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WEAKLY ISOTOPIC PLANAR TERNARY RINGS 

FREDERICK W. STEVENSON 

1. Introduction. This paper introduces two relations both weaker than 
isotopism which may hold between planar ternary rings. We will concentrate on 
the geometric consequences rather than the algebraic properties of these rela­
tions. It is well-known that every projective plane can be coordinatized by a 
planar ternary ring and every planar ternary ring coordinatizes a projective 
plane. If two planar ternary rings are isomorphic then their associated pro­
jective planes are isomorphic; however, the converse is not true. In fact, an 
algebraic bond which necessarily holds between the coordinatizing planar 
ternary rings of isomorphic projective planes has not been found. Such a bond 
must, of course, be weaker than isomorphism; furthermore, it must be weaker 
than isotopism. Here we show that it is even weaker than the two new relations 
introduced. This is significant because the weaker of our relations is, in a sense, 
the weakest possible algebraic relation which can hold between planar ternary 
rings which coordinatize isomorphic projective planes. 

2. Definitions and theorems. Let T = (R, t) and V = (R\ t') be planar 
ternary rings. 

Definition 2.1. (R, i) is isomorphic to (Rf, tf) if and only if there exists a 
one-to-one function/ from R onto Rf such that if d = t(a, b, c) then/ (d) = 
t'(f(a)J(b)J(c)). 

Definition 2.2. (R, t) is isotopic to (i?'f t') if and only if there exist one-to-one 
functions/, g, h from R onto Rr such that h(0) = 0 (we use the symbol " 0 " 
for both T and V) and if d = t(a} b, c) then h(d) = t'(f(a), g(b), h(c)). 

Definition 2.3. (R, t) is Wi-isotopic to (Rf', tr) if and only if there exist one-to-
one functions/, g, hx, x Ç R from R onto Rf such that if d = t(a, b, c) then 
h0(d) =t?(f(a),g(b),hb(c)). 

Definition 2.4. (R, t) is w2-isotopic to (Rf, tr) if and only if there exist one-to-
one functions/, g, hx, j x , x G R from R onto Rf such that if d = t(a, 6, c) then 
ja(d) =t'(f(a),g(b),h(c)). 

While the weak forms of isotopism above may appear artificial on first 
glance, Wi-isotopism, in particular, arises naturally from a consideration of 
finite affine planes. An affine plane of order n generates n — 1 mutually 
orthogonal Latin squares of order n. Using the coordinization of a planar 
ternary ring we may generate these Latin squares by fixing m (the "slope") 

Received June 21, 1973 and in revised form, January 24, 1974. 

32 

https://doi.org/10.4153/CJM-1975-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-005-9


TERNARY RINGS 33 

and lett ing k run over the x-y plane such tha t y = t(x, m, k). This yields a 
Lat in square for each m ^ 0. Now consider the following al terat ions on these 
Lat in squares: for a given m relabel the k's ( thus yielding the functions hm)\ 
relabel the ra's (yielding the function g) ; relabel the x's and y s (y ie ld ing / and 
hQ, respectively). T h e relabellings const i tute a ^i- isotopism. Also the new set 
of Lat in squares represents an affine plane isomorphic to the original affine 
plane. This discussion suggests a theorem (actually Corollary 2.9) which we 
now list with three others for comparison. 

We use the notat ion of [5]; thus u, v, o, e is the reference quadrangle, tf> 
associates points, $ associates lines of an isomorphism (<£, <£), -wT represents 
the projective plane coordinatized by the planar te rnary ring T. 

T H E O R E M 2.5. T is isomorphic to T' if and only if there exists an isomorphism 
(#, <£) from irT to irT

f such that cf>: u, v, o} e —•» u', v', o', er. 

T H E O R E M 2.6. T is isotopic to Tf if and only if there exists an isomorphism 
($, 3>) from -KT to -KT>, such that <j>: u,v,o—> u', vf, o'. 

T H E O R E M 2.7. T is Wi-isotopic to V if and only if there exists an isomorphism 
(0, <i>) from TTT to wT

f such that <£: u, v —> u', vf. 

T H E O R E M 2.8. T is w2-isotopic to T' if and only if there exists an isomorphism 
($, <ï>) from irT to -KT> such that <£: v —> v' and <i>; uv —> u'v'. 

T h e first two theorems are well-known; for example, see [5, Chapter 9]. 
W e prove the la t ter two here. Non-ideal points are represented by ordered 
pairs from T, ideal points except v are represented by elements of T, v is 
represented by z. Lines not through z are represented by pairs, lines through z, 
except the ideal line are represented by elements; the ideal line is represented 
by Z . Also [x, y] 6 (m, k) if and only if y = t{x, m, k), [x] Ç (m, k) if and only 
if x = m, and [x, y] £ (k) if and only if x = k. 

Proof of Theorem 2.7. Suppose T and T' are Wi-isotopic. Define 4> and <£ 
as follows: 

0: [ * , ? ] - » [ / ( * ) , M y ) ] 

[x] -*[g(x)] 

z —» z 

$ : (ra, &)—• (g(m), hm(k)) 

Z-+Z. 

T h u s 

[x, y] 6 (m, k) <=> y = t(x, m, k) 

<=*h0(y) = t'(f(x), g{m)y hm(k)) 

**[f(x),ho(y)] e {g{m),hm{k)) 
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Clearly if p = [x] or z or L = (k) or Z then p Ç L if and only if 4>(p) Ç $(L) . 
Thus (0, $) is an isomorphism from wT to 7r^. Now 0: u —* uf because u = [0] 
and *([0]) = [g(0)] = [0] = w'. We obtained g(0) = 0 as follows: [x, &] € 
<0f*> so [/(*),&<>(*)] G te(0),Ao(*)>.Thusft0(*) = * '( / (*) , g(0),A0(fe)) and 
so g(0) = 0. Finally <t>: v —> vr because clearly </>: z —» z'. 

Suppose (</>, <£>) is an isomorphism from TTT to x^' and $: u,v —* u', v''. Define 
/ on T by /(x) = x' where x' is such that 3>: (x) —> (x'). This definition is 
valid because <j>: z —* zf. Define g by g{m) = mr where m' is such that <t>\ [m] —* 
\m'\ This definition is valid because 3>: Z —> Z'. Define hm by hm(k) = k' where 
<£: {m, k) —> (g(m), k'). Since (<£, 3>) is an isomorphism,/, g, ATO are all one-to-
one functions from T onto V. Now 

y = /(x, m, k) <=> [x, ^] Ç (m, &) 

<=»«(^>n <0,y» 6 <g(m),Aw(*)> 

<=* </(*)> H <g(0), A0(y)> e <g(m), Aw(*)> 

(because g(0) = 0 since 4>: u —> u') 

«=»[/(*), AoOv)] € <g(m), *„(*)> 

T h u s / , g, /&m is a ^i-isotopism from T to jf'. 

The proof of Theorem 2.8 is similar to that of 2.7 with the following excep­
tions: If T and T' are ze/2-isotopic let <£: [x, y] —> [/(x), 7^(3')]. If (0, <£) is an 
isomorphism from irT to 7rr/ define jx(y) = 3>' where 3/ is such that <£: [x, y] —> 

COROLLARY 2.9. T is Wi-isotopic to T' if and only if there exists an isomorphism 
(<£, $) from aT to a ^ (affine planes) such that $(X) is parallel to X' and $ ( F ) 
is parallel to Y' where X and X' represent the respective x-axes of aT and aT> and 
Y and Y' represent the y-axes. 

COROLLARY 2.10. T is w2-isotopic to T' if and only if there exists an isomor­
phism, (4>, $) from aT to aT> such that <£(F) is parallel to Yf. 

Clearly each successive definition 2.1 to 2.4 is weaker than the preceding in 
the following sense: if T and T' are isomorphic then they are isotopic; if they 
are isotopic then they are ^i-isotopic; if they are ze>i-isotopic then they are 
w2-isotopic. The following example shows that each successive definition is 
strictly weaker. 

Example 2.11. Let -K be the plane coordinatized by the right nearfield of order 
nine. That the following statements are valid follow directly from Theorems 
2.5-2.8 and the nature of the group of collineations of IT. (See Andre [2].) 

(1) T(u, v, 0, e) and T(u, v, 0, [2, 1]) are isomorphic but not identical. 
(2) T([2], v, 0, e) and T([2], V, 0, [1, 0]) are isotopic but not isomorphic. 
(3) T(o, v, u, e) and T(p, v, [2], e) are ^i-isotopic but not isotopic. 
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(4) T(u, v, o, e) and T([2], v, o, e) are w2-isotopic but not z£>i-isotopic. 
(5) T(u, v, o, e) and T(u, [2], o, e) are not w2-isotopic. 

3. Some consequences. The concepts of w\ and w2 isotopism easily transfer 
to algebras with two binary operations such as a field, division ring, nearfield, 
semifield, and quasifield. As with isotopism this is simply done by adapting it 
to the addition and multiplication that are definable on a linear ternary ring. 
I t is known that as the algebraic structure of these linear ternary rings which 
coordinatize isomorphic planes is strengthened the bond between these rings 
is strengthened. In this regard we know the following two theorems. 

THEOREM 3.1. If N and Nf are planar near fields which coordinatize isomorphic 
planes -KN and i?N> then N and N' are isomorphic. 

For a proof of this, see [5, Chapter 12]. 

THEOREM 3.2. (Albert [1]). If S and Sf are semifields which coordinatize 
isomorphic planes TS and ITS* then S and Sf are isotopic. 

It is an open problem to find the algebraic bond which is appropriate 
for the coordinatizing quasifields of isomorphic planes. Neither of the weak 
isotopisms provides the complete answer but we may offer the following: 

THEOREM 3.3. If there exists an isomorphism from irT to -KT> mapping the ideal 
line of 7rT to the ideal line of irT, and if the collineation groups on the ideal points 
of one of these planes is transitive {doubly transitive) then T and T' are w2-isotopic 
(wi-isotopic). 

This follows from a direct application of Theorem 2.8. (Theorem 2.7.). 

COROLLARY 3.4. If the collineation group on the ideal points of T is transitive 
(doubly transitive) and Q and Qf are coordinatizing right quasifields of T then Q 
and Qf are w2-isotopic (wi-isotopic). 

This follows from Theorem 3.3. using the identity map as the isomorphism. 

COROLLARY 3.5. If a is a translation plane and the collineation group of a is 
flag transitive then all coordinatizing quasifields are w2-isotopic. 

This follows from Corollary 3.4. using the appropriate definitions. 

While these theorems are not completely satisfactory they are satisfying 
because those projective planes coordinatized by right quasifields (hence the 
translation planes also) whose collineation groups are doubly transitive or 
transitive on ideal points are completely known for the known finite projective 
planes. See Dembrowski [3, pp. 235, 236]. A more satisfactory answer will not 
be forthcoming within the current format. Equivalence relations in the form 
of one-to-one mappings of T onto T' must necessarily map z —» z and Z —* Zr 

under the coordinatization of TTT and TTT>. Thus, by Theorem 2.8. w2-isotopism 

https://doi.org/10.4153/CJM-1975-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-005-9


36 FREDERICK W. STEVENSON 

is the weakest algebraic bond of this type. Hence we must await a slightly 
different kind of algebraic bond in order to completely answer questions such 
as: what is the bond which necessarily relates 

(1) T to V if ivT is isomorphic to irT>? 
(2) T to T' if aT is isomorphic t o « r ? 
(3) Q to Qf (Q and Q' are right quasifields) if irQ is isomorphic to 7rQ'? 
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