = tr*T(I'al’) = number of left re-
presentatives of I'el’, and ¢ T(I'al’) is calculated by the same method as in
owing to the explicit determination of C,, C,, C, given in 3.3, 3.4. We thus
find for n = Na ((n, 4¢,) = 1),

i - 582 o+ (22— (2] (2 o

~&(/n)-2-vol (J)
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+alg)-3-2 3V d,
din
0<d<ym
where 37 is the same as in 3.3, (/%) =1 or 0 according as Y% €Z or not,
a(q) =1 or 0 according as ¢, =1 or not, and ¢ is defined in 3.4. Since we

consider the trace in the space Sy(I") or in other words, in the space of di-
flerential forms of the first kind on R, the trace which is obtained by the

above method should be multiplied by —;— with the reason in [1, p. 156].

Hence, summing up we obtain

THEOREM 3. Assume A is indefinite and S(I"%1(4q,)) denotes the space of cusp
Jorms of weight k with respect to I'iv(4qy). Then the trace ir(T,) (n, 4g:) =1 of
Hecke operator acting on S(I"i(4q)) is given as follows

tr(Ty) = dy— —;-Eo%p)(l + [‘lz)“])[%],ﬁl(l - [“I;“]),,E,(l + {’%D

Pkt — p’k~1 1—>5 1
X——————n  hD)+eWn)—U(p—1)-I(p+1)
p—p 2 sl plqz
1k
— al(gy)-3-25m 2. 3V gk,
o<d§ﬁ
where
Sd, if k=2, .
dk={d|n ) = 1, if yneZ,
0, if k>2, 0, if yne&Z,
1, if ¢ =1,
alg) = { .
0, if ¢, >1,

the sum 3, runs over all s, f with |s|<2/n, f>0 and D = (s —4p)f2=0,1
(mod 4), and p, p’ are the roots of the equation x®— sx +n =0. Furthermore,
(D) = 2 or 3 accoding as D/4=5 (mod 8) or not, h(D) is the class number of an
order with discriminant D. 3V denoles the sum with a multiplicity 1/2 for d =y,
cnd t the number of prime factors of gs.

3.6. In this section we consider the elliptic modular group I'y(4N) =
t
{(‘cz Z)e SLy(Z)|c =0 mod (4N)] where N = .I_IlNi is a product of distinct odd

prime N;(1=<i=<¢). Let %; be a character of the multiplicative group (Z/
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N,Z)* and put ¥ = %, then % is a character of (Z/NZ)* in a natural way,
1= )

and we suppose 2 is not a trivial character. We denote by Si(I'(4N), x) the

complex vector space of modular cusp forms satisfying

f(-‘;g—z- = Ud)(cz + dff(z)  for every (§ §)eryan).

By an obvious reason we assume x(—1) = (—1)% The Hecke operators T3
((n, 4N) = 1) acting on the space Si(Is(4N), x) is defined by

(Tif)z)=mn ‘ﬁ f< az + b)d"‘

ad:n
d>0
0Lb<d

The trace ##(T% in the representation space Si(I'y(4N), ) is calculated by
the same method discussed in the preceeding sections combining with Shimi-
zu’s arguments [4] and we easily find: the following

TueoreM 3'.  The trace tr(T3) (n zs jmme to 4N) in the representation space
SuI'o&N), 1) is given as follows

tr(T,n:——;—Zoﬂzﬂ'(H{%D{%Lﬁ,'l‘{ D,,,q, [ )

k
k=1 o’k=1 1
p

=TT T RD)A(s, 1)+ ) T (p — 1)+ T (p + 1)-2/57)
o P 2 plg vlg

Ton @ B+ (),

0<d<yn
where x(s, n) is defined by

=2"¢ 11
X( ) i=1 az—sz_fj-z (OC;Zod(N,)

and other notataions are the same as in Theorem 3.
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