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Bayesian approaches to the study of politics are increasingly popular. But Bayesian

approaches to modeling multiple time series have not been critically evaluated. This is in

spite of the potential value of these models in international relations, political economy, and

other fields of our discipline. We review recent developments in Bayesian multi-equation

time series modeling in theory testing, forecasting, and policy analysis. Methods for

constructing Bayesian measures of uncertainty of impulse responses (Bayesian shape error

bands) are explained. A reference prior for these models that has proven useful in short- and

medium-term forecasting in macroeconomics is described. Once modified to incorporate

our experience analyzing political data and our theories, this prior can enhance our ability to

forecast over the short and medium terms complex political dynamics like those exhibited by

certain international conflicts. In addition, we explain how contingent Bayesian forecasts can

be constructed, contingent Bayesian forecasts that embody policy counterfactuals. The

value of these new Bayesian methods is illustrated in a reanalysis of the Israeli-Palestinian

conflict of the 1980s.

1 Introduction

Bayesian approaches to the study of politics have become increasingly popular. With a few

notable exceptions, few of us employ Bayesian time series methods in the study of politics.
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More than a decade ago Williams (1993) wrote a piece on this subject in Political Analysis.
His article was based on work done at the Minneapolis Federal Reserve Bank in the early

1980s.1 Recently, Martin and Quinn (2002), drawing on advances in Bayesian time series

statistics (West and Harrison 1997), showed how Bayesian multivariate dynamic linear

models can be used to study changes in the ideal points of SupremeCourt justices.Martin and

Quinn only scratched the surface of these advances. In fact, most political scientists are

unaware of the improvements and extensions that have been made in Bayesian vector

autoregressive (BVAR) methods and Bayesian time series statistics. Studies of international

conflict and of other important topics can benefit by incorporating the advances that have

been made in Bayesian time series statistics over the last decade.2

We review key developments in Bayesian time series modeling for theory testing.3

Most time series work in political science in the 1980s and 1990s failed to provide any

measures of uncertainty for causal inference. Scholars often failed to supply error bands or

probability assessments for the impulse responses and dynamic inferences of their models.

The error bands that were provided were based on a Monte Carlo procedure that is now

viewed as inferior to Bayesian shape bands we discuss. We review the recent work on

probability assessment in time series analysis, including the development of means to

construct measures of uncertainty for the impulse responses and forecasts of Bayesian

multi-equation time series models. We also highlight the special nature of time series

analysis vis-à-vis more familiar forms of inference: because of nonstationarity, Bayesian

posterior probabilities and classical confidence intervals can be in ‘‘substantial conflict’’

(Sims and Zha 1999).4

As Beck et al. (2000, 2004) have recently argued, forecasting is at the root of inference

and prediction in time series analysis. Estimation and inference in time series modeling in-

volves the minimization of one-step (or multi-step) forecast errors (Clements and Hendry

1998). Establishing a model’s superiority entails showing that it produces smaller forecast

errors than its competitors. Such evaluations depend on the structure of the time series

model—a structure that at best one believes probabilistically. Assessing how a model

specification and beliefs about it are related to inference and forecasting performance (both

in and out of sample) are extremely important. Recognizing this, we discuss a popular new

reference prior that has performed well in macroeconomics and show how it can be applied

in political forecasting. Next, we highlight some potentially useful extensions, such as how

to construct from our BVAR models counterfactually contingent forecasts. Closely related

1See also McGinnis and Williams (1989) for an application of the early 1980s Minneapolis Federal Reserve
approach to the study of superpower rivalry.

2Martin and Quinn (2002, n. 2) point out that the ‘‘machinery’’ of West and Harrison (1997) can be applied to
binary cross-sectional time series models. But to our knowledge no political scientist has attempted such an
application. Note that Martin and Quinn’s dynamic linear multivariate model does not provide for interdependence
between their units of analysis, more specifically, for any interrelationships between judges’ decisions (p. 138).
The Bayesian multi-equation time series model expressly allows for such interdependence or for endogeneity. It
too is a special case of the Kalman filter. The only other applications of Bayesian time series we found are Brandt
et al.’s (2000) and Brandt and William’s (2001) development of count time series models using an extended
Kalman filter, Buckley’s (2002) review of Bayesian linear dynamic models, Jackman’s (2000) linear regression
example in hisWorkshop piece in the American Journal of Political Science, andWestern and Kleykamp’s (2004)
study of change points in the recent special issue of Political Analysis. Of course, time series statistics are
sometimes used to assess the convergence of computational algorithms used by Bayesians (see Geyer 1992).

3We focus here on BVAR models. We consider vector error correction models as special (restricted) cases of
VAR models, so much of our analysis applies to error correction and vector error correction models (VECMs).

4This is a point that many of the leading Bayesians in our discipline overlook (e.g., Gill 2004, p. 328; see also
Jackman 2004, pp. 486, 489).

2 Patrick T. Brandt and John R. Freeman
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to this concept are policy contingent or counterfactual forecasts that may be used for policy

evaluation.

Our discussion is divided into three parts. Part one reviews the handful of Bayesian

time series analyses in political science. It shows how recent advances in time series

econometrics and statistics potentially can improve these analyses. In this section, we

propose the adoption of an easy-to-specify prior distribution for multi-equation time series

models. This reference prior is potentially of enormous value in explaining and analyzing

counterfactually political processes like international conflict. Part two provides technical

explanations of this reference prior and of how to construct Bayesian error bands and

forecasts, including contingent Bayesian forecasts.5 The usefulness of these advances is

illustrated in part three in a reanalysis of the Israeli-Palestinian conflict of the 1980s.

2 Bayesian Multi-equation Time Series Analysis in Political Science: A Review

Theory testing and policy analysis with multiple time series models involves three

interrelated enterprises: innovation accounting, forecasting, and counterfactual analysis.6

Past political science articles explain the tools used in each enterprise (see especially

Freeman et al. 1989). New texts also explain these tools (Brandt and Williams forth-

coming). Readers unfamiliar with multiple time series models are urged to study these works

before proceeding.

2.1 Innovation accounting

Innovation accounting is the determination of how a (normalized) shock or surprise in one

time series affects other time series. If a variable Xt causes another variable Yt, a significant

part of the response of Yt will be accounted for by the (normalized) shock in Xt. For the

users of multi-equation time series models, these impulse responses or innovation

accounting are an essential component of theory testing.

The problem is that political scientists rarely provide measures of the uncertainty of

these impulse responses. Usually in political science, no error bands are provided for them.

Without such bands, we cannot gauge the soundness of our causal inferences and we have

no means to convey how certain we are of the direction and (nonzero) magnitude of the

responses.7 The few political scientists who provide such bands use Monte Carlo methods

to construct them. For example, the Monte Carlo method was used by Williams (1993) to

construct the error bands for the impulse responses of his unrestricted, frequentist VAR

model of Goldstein’s long cycle theory. But this same method could not be applied to his

Bayesian or time-varying BVAR models because it does not have a tractable posterior that

could be easily simulated.8

5New software packages like Zelig do not contain code for performing Bayesian time series analyses like that
which we describe here. Familiar packages like RATS, as we note below, also are inadequate for this purpose.
One author has developed a new software package for R, MSBVAR, that will produce Bayesian shape error
bands for impulse responses and other advances that we present in this article.
6This passage draws from Kilian (1998) and Sims and Zha (1999).
7On this point see Runkle (1987). Illustrative of political science research that provides no such error bands are
Goldstein and Freeman (1990, 1991) and Freeman and Alt (1994). Examples of works with error bands
constructed with Monte Carlo methods (employing classical inference) are Williams and Collins (1997) and
Edwards and Wood (1999).
8Williams and others used the code provided in RATS to construct their error bands. This code was for many
years based on Monte Carlo methods. Monte Carlo and analytic derivative methods are now available in RATS.
But these methods and the bootstrap are all based on classical or flat-prior Bayesian inference. Note that these
methods were not previously extended to the ‘‘Minnesota prior’’ model used in Williams (1993).

3Advances in Bayesian Time Series Modeling
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In recent years Monte Carlo and related methods and the classical form of inference

associated with them have been criticized by Bayesian time series analysts. They proposed

an alternative approach to constructing error bands, one based on the likelihood shape

of models. The impulse responses of vector autoregressions are difficult to construct for

three reasons:

1. Estimates of the underlying autoregressive form parameters have sampling

distributions that depend strongly in shape as well as location on the true value

of the parameters, especially in the neighborhood of parameters that imply non-

stationarity.

2. Impulse responses are highly nonlinear functions of underlying autoregressive

reduced form parameters.

3. The distribution of the estimate of a particular response at a particular horizon

depends strongly on the true values of other impulse responses at other time

horizons, with no apparent good pivotal quantity to dampen such dependence on

nuisance parameters (Sims and Zha 1995, p. 1; see also p. 10, esp. n. 9), Sims and

Zha 1999, p. 1127; and Ni and Sun 2003, p. 160).

While some classical approaches like the nonparametric bootstrap and parametric Monte

Carlo integration are asymptotically sound for stationary data, in small samples they can be

inaccurate in terms of estimating the location, width, and skewness of the error bands of

the responses. These problems also surface when data are nonstationary, since ‘‘in a finite

sample the accuracy of the asymptotic approximation begins to break down as the

boundary of the stationary region of the parameter space is approached’’ (Sims and Zha

1995, p. 2). Kilian (1998) proposed corrections to the classical approaches to error band

construction. He showed that a bias-corrected bootstrap procedure outperforms the

nonparametric bootstrap and Monte Carlo integration methods.

However, in a series of papers, Sims and Zha (1995, 1999) raise questions about the

adequacy of Kilian’s and others’ methods for constructing such bands.9 They argue that

classical approaches to constructing error bands for impulses seriously confound infor-

mation about the model fit and the uncertainty of parameters.10 Sims and Zha propose an

explicitly Bayesian approach to the construction of error bands for impulse responses. They

argue that the best way to represent uncertainty about the location and skewness of the

impulse responses—particularly the ‘‘serial correlation in the uncertainty’’ over time—is

through an analysis of the likelihood shape. Using an eigenvector decomposition of the

impulse responses, Sims and Zha produce ‘‘probability assessments’’ for the impulse

responses.11 This method produces bands that are more informative about the corresponding

likelihood shape than the bands produced by Kilian’s and others’ methods. In a series of

experiments with artificial and actual (macroeconomic) data, Sims and Zha show that their

Bayesian shape error bands are more accurate in terms of location and skewness than the

bands produced by other methods.

9This contribution was made in the late 1990s, hence the absence of any error bands in Williams’s piece for his
BVAR models (see 1993, Figs. 2–6).

10Sims and Zha (1999, p. 1114) argue that the confidence intervals associated with the classical approach to
inference ‘‘mix likelihood information and information about model fit in a confusing way: narrow confidence
bands can be indicators either of precise sampling information about the location of the parameters or of strong
sample information that the model is invalid. It would be better to keep the two types of information separate.’’

11The eigenvector decomposition developed by Sims and Zha is similar to a dynamic factor analysis that accounts
for the main sources of the variation in the responses over time.

4 Patrick T. Brandt and John R. Freeman
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Three additional points should be made with regard to the work on error bands of impulse

responses. First, Bayesians like Sims and Zha (1995, n. 15) prefer 68% (approximately one

standard deviation) coverage or posterior probability intervals to the more familiar 95%

confidence intervals. In their view, the former are much more indicative of the ‘‘relevant

range of uncertainty’’ than the latter, which are indicative of ‘‘pretesting and data mining.’’12

Second, the Sims-Zha method is for identified vector autoregressions, for example, models

for which an ordering of the variables and hence an orthogonalization of the variance-

covariance matrix of errors has been imposed (Hamilton 1994, section 11.6). Overidentified

models require a modified approach to construct posterior probabilities for impulse

responses.13 Finally, the methods developed by Sims and Zha can be extended to any

analysis inwhich onemust characterize uncertainty about the values of an estimated function

of time and uncertainties about the future values of this function are interdependent (Sims

and Zha 1999, p. 1129).

2.2 Forecasting

Political scientists recently have been reminded of the importance of forecasting as

a means of evaluating statistical models. For example, debates about the relative virtues of

neural net models of war focus, to a great extent, on those models’ forecasting

performances (Beck et al. 2000, 2004; de Marchi et al. 2004). It has been known for

some time that unrestricted VAR models tend to overfit the data, attribute unrealistic

portions of the variance in time series to their deterministic components, and overesti-

mate the magnitude of the coefficients of distant lags of variables (because of sampling

error).14

Doan et al. (1984) developed a BVAR model that addresses these problems. Their

model is based on a belief that most time series are best predicted by their mean or their

values in the previous periods. For nonstationary data this means that the data are first-

order integrated, perhaps with drift (deterministic constants), or that the first differences of

each series are unpredictable. This and beliefs about the other coefficients in the VAR

model—for example, that all coefficients except the coefficient on the first own lag of the

dependent variable have mean zero and that certainty about this belief is greater the more

distant the lag of the variable to which the coefficient applies—are embodied in the so-

called Minnesota prior.15 One of the key features of this prior is that it treats the variance-

covariance matrix of the reduced form residuals as diagonal and fixed. In addition, it does

not embody any beliefs an analyst might have about how the prior distribution of the

variance-covariance matrix of residuals is related to the prior distribution of the reduced

form coefficients. This means the associated likelihood reduces to the product of

independent normal densities for the model coefficients Kadiyala and Karlsson (1997).

Litterman (1986) concluded that, for the period from 1950 to the early 1980s, a BVAR

12The concept of highest posterior density region (HPD) is an important related idea here (see Kadiyala and
Karlsson 1997; Gill 2004).

13In this case there is a possibility of likelihoods with multiple peaks; strong asymmetry in error bands is
indicative of this situation. The fitted model must be reparameterized and adjustments made to the flat prior to
make the estimation possible. See Sims and Zha (1999, section 8) and Waggoner and Zha (2000).

14On the problems with using unrestricted VARs for forecasting, see Zha (1998) and Sims and Zha (1998,
pp. 958–60). The poor performance of unrestricted VARs is demonstrated in such works as Fair and Shiller
(1990). Interestingly, the new work on neural nets uses in its benchmark models what is, in effect,
a deterministic counter of time since the last war (Beck et al. 2000, 2004). This probably makes them very
stringent benchmarks vis-à-vis the performance of more theoretically motivated neural net models.

15Doan, Litterman, and Sims were all associated with the University of Minnesota or the Minneapolis Federal
Reserve Bank at the time.

5Advances in Bayesian Time Series Modeling
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model based on the Minnesota prior performed as well as or better than the models of

major commercial, economic forecasters. Moreover, this model was much cheaper to use

and it did not require ‘‘arbitrary judgments’’ to make it perform well.16

While the Minnesota prior and BVAR model developed by Litterman is recognized as

a valuable tool for forecasting stock prices and other phenomena for which beliefs about

reduced form coefficients are unrelated to correlations in the innovations, Sims and Zha

(1998, p. 967) found it incompatible with their beliefs about the macroeconomy. Their

beliefs are that the macroeconomy is best described by a dynamic simultaneous equation

model in which the beliefs (prior) are specified for the structural rather than the reduced

form parameters. These beliefs are correlated across equations in a way that depends on the

contemporaneous relationship among the variables (the covariance matrix of reduced form

disturbances). Operationally, they substituted a normal-inverse Wishart prior for the whole

system of VAR coefficients for the Litterman equation-by-equation prior.17 The Sims-Zha

prior introduces a new hyperparameter for the overall tightness of the standard deviation

on the observed errors and of their intercorrelations. We argue below that this is more in

keeping with ideas like reciprocity in international relations. That is, the Sims-Zha prior

more accurately reflects our beliefs that what one belligerent does to its adversary is as

likely to reflect the adversary as well as its own past behavior.18

Second, Bayesian time series analysts have made fuller provisions for nonstationarity. As

noted above, nonstationarity is a key feature of many time series data, one that can create

major difficulties for classical inference. Like economists, political scientists have found that

many of their series are near-integrated or nonstationary (Ostrom and Smith 1993; Box-

Steffensmeier and Smith 1996; DeBoef and Granato 1997; Freeman et al. 1998). For this

reason, the Sims-Zha prior is also theoretically relevant. It adds hyperparameters that capture

beliefs about the sum of the coefficients of lagged dependent variables (the number of unit

roots in the system of variables) and about the possibility of cointegration among these

stochastic trends. Sims and Zha (1998, p. 958) argue that in comparison to the standard

practice of adding deterministic trends to each equation to represent long-term trends, this

16In essence, rather than impose exact restrictions on the model’s coefficients such as zeroing out lags or
deleting variables altogether, the BVAR model imposes a set of inexact restrictions on the coefficients. The key
features of the Minnesota prior are a) the tightness of the distribution around the prior mean of unity for the
coefficient on the first own lag of the dependent variable, b) the tightness of the distribution around the mean of
zero on the coefficients for the lags of the other variables in an equation relative to the tightness of the distribution
around value of unity for the first own lag of the respective dependent variable, and c) how rapidly the tightness of
the distributions on the lag coefficients goes to zero as the lag length of the variables increases. As regards the
constants in each equation, Litterman (1986, p. 29) notes the large degree of ignorance economists had in the
1980s about constants’ prior means and, by implication, the nonstationarity of economic processes.

17Sims and Zha (1998, p. 955) write, ‘‘Thus if our prior on [the matrix of structural coefficients for contem-
poraneous relationships between the variables] puts high probability on large coefficients on some particular
variable j in structural equation i, then the prior probability on large coefficients on the corresponding variable j
at the first lag is high as well.’’ An often unappreciated fact about the Litterman prior is that it is not a proper
prior for the full VAR model. This is because it is only formed for each of the equations in the model. Hence the
resulting posterior distribution is not of a conjugate or standard form. In contrast, Sims and Zha (1998) show
how to construct a flexible class of priors for BVAR models. For additional details see Ni and Sun (2003) and
Kadiyala and Karlsson (1997).

18Kadiyala and Karlsson (1997) explain the Normal inverse-Wishart prior. They also show how the Diffuse,
Normal-Diffuse, and Extended Natural Conjugate priors can be used to relax the specifications in the Minnesota
prior. Kadiyala and Karlsson explain and explore in applied work the computational issues for these four priors
(the Normal-Diffuse and Extended Natural Conjugate priors, unlike the Normal-Wishart and Diffuse priors, do
not have closed form posterior moments). Their illustrations are forecasts of the Swedish unemployment rate
and of the U.S. macroeconomy. Kadiyala and Karlsson conclude that when beliefs are like those that underlie
the Minnesota prior and computation is a concern, the Normal inverse-Wishart prior is preferred over the
abovementioned alternatives. A similar, more recent evaluation of noninformative and informative Minnesota
prior is Ni and Sun (2003).

6 Patrick T. Brandt and John R. Freeman
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Bayesian approach to capturing nonstationary features of data performs much better in

forecasting.19

The performance of the Sims-Zha prior in forecasting has been compared to that of the

Minnesota prior and to other forecasting models by numerous econometricians. An example

is Robertson and Tallman’s (1999) article. They find that for the U.S. macroeconomy, the

provision for (near) nonstationarity enhances forecast performance more than the provision

for cross-equation dependencies.20 Zha (1998) also compares the performance of his and

Sims’s prior to the forecasts of commercial services for the U.S. macroeconomy, including

the results of the Blue Chip forecasts. Like Litterman before him, Zha contends that his and

Sims’s prior performs as well as or better than methods of commercial forecasters.21

Several points should be highlighted with regard to Bayesian time series forecasting. The

first is that there are several ways to assess the accuracy of forecasts. Analysts now routinely

produce error bands for their forecasts, including Bayesian shape bands. Again, these are

typically 0.68 probability bands that summarize the central tendency of the forecasts (Sims

and Zha 1998; Zha 1998; Waggoner and Zha 1999). Analysts also use familiar measures

such as residual mean square error (RMSE) and mean absolute error (MAE) to gauge the

difference between the posterior means of Bayesian forecasts and the actual data (Robertson

and Tallman 1999). Others produce single variable and bivariate posterior probability

densities for their forecasts and then compare the location of the (joint) posterior means to

the actual data and (or) to the point forecasts from competing models (Zha 1998). In addi-

tion, Bayesian time series analysts have developed a set of measures based on cumulative

Bayes’s factors (CBFs) that can be used to assess the performance of such models over

time. Second, a particular set of hyperparameter values for the Sims-Zha prior is often

referred to as a ‘‘reference prior’’ (see Gill 2002, section 5.2). These values are based in part

on the extensive experience econometricians have had forecasting macroeconomic time

series in the post-WorldWar II era and to the widely held beliefs that economists have about

macroeconomic dynamics. One of the aims of this article is to develop a similar reference

prior for political science, to incorporate in our priors in a systematic way the knowledge we

have about international conflict (see Gill 2004, esp. p. 333).22 Third, the idea of theoretical

structure also surfaces in Bayesian time series forecasting. Sims and Zha show how to

incorporate a fuller, theoretically informed structural model of the innovations in the

variables in Bayesian forecasting. This further extension makes a connection between the

correlation of the innovations and beliefs about the correlation of coefficients in the reduced

form model: ‘‘Once we know that reduced form forecast errors for [two variables] are

19Such deterministic trends tend to soak up too much of the variance in the time series. Zha (1998) argues that
these two new hyperparameters do a better job of accounting for the possibility of near-(co)integration than
exact restrictions.

20Robertson and Tallman (1999) compare the forecasting performance of an unrestricted VAR model, VAR in
differences (exact restrictions) with AIC determined lag length, a BVAR model based on the Minnesota prior,
a BVAR model based on the Minnesota prior but with the dummy variables added to capture beliefs about the
number of unit roots and cointegration in the system, a BVAR model based on the Sims and Zha prior, and
a partial Sims-Zha BVAR model in which the provision for beliefs about unit roots and cointegration are
omitted. In brief, it is the provision for unit roots and cointegration that, according to Robertson and Tallman, is
most responsible for the improvement in forecasting performance for the U.S. economy in the 1986–1997
period over unrestricted VARs and VARs with exact restrictions.

21The Blue Chip forecasts are based on a survey of economic forecasters. Zha (1998, n. 5) uses the ‘‘consensus’’
forecasts from this source.

22See Sims and Zha (1998, n. 7). Doan et al. (1984) originally referred to the Minnesota prior as a ‘‘standardized
prior’’ (p. 2) and an ‘‘empirical prior’’ (p. 5). When Litterman (1986) and others refer to judgment-based
(vs. model-based) forecasting they are referring to the practice of experts literally adjusting the output of models
to conform with their hunches about the future.

7Advances in Bayesian Time Series Modeling
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positively correlated, we are likely to believe that coefficients on [lags of these same

variables] differ from the random walk prior in the same way’’ (Sims and Zha 1998, p. 967).

2.3 Counterfactuals

The third way in which BVAR models are used in theory testing is counterfactual analysis.

Counterfactual analysis is a valuable tool in theory evaluation. Counterfactuals are not

simply additional tests of theories; they also are tests of theories’ logical implications. In

international relations, for example, accounts of conflict dynamics often include claims

about the hypothetical effects that increases in trade might have on belligerency. By

positing a hypothetical increase in trade in a conflict model, a researcher then can analyze

the impact of trade levels that, according to liberal peace proponents, ought to greatly

reduce international conflict.

Among the most important conditions for a meaningful counterfactual is ‘‘coten-

ability.’’ The hypotheticals should not alter ‘‘other factors that materially affect outcomes’’

(Fearon 1991, p. 93). In addition, hypotheticals should be ‘‘in the range of the observed

data’’ (King and Zeng 2004, p. 1). In terms of the previous example, hypothetical increases

in trade should not change the way belligerents react to attacks by their adversaries. The

magnitude of these increases should be plausible historically (in sample).

Time series analysts employ conditional forecasting to study counterfactuals. Counter-

factuals are translated into constraints on the values that a selected variable may take in the

future, either a fixed value (hard condition) or a range of values (soft condition). Forecasts

then are drawn from the posterior distribution in a way that satisfies this constraint at all

future times and, equally important, takes into account both parameter uncertainty and

uncertainty about the random shocks that the system might experience (Waggoner and Zha

1999). This Bayesian approach treats all variables, including that which is manipulated

counterfactually, as endogenous.23 Finally, conditional forecasts of this kind are robust to

alternative identifications (triangularizations) of the structural BVAR model. Below we

explain Bayesian conditional forecasting in greater detail and illustrate its use in an

example from international relations.

Policy analysis with BVAR models is essentially conditional forecasting. The coun-

terfactual is a hypothetical about the fixed or range of value(s) in an endogenous policy

variable at all points in the future. Policy outcomes are the corresponding, conditional

forecasts for the remaining endogenous variables in the system.24

For many years a debate raged about whether such analysis is feasible. If the public could

anticipate the decisions of and accurately monitor policy makers, it presumably would

nullify the impact of the policy before it was adopted. Analysts would have to address the

fact that the parameters in their policy outcome equations are complex, nonlinear functions

of agents’ expectation formation rules (regarding policy choices). Efforts to use BVAR

models to formulate intervention strategies for international conflicts and other applications

in political science would have to do this as well.25

23That is, in drawing from the corresponding posterior distribution, one allows for all possible combinations of
past and present values of the endogenous variables (subject to constraints) and past and present shocks that
could have produced the counterfactual value(s) of the selected variable at each future point in time as well as
the parameter uncertainty in the model.

24Illustrative of this approach to policy analysis in macroeconomics is the practice of fixing values of the Federal
Funds Rate at some level or to remain in some range (see Waggoner and Zha 1999). For further discussion of
the importance of treating policy as endogenous in such analysis see Freeman et al. (1989).

25This is the Lucas critique. One way to think of it is that policy reaction functions cannot simply be substituted into
policy output equations because the parameters in the latter are functions of the parameters the formerSims (1987b).
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Sims (1987a) and others (Cooley et al. 1984; Granger 1999) refute this critique. If

policies were optimal and agents had perfect (exactly the same) information as the policy

maker, forecasts conditioned on hypothetical policy choices would be difficult to employ.

But, because of politics, policy is not optimal and agents are not perfectly informed:

Actual policy always contains an unpredictable element from this source. The public has no way of

distinguishing an error by one of the political groups in choosing its target policy from a random

disturbance in policy from the political process. Hence members of such a group can accurately

project the effects of various policy settings they might aim for by using historically observed

reactions to random shifts in policy induced by the political process. (Sims 1987b, p. 298)

Thus politics produces enough ‘‘autonomous variation in policy’’—policy variation the

source of which agents cannot discern—that we can identify multivariate time series

models and then use them to study policy counterfactuals.26 It is important to note that

BVAR models have embedded in them reaction functions and mechanisms by which

agents form expectations. These functions and mechanisms usually are not made explicit

or separated out from other dynamics. But these functions and mechanisms are assumed to

be present in the data-generating process (Sims 1987b, p. 307; see also Zha 1998, p. 19).

The bottom line is that thanks to the workings of the institutions on which we as political

scientists focus, we should be able to use the recent development in Bayesian time series

analysis to produce policy contingent forecasts that will inform policy interventions that

are of interest to political scientists.

Table 1 summarizes the key features of frequentist and Bayesian multi-equation time

series modeling.

3 Technical Development

This section presents the technical details of the Bayesian VAR models. We first describe

the specification of the Sims-Zha BVAR prior. We then present the Bayesian approach to

innovation accounting. We explain how to construct Bayesian-shape bands for impulse

responses, highlighting how and why the coverage of these response densities is superior

to those produced by frequentist methods. Finally we present methods for forecasting and

policy analysis.

3.1 Bayesian Vector Autoregression with Sims-Zha Prior

We begin by describing the identified simultaneous equation and reduced form

representations of a VAR model. We develop both representations of the model, because

unlike Litterman (1986), who proposed it for the reduced form of the model, Sims and

Zha (1998) specify the prior for the simultaneous equation version of the model. The

advantage of the latter approach is that it allows for a more general specification and can

produce a tractable multivariate normal posterior distribution. A consequence is that the

estimation of the VAR coefficients is no longer done on an equation-by-equation basis as in

the reduced form version. Instead, we estimate the parameters for the full system in

a multivariate regression.27

26In his paper, Sims (1987b) also shows that a unitary public authority that possesses information not possessed
by the public can use conditional forecasts to formulate optimal policy.

27We employ the standard usage of ‘‘multivariate regression’’ to mean a regression model for a matrix of
dependent variables or where the dependent variable observations are multivariate, as opposed to ‘‘multiple’’
regression where the dependent variable is univariate or scalar, regardless of the number of regressors.
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Consider the following (identified) dynamic simultaneous equation model (matrix

dimensions indicated below matrices),

Xp

l¼0

yt�‘
13m

A‘
m3m

¼ d
13m

þ �t
13m

; t ¼ 1; 2; . . . ; T: ð1Þ

This is an m-dimensional VAR for a sample of size T with yt a vector of observations at

time t, A‘ the coefficient matrix for the ‘th lag, p the maximum number of lags (assumed

known), d a vector of constants, and �t a vector of i.i.d. normal structural shocks such that

E½�t�yt�s;s. 0� ¼ 0
13m

; and E½�t9�t j yt�s;s. 0� ¼ I
m3m

:

From this point forward, A0, the contemporaneous coefficient matrix for the structural

model, is assumed to be nonsingular and subject only to linear restrictions.28

This structural model can be transformed into a multivariate regression by defining A0

as the contemporaneous correlations of the series and Aþ as a matrix of the coefficients on

the lagged variables by

YA0 þ XAþ ¼ E; ð2Þ

where Y is T 3 m, A0 is m 3 m, X is T 3 (mp þ 1), Aþ is (mp þ 1) 3 m, and E is T 3 m.
Here we have placed the constant as the last element in the respective matrices. Note that

the columns of the coefficient matrices correspond to the equations.

Before proceeding, define the following compact form for the VAR coefficients in

Eqs. (1) and (2):

a0 ¼ vecðA0Þ; aþ ¼ vec

�A1

..

.

�Ap

d

0BBB@
1CCCA; A ¼ A0

Aþ

� �
; a ¼ vecðAÞ; ð3Þ

where A is a stacking of the system matrices and vec is a vectorization operator that

stacks the system parameters in column-major order for each equation. Note that a is a

stacking of the parameters in A.
The VAR model in Eq. (2) can then be written as a linear projection of the residuals

by letting Z ¼ [Y X ], and A ¼ [A0 jAþ]9 is a conformable stacking of the parameters in

A0 and Aþ:

YA0 þ XAþ ¼ E ð4Þ
ZA ¼ E: ð5Þ

28We use the term identified or ‘‘structural,’’ in a manner consistent with the VAR literature, to denote a model
that is a dynamic simultaneous system of equations where the A0 matrix is identified. The model is structural in
that its interpretation and estimation require us to make an assumption about the structure of A0, the
decomposition of the reduced form error covariance matrix. In what follows, we assume that this matrix is ‘‘just
identified’’ in the sense that A0 is a triangular Cholesky decomposition of the covariance matrix of the residuals.
See Leeper et al. (1996) and Sims and Zha (1999) for a discussion of alternatives such as over-identified
models.
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In order to derive the Bayesian estimator for this structural equation model, we first

examine the (conditional) likelihood function for normally distributed residuals:

LðY jAÞ} jA0jT exp½�0:5trðZAÞ9ðZAÞ� ð6Þ
} jA0jT exp½�0:5a9ðI � Z9ZÞa�; ð7Þ

where tr( ) is the trace operator. This is a standard multivariate normal likelihood equation.

Sims and Zha next propose a conditional prior distribution for this model. Note that

since this is a structural equation time series model, the prior will be on the structural
parameters, rather than on the reduced form as proposed by Litterman (more on this

below).

The Sims-Zha prior for this model is formed conditionally. Sims and Zha assume that

for a given A0, or contemporaneous coefficient matrix (stacked in a0), the prior over all of
the structural parameters has the form

pðaÞ ¼ pðaþ j a0Þpða0Þ ð8Þ
pðaÞ ¼ pða0Þ/ðfaþ;�Þ; ð9Þ

where the tilde symbol ; denotes the mean parameters in the prior for aþ, � is the prior

covariance for ~aþ, and /( ) is a multivariate normal density. For now, we leave the prior on

the contemporaneous coefficient matrix, p(a0), unspecified and we assume that conditional

on the a0 elements that the aþ coefficients have a normally distributed prior.

The posterior for the coefficients is then

qðAÞ} LðY jAÞpða0Þ/ðfaþ;�Þ ð10Þ
} pða0ÞjA0jT j�j�0:5

3 exp½�0:5ða90ðI � Y9YÞa0

� 2a9þðI � X9YÞa0 þ a9þðI � X9XÞaþ þfaþ9�faþÞ�: ð11Þ

As Sims and Zha note, this posterior is nonstandard. But it is tractable (unlike the

posterior for the Litterman prior) for a special case. When the prior in Eq. (8) has the same

symmetric structure as the Kronecker product I � X9X in the likelihood, the posterior is

conditionally multivariate normal, since the prior has a conjugate form. In this case, the

posterior can be estimated by a multivariate seeming unrelated regression (SUR) model.

Thus forecasts and inferences can be generated by exploiting the multivariate normality of

the posterior distribution of the coefficients.

The reference prior proposed by Sims and Zha for this model is formed for the

conditional distribution p(aþ j a0). This is in contrast to the Litterman approach of for-

mulating the prior on the individual parameters of each equation in the reduced form. This

difference is not minor. Forming the prior for the reduced form as in Litterman (1986)

requires that the beliefs about the parameters in the covariance matrix for the prior on the

coefficients be independent across the equations; this prior is nonconjugate and yields

a nontractable posterior. Sims and Zha’s prior requires that conditional on the prior for A0

(contemporaneous correlations in the series), the correlation structure for the regression

parameters in the prior is correlated in the same manner as the structural residuals. The

result is that the Sims-Zha approach yields a posterior distribution that can be easily

sampled, while the Litterman equation-by-equation construction of the prior on the

reduced form representation of the model does not (see Sims and Zha 1999 and Kadiyala

and Karlsson 1997 for a technical treatment of these points).
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Since the residuals of the structural models are standardized to have unit variance, we

are working with a prior on ‘‘standardized’’ data. This simplifies the specification, since it

removes issues of relative scale and focuses the specification on the dynamics. The Sims-

Zha prior is specified by positing a conditional mean for aþ j a0. The prior mean is

assumed to be the same as the Litterman prior: that the best predictor of a series tomorrow

is its value today.29 The unconditional prior has the form E[aþ] ¼ (I j 0) so the conditional

prior has the form aþ j a0 ; N((A0 j 0), �), where these conditional means have the same

mp 3 m dimension and structure as the A matrix in Eq. (5). Combining these facts, we can

write the normal conditional prior for the mean of the structural parameters as

EðAþ jA0Þ ¼
A0

0

� �
: ð12Þ

The conditional covariance of the parameters, V(Aþ jA0) ¼ �, is more complicated. It is

specified to reflect the following general beliefs and facts about the series being modeled:

1. The standard deviations around the first lag coefficients are proportionate to all the

other lags.

2. The weight of each variable’s own lags is the same as those of other variables’ lags.

3. The standard deviation of the coefficients of longer lags are proportionately smaller

than those on the earlier lags. (Lag coefficients shrink to zero over time and have

smaller variance at higher lags.)

4. The standard deviation of the intercept is proportionate to the standard deviation of

the residuals for the equation.

5. The standard deviation of the sums of the autoregressive coefficients should be

proportionate to the standard deviation of the residuals for the respective equation

(consistent with the possibility of cointegration).

6. The variance of the initial conditions should be proportionate to the mean of the

series. These are ‘‘dummy initial observations’’ that capture trends or beliefs about

stationarity and are correlated across the equations.

Sims and Zha propose a series of hyperparameters to scale the standard deviations

of the dynamic simultaneous equation regression coefficients according to these beliefs.

To see how these hyperparameters work to set the prior scale of Aþ, remember that

V(Aþ jA0) ¼ � is the prior covariance matrix for ~aþ. Each diagonal element of � therefore

corresponds to the variance of the VAR parameters. The variance of each of these

coefficients is assumed to have the form

�w‘; j; i ¼
k0k1
rjlk3

� �2

; ð13Þ

29This does not mean we are assuming the posterior distribution of the parameters and the data follow a random
walk. Instead, it serves as a benchmark for the prior. If it is inconsistent with the data, the data will produce
a posterior that does not reflect this belief. We hope to investigate other theoretically derived and consistent
specifications for the mean regression coefficients in future work.

13Advances in Bayesian Time Series Modeling

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
03

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpi035


for the element corresponding to the ‘th lag of variable j in equation i. The overall

coefficient covariances are scaled by the value of error variances from m univariate AR(p)

OLS regressions of each variable on its own lagged values, r2
j, for j ¼ 1, 2, . . . , m.30 The

parameter k0 sets an overall tightness across the elements of the prior on � ¼ A0
�19A0

�1.

Note that as k0 approaches 1, the conditional prior variance of the parameters is the same

as in the sample residual covariance matrix. Smaller values imply a tighter overall prior.

The hyperparameter k1 controls the tightness of the beliefs about the random walk prior or

the standard deviation of the first lags (since lk3 ¼ 1 in this case). The lk3 term allows the

variance of the coefficients on higher order lags to shrink as the lag length increases. The

constant in the model receives a separate prior variance of (k0k4)
2. Any exogenous

variables can be given a separate prior variance proportionate to a parameter k5 so that the

prior variance on any exogenous variables is (k0k5)
2.31 Sims and Zha also propose adding

two sets of dummy observations to the data, consistent with Theil’s mixed estimation

method (Theil 1963). These dummy observations account for unit roots, trends, and

cointegration. The parameter l5 . 0 is used to set prior weights on dummy observations

for a sum of coefficient prior that implies beliefs about the presence of unit roots. The

parameter l6 is the prior weight for dummy observations for trends and weights for initial

observations. Table 2 provides a summary of the hyperparameters in the model.

Several points should be made about this prior. First, it is formulated for the structural

parameters—the true parameters of interest in these models. Second, the conditional prior

that is a partition of the beliefs about the stacked structural parameters in a (see Eq. [8]) is

independent across the equations and thus across the columns of Aþ. The interdependence

of beliefs is reflected in the structural contemporaneous correlations, A0. Beliefs about the

parameters are correlated in the same patterns as the reduced form or contemporaneous

residuals. As such, if we expect large correlations in the reduced form innovations of two

equations, their regressors are similarly correlated to reflect this belief and ensure that the

series move in a way consistent with their unconditional correlations. This is probably the

most important innovation of the prior, since earlier priors proposed for VAR models

worked with the reduced form and assumed that the beliefs about the parameters were

uncorrelated across the equations in the system (e.g., Kadiyala and Karlsson 1997).

30This is the only use of the sample data in the specification of the prior. The only reason the data are used is so
that the scale of the prior covariance of the parameters is approximately the same as the scale of the sample data.

31The prior on any exogenous or deterministic variable coefficients should be set tighter than the prior for the
intercept, or k5 , k4. Otherwise, the exogenous variables will overexplain the variation in the endogenous
variables relative to the endogenous variables. We thank the late John T. Williams for clarifying this point for us.

Table 2 Hyperparameters of Sims-Zha reference prior

Parameter Range Interpretation

k0 [0,1] Overall scale of the error covariance matrix

k1 . 0 Standard deviation around A1 (persistence)

k2 ¼ 1 Weight of own lag versus other lags

k3 . 0 Lag decay

k4 � 0 Scale of standard deviation of intercept

k5 � 0 Scale of standard deviation of exogenous variable coefficients

l5 � 0 Sum of coefficients/Cointegration (long-term trends)

l6 � 0 Initial observations/dummy observation (impacts of initial conditions)

m . 0 Prior degrees of freedom

14 Patrick T. Brandt and John R. Freeman
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The more common representation is the reduced form VAR model. Writing the model

in Eq. (1) in reduced form helps connect the previous discussion to extant VAR texts

(Hamilton 1994), multivariate Bayesian regression models (Zellner 1971; Box and Tiao

1973), and the Litterman prior. The reduced form model is

yt ¼ c þ yt�1B1 þ � � � þ yt�pBp þ ut: ð14Þ

This is an m-dimensional multivariate time series model for each observation in a sample of

size t¼ 1, 2, . . . , T withyt an 13m vector of observations at time t, B‘ the m 3 m coefficient

matrix for the ‘th lag, p the maximum number of lags, and ut are the reduced form residuals.

The reduced form in Eq. (14) is related to the simultaneous equation model in Eq. (1) by

c ¼ dA�1
0 ; B‘ ¼ �A‘A

�1
0 ; ‘ ¼ 1; 2; . . . ; p; ut ¼ �tA

�1
0 and � ¼ A�1

0 9A�1
0 :

The Sims-Zha prior for this model is defined with respect to the normalized simultaneous

equation parameters and can be translated to the reduced form.

The matrix representation of the reduced form (analogous to Eq. [2]) is formed by

stacking the variables for each equation into columns:

Y
T 3m

¼ X
T 3ðmpþ1Þ

b
ðmpþ1Þ3m

þ U
T 3m

; U ;MVNð0;�Þ: ð15Þ

Here the columns of the matrix b correspond to the coefficients for each equation, stacked

from the elements of B‘. Note that the only exogenous variable in this representation is

a constant, but extensions with additional exogenous variables pose no difficulties.

We can construct a reduced form Bayesian SUR model with the Sims-Zha prior as

follows. The prior means for the reduced form coefficients are that B1¼ I and B1, . . . Bp ¼ 0.

We assume that the prior has a conditional structure that is multivariate normal-inverse

Wishart distribution for the parameters in the model. Using this prior for the parameters,

denoted �b and �S for B and �, respectively, we estimate the coefficients for the system of

Eq. (15) with the following estimators:

b̂ ¼ ð���1 þ X9XÞ�1ð��1�bþ X9YÞ ð16Þ
�̂¼ T�1ðY9Y � b̂9ðX9X þ��1Þb̂þ �b9��1�bþ �SÞ ð17Þ

where the normal-inverse Wishart prior for the coefficients is

b j�;Nð�b; ��Þ and �; IWð�S; mÞ: ð18Þ

Equation (12) can be used to specify �b. The aforementioned univariate AR(p) regression

prediction variances are used to determine the diagonal elements of �S. Equation (13) is

used to specify the elements of ��. This is the same Bayesian representation of the

multivariate regression model found in standard texts (Zellner 1971; Box and Tiao 1973).

This representation translates the prior proposed by Sims and Zha from the structural

model to the reduced form.

Litterman’s prior is formulated for the reduced form coefficients. Litterman assumed that

as a baseline, each of the univariate equations in the system followed a random walk, or that

the beliefs are centered on yit ¼ yi,t�1 þ uit for each series i. As such, his prior is centered
on the beliefs about the coefficients B jA0, rather than on Aþ jA0. Beliefs are uncorrelated
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across the equations and depend explicitly on the reduced form representation of the

parameters. This equation-by-equation formulation of the prior then has the form of b j�;

N((I j 0), M), where M is a diagonal matrix of the prior beliefs about the variance of the

parameters. In contrast, as indicated in Eqs. (12) and (13), for the Sims-Zha prior the

conditional prior is uncorrelated, but the unconditional prior will be correlated across

equations (in the same pattern as A0). Sims and Zha’s prior does this by having the

correlations of the parameters across the equationsmatch the correlations of the reduced form

innovations. It therefore alters the treatment of own-versus-other lags in each equation of the

Litterman prior.

What is the benefit of the Sims-Zha prior for political science and international relations

research? Our experience in analyzing conflicts and other kinds of data leads us to believe

that belligerents reciprocate each other’s behavior. We believe that the signs and

magnitudes of coefficients in equations describing directed behaviors are related. How one

country behaves toward another reflects how that other country behaves toward it.

Theories, forecasts, and policy analyses that incorporate this belief in reciprocity offer the

best accounts of international conflicts. With the Sims-Zha prior we can explore the

possibility that beliefs about the correlations in the innovations in these equations are

reflective of this idea. By conditioning our beliefs on these correlations, for the first time

we have a reference prior that embodies the belief in reciprocity.

3.2 Innovation Accounting and Error Band Construction

Innovation accounting consists of computing the responses of the variables yit ¼ yi(t)
for a specified shock of �j to variable j. Here we change notation to highlight how the

responses are functions of time. These responses are typically found by inverting the VAR

model to a moving average representation. This is done to compute the response, for

a shock to the system in Eq. (1):

cijðsÞ ¼
@yiðt þ sÞ
@�jðtÞ

; ð19Þ

where cij(s) is the response of variable i to a shock in variable j at time s.
The cij coefficients are the same as the moving average representation coefficients for

the dynamic simultaneous equation or VAR(p) model. We define a matrix version of the C
coefficients using

ðA0 þ A1L þ A2 þ L2 þ � � � þ ApLpÞyt ¼ �t ð20Þ
AðLÞyt ¼ �t; ð21Þ

where L is the lag operator and A(L) defines the matrix lag polynomial in Eq. (20). The

impulse response coefficients are then C(L) ¼ A�1(L).
Note several facts about these impulse responses (Sims and Zha 1999, pp. 1122–1124).

First, they provide a better, more intuitive representation of the dynamics of the series in

the model than the AR representation. Second, the cij coefficients are a function of time

and provide a good method for seeing how the multivariate process behaves over time.

Third, constructing measures of uncertainty for the cij(t) is difficult. Also, the cij(t) are high
dimensional and thus hard to summarize.32

32Technically, the mapping from the matrix A to the matrix C is one to one, but the mapping for the individual aij

to cij is not, in general, one to one. The subsequent nonlinearity of the responses means that approximations
based on linearization and asymptotic normally perform poorly.
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As we explained earlier, several methods have been proposed for measuring the

uncertainty or error bands for the responses in Eq. (19). Analytic derivatives and related

normal asymptotic expansions for these responses are presented in Lutkepohl (1990) and

Mittnik and Zadrozny (1993). The approximations from these derivative methods tend to

perform poorly as the impulse response horizon is increased. In addition, Kilian (1998)

presents a ‘‘bootstrap after bootstrap’’-based confidence interval for impulse responses. This

‘‘bootstrap-corrected’’ method reduces the bias in the initial estimates of the A coefficients.

But it does not adequately account for the non-Gaussian, nonlinear, highly correlated aspects

of the responses (again, see the discussion in Sims and Zha [1999], pp. 1125–1127).

The standard approaches to computing the error bands are based on constructing the

following interval:

ĉijðtÞ6 dijðtÞ; ð22Þ

where ĉij(t) are the mean estimated response at time t and distances 6dij(t) are the upper

and lower bounds of the confidence intervals relative to the mean. These bands are

presented by plotting the three functions, ĉij(t) � dij(t),ĉij,ĉij(t) þ dij(t), as functions of t.
These are effectively known as ‘‘connect the dots’’ error bands and are a standard output

from common statistical software (RATS, Eviews, Stata).

There are several ways to compute the error bands and the functions dij(t) (Runkle
1987). One is to take a Monte Carlo sample from the posterior distribution of the VAR

coefficients (defined above). From this sample, we then compute a normal approximation

to the ĉ:

ĉijðtÞ6 zarijðtÞ; ð23Þ

where za are the normal pdf quantile and rij(t) is the standard deviation of the cij(t) at time

t (za ¼ 1 for 68% bands and za ¼ 1.96 for 95% bands). This method assumes that the

impulse responses are normal in small samples.

While this Gaussian approximation approach originally was available in RATS, an

alternative (used currently in RATS) is to calculate the quantiles of the cij(t) for each

response and time point. We then estimate the posterior interval based on the highest

posterior density region or pointwise quantiles, namely,

½cij:a=2ðtÞ; cij:ð1�aÞ=2ðtÞ�; ð24Þ

where the subscript a/2 denotes the bounds of the 1�a confidence set or interval, com-

puted by taking the empirical quantiles. Yet if the cij(t) are serially correlated, then the

dij(t) and cij.a/2(t) are likely to be as well. Thus these quantiles will fail to account for the

serial correlation in the responses and they will have incorrect posterior coverage

probabilities.

To solve these problems, Sims and Zha (1999) estimate the variability of the impulse

responses by accounting for the likely serial correlation in the responses. Consider the

responses for a single variable i with respect to a shock in variable j over H periods.

Denote this vector by the sequence fcij(t)gt¼0
H . A sample of these sequences of responses

can be generated using standard methods by sampling from the posterior density of the

VAR coefficients and computing the responses. For these H responses, we can compute an

H 3 H covariance matrix � that summarizes the variance of the response of variable i to
shock j with respect to time. This is done separately for each of the m2 impulse responses,
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that is, for i ¼ 1, . . . , m and j ¼ 1, . . . , m. The benefit of using the m2 covariance matrices

� for computing the variance of the impulses is that they capture the serial correlation of

the responses. The variation of the responses can then be analyzed using the following

eigenvector decomposition:

� ¼ W9�W ð25Þ
� ¼ diagðk1; . . . ; kHÞ ð26Þ

WW9 ¼ I: ð27Þ

The H-dimensional cij vector can be written as

cij ¼ ĉij þ
XH

k¼1

ckW�k; ð28Þ

where ĉij are the mean cij vector for each of the H periods, ck are the coefficients for the

stochastic component of each response, and W�k is the k9th eigenvector of W. The variation

around each response is generated by the randomness of the c coefficients. The variances

of the c are the eigenvalues of the decomposition. The decomposition of the responses in

Eq. (28) describes the responses in terms of the principal components of their variance

over the response horizon as linear combinations of the main components of this variance.

The main variation in the impulse responses can be summarized using this

decomposition by constructing the interval

ĉij þ zaW�;k
ffiffiffiffiffi
kk

p
; ð29Þ

where ĉij is the mean response of variable i to shock in variable j, za are the normal pdf

quantiles, W�,k is the kth eigenvector of the decomposition of �, and k is the eigenvalue of

the kth eigenvector. This Gaussian linear eigenvector decomposition of the error bands

characterizes the uncertainty of the response of variable i to a shock in variable j in terms

of the principal sources of variation over the response horizon. If the kth eigenvalue

explains 100 � (kk=
PH

i¼1 ki) percent of the variance, then this band will characterize that

component. Note that this method assumes that the responses are joint normal over the H
periods. Further, these bands still assume symmetry.

To better characterize the uncertainty about the impulse responses, we can look at the

quantiles of this decomposition. This may be preferred because the assumption that the error

bands are joint normal will likely not hold as the impulse response horizon increases. To

compute these likelihood-based (or Bayesian) error bands, we take the Monte Carlo sample

of the cij and compute the quantiles of the ck, which summarize the main variation in the cij.

This is done first computing� for each impulse, then computing ck ¼ Wk,�cij, where the Wk,�
are computed from the eigenvector decomposition and the ck are then estimated from each of

the responses in the Monte Carlo sample of responses. The quantiles of the ck across the

Monte Carlo sample can be used to construct error bands. Typical quantiles will be one and

two standard deviation error bands, or 16–84%, and 2.5–97.5%. We will generally use the

rows of Wk,� that correspond to the largest eigenvalues of �. The bands constructed in this

manner will account for the temporal correlation of the impulses:

ĉij þ ck;0:16; ĉij þ ck;0:84: ð30Þ
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As such, these bands assume neither symmetry nor normality in the impulse response

density. Their location, shape, and skewness are more accurate than bands produced by

other methods because they can account for the asymmetry of the bands over the time

horizon of the responses.

Finally, we could construct error bands for all of the responses over all of the time

periods. For this method, instead of stacking the temporally correlated impulses for each

response (as in the computation for Eq. [29]), we stack all m2 responses for all H periods

and compute � based on the stacked m2H responses. This stacked eigenvector decom-

position then accounts for the correlation across time in the responses and across the

responses themselves. This is appropriate if our series are highly contemporaneously

correlated.

In what follows we use the notation and terminology in Table 3 to describe the error

bands computed for our impulse responses. We show below that error bands computed

using the eigenvector decomposition methods suggested by Sims and Zha provide a better

summary of the shape and likelihood of the responses than the alternatives.33

3.3 Forecasting and Policy Analysis

Sims (1980) notes that one of the major advantages of reduced form multiple equation time

series modeling such as VARs is their applications to forecasting and policy analysis. We

believe that for the analysis of international conflict and other subjects in political science

both of these advantages are present. First, we want to know the trend or overall direction

of conflict in the future based on the recent past. Second, we want to know the impact of

feasible policy intervention. This type of counterfactual analysis is not easy, however—

the presence of dynamic policy rules, and dynamic systems of equations such as those

proposed in Eq. (1), lead to complicated forecasting and conditional forecasting problems.

Doan et al. (1984) note that we may know the path of one endogenous variable in a

dynamic system of simultaneous equations before we see another (such as unemployment,

which is measured monthly, while GNP remains unobserved until the end of the quarter).

We also could hypothesize alternative paths for a policy variable such as the level of

U.S. mediation or trade sanctions in an international conflict and then look at the resulting

forecasts of the conflict. In both cases, we are placing a set of constraints on the forecasts we

can make because the estimated error covariance determines the correlation between the

forecasts for the variables in the VAR. This idea led Doan et al. to derive the set of linear

conditions on forecast innovations implied by the simulated path of policy variables.

Table 3 Impulse response error band computations

Error Band Method Error Band Interval

Gaussian approximation ĉij(t) 6 zarij(t)
Pointwise quantiles [cij.a/2(t), cij.(1�a)/2(t)]
Gaussian linear eigenvector ĉij 6 zaW�,k

ffiffiffiffiffi
kk

p

Likelihood-based eigenvector ĉij þ ck,0.16, ĉij þ ck,0.84

Likelihood-based stacked eigenvector ĉij þ ck,0.16, ĉij þ ck,0.84

(with ck computed from the stacked covariance)

33In what follows, we do not employ the stacked eigenvector decomposition method for all the responses in the
system. We present it because in some applications where there is a high contemporaneous correlation in some
of the responses it may be a better method. Note, however, that this method is highly computationally intensive,
since it requires an eigendecomposition of a m2H square matrix.
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Waggoner and Zha (1999) extend this idea and show how to derive the Bayesian

posterior sample based on the mean and variance of these constrained forecasts. They

demonstrate how to use information about the forecasts’ innovations subject to constraints

on the forecast of one or more endogenous variables in a VAR to generate conditional

forecast distributions that correctly account for both parameter uncertainty and forecast

uncertainty. Waggoner and Zha do this by using Gibbs sampling with data augmentation

to generate a sequence of model estimates and forecasts that summarize the conditional

forecasts and their associated uncertainty.

In this subsection, we stress policy counterfactuals. But this analysis also applies to

historical counterfactuals (inquiries into the hypothetical effects, ex post, of a counterfac-
tual path of a variable in time past). There are two ways we can proceed to construct such

policy counterfactuals. The first uses a hard condition to specify the path of a given

endogenous variable. A hard condition sets the value of an endogenous variable to a fixed

value or path of values. Alternatively, we could use a soft condition and posit a range of

values for this policy variable. For instance, a hard condition for an international conflict

model assumes that a policy innovation—a surge in cooperation of a third party toward

one of the two belligerents, for instance—remains at a fixed level for some time into the

future. A soft condition assumes that this policy shock takes on one of a range of values

over some future horizon. This is a Bayesian implementation of the analysis of sequences

of policy innovations.34

Formally, consider an h-step forecast equation for the reduced form VAR model:

yTþh ¼ cKh�1 þ
Xp

l¼1

yTþ1�lNlðhÞ þ
Xh

j¼1

�TþjCh�j; h ¼ 1; 2; . . . ð31Þ

where

K0 ¼ I; Ki ¼ I þ
Xi

j¼1

Ki�jBj; i ¼ 1; 2; . . . ;

Nlð1Þ ¼ Bl; l ¼ 1; 2; . . . ; p;

NlðhÞ ¼
Xh�1

j¼1

Nlðh � jÞBj þ Bhþl�1; l ¼ 1; 2; . . . ; p; h ¼ 2; 3; . . . ;

C0 ¼ A�1
0 ; Cl ¼

Xi

j¼1

Ci�jBj; i ¼ 1; 2; . . . ;

where we use the convention that Bj ¼ 0 for j . p, Cl are the impulse response matrices

defined in the last section for lag l, Ki describe the evolution of the constants in the forecasts,

and Nl(h) define the evolution of the autoregressive coefficients over the forecast horizon.

This h-step forecast Eq. (31) gives the dynamic forecasts produced by amodel with structural

innovations. It shows how these forecasts can be decomposed into the components with and

without shocks. The first two terms in Eq. (31) are the sum of the effects of the past lagged

values of the series and the constant or trends. The final term is the impulse responses that

determine the relationships among the (policy) innovations that affect the series. The Ci

34The canonical example here is monetary policy where the Federal Reserve Funds rate (FFR) is fixed at a given
value as part of a policy rule (hard condition) or a range of values greater than some level is examined (a soft
condition). In both cases, the forecast paths are traced out to see the effects on GNP and the economy at large.
See Waggoner and Zha (1999). For a political science application, see Goldstein and Freeman (1990, chap. 5).
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matrices are the impulse responses for the forecasts at periods i¼ 0, . . . , hwhere the impulse

at time 0 is the contemporaneous decomposition of the forecast innovations.35

The key point in conditional forecasting is that setting the path of one variable, say y1t,

constrains the possible innovations in the forecasts of y2t . . . ymt. To see this, consider the

following formulation for a hard condition on a VAR forecast. Suppose that the value of

the j9th variable forecast is constrained to be y( j)Tþh
* . Then from Eq. (31) it follows that

yð jÞ*Tþh � cKð jÞh�1 �
Xp

l¼1

yTþ1�lNlðhÞð jÞ ¼
Xh

j¼1

�TþjCh�j; ð32Þ

where the notation ( j) refers to the j9th column matrix.

The left-hand side of Eq. (32) implies that the innovations on the right-hand side are

constrained. That is, there is a restricted parameter space of innovations that are consistent

with the hypothesized conditional forecast. These constraints can be expressed as a set of

encompassing conditions. These hard conditions take the form of linear constraints:

rðaÞ
q3 1

¼ RðaÞ
q3 k

9 �
k3 1

; q � k ¼ mh; ð33Þ

where R(a) are the stacked impulse responses—the C matrices in Eq. (32)—for the

constrained innovations and r(a) are the actual constrained innovations (the left-hand

side of Eq. [32]). The elements of these matrices correspond to the forecast constraints.

The notation assumes that there are q constraints, and there can be no more constraints

than the number of future forecasts for all the variables, k ¼ mh. In any case, the elements

of R and r may depend on an estimated parameter of the reduced form, denoted by a (the

vectorized coefficients in Eq. [3]).36

This last fact leads us to use a Gibbs sampling technique to generate the distribution

of the conditional forecasts. Gibbs sampling allows us to account for the path of the condi-

tional shocks and the possible uncertainty surrounding the parameters used to generate the

respective conditional forecasts. We start by estimating a BVAR model based on the

Sims-Zha prior and generating a conditional forecast from this model. We then use this

conditional forecast to augment the data and resample the parameters. This procedure

accounts for both sources of uncertainty in the forecasts.37 We explain this Gibbs sampling

algorithm and its notation in the appendix.

35This raises the issue about the properties of the model for different decompositions—the same issue present in
the ordering of the responses in impulse response analysis. For just identified VAR models—such as those we
are discussing in the section—the choice of this decomposition for the computations is invariant to the ordering
of the variables. See the discussion in Waggoner and Zha (1999).

36For a soft condition, r(a) is not a vector but a set that contains the admissible forecast values for the forecast
condition on the j9th variable. See Waggoner and Zha (1999) for a discussion.

37As Waggoner and Zha (1999, pp. 642–643) note, the sampling of the model parameters is

a crucial step for obtaining the correct finite-sample variation in parameters subject to a set of
hard conditions in constraints. . . . Because the distribution of parameters is simulated from the
posterior density function, the prior plays an important role in determining the location of the
parameters in finite samples. Under the flat prior, the posterior density is simply proportional
to the likelihood function, which, in a typical VAR system, is often flat around the peak in
small samples. Moreover, maximum-likelihood estimates tend to attribute a large amount of
variation to deterministic components (Sims and Zha 1998). Such a bias, prevalent in
dynamic multivariate models like VARs, is the other side of the well known bias toward
stationarity of least-squares estimates. These problems can have substantial effects on the
distribution of conditional forecasts.
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4 Illustration

The conflict between the Israelis and Palestinians is one of the most enduring of our time.

For decades these two peoples have battled one another. Since the end of World War II,

the United States has been involved in this conflict. For the United States, however,

solving the Israeli-Palestinian conflict seems tantamount to ‘‘moving mountains.’’

Political scientists have studied this conflict for many years. Among the recent

quantitative investigations of it are Schrodt et al. (2001) and Goldstein et al. (2001). Both

these studies employ the Kansas Events Data System; each uses WEIS codes. Schrodt et

al. is a collection of exploratory analyses of the impacts of third-party intervention on the

behavior of the belligerents in the time period April 1979–September 1999. They use

frequentist regression and cross-correlation methods to analyze the conflict. Schrodt et al.

find evidence that U.S. intervention is motivated by and has a salutary impact on Israeli-

Palestinian relations. Multi-equation time series models are used by Goldstein et al. These

researchers find evidence of ‘‘triangularity’’ between U.S. behavior toward Israel and the

Palestinians, Israeli behavior toward the Palestinians, and Palestinian behavior toward

Israel: ‘‘Israeli and Palestinian behaviors were reciprocal, indicating that cooperation or

conflict received from the United States was ‘passed along’ in kind to the neighbor’’

(2001, p. 612). This triangularity provides the basis for the evolution of cooperation

between the Israelis and the Palestinians. In other words, it demonstrates, according to

Goldstein et al., the potential for effective U.S. intervention in this conflict.

The Bayesian multi-equation time series methods introduced here can improve these

and other studies of the Israeli-Palestinian conflict. BVAR models offer three advantages

over the approach of Schrodt et al.: the ability to analyze more complex, simultaneous

causal relationships between the actors behaviors, systematically incorporate beliefs about

conflict dynamics, and gauge the degree of uncertainty about causal inferences. Because

their model is essentially an unrestricted VAR with a flat prior, our BVAR model improves

the analysis in Goldstein et al. in many of the same ways. Above all, it provides, for the

first time, measures of uncertainty for those investigators’ causal inferences. Finally, we

use our BVAR model to generate forecasts, including forecasts of the policy contingent

type. Neither of these studies attempts to produce forecasts of any kind, let alone provide

measures of uncertainty for forecasts.

To illustrate these strengths of the BVAR model, we reanalyze the Israeli-Palestinian

conflict in the period between April 15, 1979, and December 14, 1988. The latter date is

when Yasser Arafat met U.S. demands to renounce all forms of terrorism and accept

United Nations Resolutions 242 and 338 (Gerner et al. 1994, pp. 142–144; Morris 2001,

pp. 608–610).

The data we use here are from the Kansas Event Data System (KEDS). We employ

weekly measures of Israeli, Palestinian, and U.S. directed behaviors, measures derived

from the KEDS Levant dataset. We extracted the events involving the United States, the

Palestinians, and the Israelis. We then scaled these events and aggregated them into

weekly totals. The KEDS data were scaled into interval data using the scale created by

Goldstein (1992). This produces a set of six variables: A2I, A2P , I2A , P2A , I2P , P2I,

where A ¼ American, P ¼ Palestinian, and I ¼ Israeli. So, for instance, I2P denotes the

scaled value of Israeli actions directed toward the Palestinians.

Our analysis is divided into two parts. First we analyze the dynamics of this conflict in

a way that takes into account the serial correlation over time in uncertainty about causal

inference. We illustrate the value of the eigenvector decomposition method for con-

structing error bands for impulse responses. To simplify the exposition, we use a flat prior
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BVAR model in this analysis.38 We then use a BVAR model with a modified Sims-Zha

prior (which allows for beliefs to be correlated across equations of the reduced form model

in a way that reflects the contemporaneous relationships between the actors’ behaviors) to

produce ex post forecasts for the 12 weeks following Arafat’s capitulation. We also

produce a counterfactual, (hard) policy contingent forecast for the same 12 weeks under

the (counterfactual) assumption of sustained U.S. cooperation toward the Israelis.39

4.1 Bayesian Error Bands

Users of VAR models usually base their causal inferences on impulse responses. For our

six-variable system, there are 6 3 6 ¼ 36 such responses. Since many of these responses

are not of direct interest, we focus on the subset of responses of Israel and Palestine to each

other. That is, we focus on the four dyadic responses: responses of Israeli (Palestinian)

actions toward the Palestinians (Israelis) to a positive or cooperative shock in Israeli

behavior toward the Palestinians, and responses of the Palestinians (Israelis) toward the

Israelis (Palestinians) from a positive shock in Palestinian actions toward the Israelis.40

Our impulse response analyses are based on a flat prior BVAR model because we want to

illustrate methods for constructing the error bands separate from the implications of the

choice of the prior.

The impulse responses and their error bands are all based on a Monte Carlo sample of

5000 (not antithetically accelerated) draws. For all the moving average responses, the same

procedure is used to draw the sample of impulse responses. A sample is taken from the

posterior of the (B)VAR models coefficients. The draw is then used to compute the error

bands for that draw. These impulses are then saved and summarized using the methods

described earlier. The main difference in the results is in the methods used to construct the

error bands. All figures have 95% or approximately two standard deviation error bands.

Figure 1 shows three different sets of error bands. The rows in this figure are the

responses of the variable on the left axis. The columns correspond to the variable that has

been shocked with a positive one standard deviation innovation. Each 2 3 2 cluster is

therefore the same set of responses but with error bands computed by the different methods

in Table 3.

The ‘‘Normal Approximation’’ columns use the standard approach of treating the

responses as though they are joint normally distributed. The error bands computed using

this method tend to be quite large and are symmetric by design. The high degree of

(incorrect) uncertainty in the later periods of the response horizon tend to dominate any

inferences, making it appear as though there are no significant reactions to the shocks.

The ‘‘Pointwise Quantile’’-based error bands do not assume that the responses are

normally distributed. These error bands are computed using the quantiles of the responses

at each point in time. These error bands show a large degree of uncertainty as well. For

38This is similar to estimating a frequentist model, since where the prior is assumed to have a large variance the
posterior estimates are nearly identical to the maximum likelihood estimates.

39Our origination date thus is the same as that used by Schrodt et al. (2001) and Goldstein et al. (2001). But our
series terminated at December 15, 1988, the date on which Arafat met U.S. demands. The period of the forecasts
is December 16, 1988–March 15, 1988. Note that this estimation period is after the Camp David Accords and
before the Madrid conference, the Oslo Accords, and the Gulf War. This period also is one in which there were
unity governments in Israel and the PLO was arguably more unified than it is today. The U.S. government was,
at least as compared to the Nixon administration, more unified as well. We thank Phil Schrodt for his advice on
the selection of this time period and choice of the policy counterfactual.

40The ordering of the decomposition of the innovations we use to generate the impulse responses is as follows:
A2I, A2P, I2A, P2A, I2P, P2I. We put the American-related dyads at the top of the ordering because we are
interested in the impacts of U.S. policy on the Palestinian-Israeli conflict.
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instance, the response of I2P for a shock to P2I appears to be little different from zero for

the 12-week horizon. These error bands, however, do more clearly show the shape of the

four impulse responses.

The ‘‘Normal Linear Eigenvector’’ decomposition bands are based on the first new

method suggested by Sims and Zha (1999). In this case, we use the eigenvector decom-

position of the impulse response variances but assume that the impulses are still joint

normally distributed over the response horizon. The error bands for these responses are

rather nonsensical, since at some points the posterior probability regions nearly collapse

to the mean. In general, this is evidence that the normality approximation is a poor choice.

Figure 2 shows the preferred Bayesian shape error bands for impulse responses, that is,

the likelihood-based eigenvector quantiles. This method of computing the error bands

does not impose a normality assumption. It accounts for the main temporal correlation in

the responses. We present the first three components of the eigenvector decomposition.

Table 4 reports the percentage of the variance in the responses explained by each of them.

The three components account for between 63% and 83% of the total variance in the

responses, with the first component accounting for most of the variance.

Several interesting results about the posterior distribution of the responses emerge from

these Bayesian shape error bands. The first eigenvector component explains the bulk of the

variance in the overall shape of the responses. Here, unlike in the earlier sets of responses,

we see that the impact of a positive shock in P2I on I2P is an immediate increase in

cooperation, followed by additional hostility (the response of I2P is first positive, then

negative). Further, the 95% posterior region for this pattern does not always include zero,

thus lending credibility to this interpretation of the dynamic response of an innovation in

P2I. We see from the second and third components of the variance of the response in I2P

that there is a considerable amount of uncertainty about its symmetry and about the initial

positive response of the Israelis toward the Palestinians. In the second component, the

mean response of I2P appears to be closer to the lower edge of the 95% interval in

the earlier period and closer to the upper edge when the I2P response becomes negative. In

the third component, this same response in I2P for a positive shock to P2I appears no

different from zero in the early weeks, but it is significantly skewed toward negative

(hostile) values after about one month. The sum total of these responses then provides

strong evidence for Israeli reciprocity toward the Palestinians in the first month after

a surprise cooperative action by the Palestinians, but this reciprocity is short-lived.

The response of the Palestinians to a surprise shock of cooperation by the Israelis toward

them is very uncertain in Fig. 1. But in Fig. 2, the Bayesian shape bands’ first component

lends support to the central ‘‘zig-zag’’ pattern of this response. Substantively, it appears that

the initial reaction (first four weeks) of the Palestinians to a surprise cooperative action by the

Israelis is quite flat, but more volatile in the later weeks. But this eigenvector component only

accounts for 53% of the total variance in the response. An additional 26% of the variance is

accounted for by the second and third components. In these components, there is much more

uncertainty about the overall response. The second component shows that there is an

asymmetry in the responsewhere themean response is close to the upper edge of the posterior

region. It is more likely that as we move further from the surprise in Israeli cooperation, the

Palestinians are more favorably disposed toward the Israelis.

In contrast, similar interpretations are hard to support using any of the error bands in

Fig. 1. The ‘‘Normal Approximation,’’ ‘‘Pointwise Quantile,’’ and ‘‘Normal Linear Eigen-

vector’’ error bands all have the general shape of the bands in Fig. 2. However, the bands

in Fig. 1 misrepresent the uncertainty about the shape of the response likelihood. They

miss the asymmetry in the likelihood of the responses insofar as they overstate the degree

25Advances in Bayesian Time Series Modeling
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of conflict directed by the Israelis toward the Palestinians in response to a positive shock

by the Palestinians toward the Israelis.

4.2 Forecasting and Counterfactuals

Forecasting is the common standard used in time series modeling. The fit of time series

models is judged by the in-sample forecasts generated by the model (via one-step error

minimization). As such, it seems natural to propose forecast-based methods for assessing

model fit and performance. In addition, we show how (B)VAR models can be used for

policy evaluation and counterfactual analysis.

We begin our presentation of forecast performance by looking at the benefits of using

the Sims-Zha form of a BVAR prior. We forecasted the six data series in our analysis for

the periods from 1988:51 to 1989:10 using the sample data from 1979:15 to 1988:50.

We used two different models for constructing our forecasts. Both models include six lags.

In the first, we employ a flat prior implicit in the maximum likelihood VAR model use

by Goldstein et al. (2001). In our second model, we employ a reference prior using the

Sims-Zha specification outlined earlier with the following hyperparameters: k0 ¼ 0.6,

k1 ¼ 0.1, k3 ¼ 2, k4 ¼ 0.5, and l5 ¼ l6 ¼ 0.

The choice of these hyperparameters comes both from ‘‘experience’’ and theory. The

selection of the parameters for the prior cannot and should not depend on the data alone—

although it should be informed by the properties of the data and their dynamics. If the prior is

derived from the data, the resulting forecasts will too closely mirror the sample data rather

than the population. However, the prior must be consistent with the data such that it reflects

the general beliefs analysts have about the data’s variation, dynamic properties, and thegeneral

interrelationships of this dyadic conflict. As such, this prior may ‘‘work’’ for forecasting the

Israeli-Palestinian data, but it will likely need to be modified when applied to other cases.41

We base our design of the prior on several considerations. The first is practical and

reflects the properties of event data. We choose to discount the overall scale of the error

covariance and the standard deviation of the intercept because we believe that the sample

error covariance will overstate the true error covariance. For example, the former puts too

much weight on extreme events. In addition, setting the standard deviation of the intercept

to be 0.5 reflects the belief that there is a long-run fixed level for the conflict series.42 Our

second consideration concerns the dynamics and the lag structure. Even with six lags, we

expect that the effect of events six weeks prior should be rather diffuse. Thus we select

a rather rapid lag decay factor of k3 ¼ 2. This means that the variance of the parameters

41We will be analyzing other international conflicts in future work.
42Hence we set l5 ¼ l6 ¼ 0. We thank Phil Schrodt for his advice on this aspect of the specification.

Table 4 Percentage of variance in impulse responses explained by each eigenvector

using the likelihood-based method

Shock Response Component 1 Component 2 Component 3 Total

I2P I2P 61 13 10 83

P2I I2P 50 15 10 75

I2P P2I 53 15 11 79

P2I P2I 30 19 13 63

Note. The first two columns define the variable shocked in the system and the observed response. The Total

column is the percentage of the variance explained by the first three eigenvectors.
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around lag j are approximately proportionate to j�2. We also choose to place a tighter prior

on the first lag coefficients because we believe that more proximate events are highly

predictive of the conflict events today. Finally, the Sims-Zha prior allows our beliefs about

the model parameters to be correlated across the equations. Thus, if there is correlation in

the residuals of the I2P and P2I equations, the beliefs about the parameters in these two

equations will be similarly correlated. In our case the estimated correlation of the residuals

is 0.21, reflecting our belief in reciprocity.

We believe that these hyperparameters are also roughly consistent with the data. This is

confirmed by a search of the hyperparameter space using the marginal log-likelihood and

log-posterior of the data as measures of fit. The reason we choose not to use a measure

such as the value of the log-posterior pdf of the data or the marginal log-likelihood to

select the prior is that this puts too much weight on the prior. Designing the prior on these

bases only reproduces the density of the sample data. Evidence of this fact is that the

values of the hyperparameters that maximize these measures of posterior fit are all very

‘‘tight.’’ This would be fine for making inferences in-sample, but they do not reflect the

uncertainty we expect to see out-of-sample.43

Our illustrative forecast is a challenging one. This is because the week before, Yasser

Arafat proposed a major policy shift for the PLO, renouncing terrorism by the PLO and

accepting U.N. resolutions 242 and 383. As such, this could be a period of structural

change in Israeli-Palestinian-U.S. relations. We return to this possibility in the conclusion.

Figure 3 presents the two sets of forecasts and the actual data for the 12 weeks after

1988:50. Here we present 68% pointwise error bands (approximately one standard

deviation).44 As can be seen in these bands and forecasts, the forecast of Israeli actions

toward the Palestinians (I2P) indicates more peaceful (more positive) relations after

43Details of this hyperparameter specification search and the rankings of the hyperparameters by the posterior fit
measures are available in Brandt and Freeman (2002).

44We do not use the eigenvector decomposition methods in this example because we want to highlight the
benefits of the Sims-Zha prior itself and not confound the presentation with the Bayesian error band method.

−93
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I2P

−33
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P2I

Fig. 3 Comparison of flat and Sims-Zha prior unconditional forecasts for I2P and P2I, 1988:51–

1989:10. Results are based on the six variable VAR models described in the text. Solid lines are the

flat prior forecasts, dashed lines are the reference prior forecast, dotted lines are the actual series.
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1988:50. Further, the error bands for the Sims-Zha prior forecast are well above those of

the flat prior model. In fact, the flat prior model forecasts tend to be too pessimistic, with

many of the actual data points falling above the flat prior forecast confidence region. In

contrast, the Bayesian Sims-Zha prior model tends to correctly capture the central

tendency over this 12-week horizon. A less clear result is seen for the Palestinian actions

toward the Israelis (P2I). Here the reference or Sims-Zha prior model provides superior

forecasts in the early weeks. However, in the later weeks, the flat prior model performs

better. In this illustration, then, the benefits of the Sims-Zha prior accrue in short- to

medium-term forecasts.

To understand the implications of U.S. policy toward the Palestinian-Israeli conflict, we

construct counterfactual forecasts. At the time of Arafat’s announcement, the Goldstein

score for U.S. action toward the Israelis is 9.4, indicating cooperation. Here we consider

what would have happened had, for the next 12 weeks, the United States sustained a level

of cooperation toward the Israelis that is one standard deviation above the mean of A2I in

the forecast period (Goldstein score for A2I ¼ 7.566 for 1988:51–1989:10).

To analyze this policy counterfactual, we employ the two different BVAR models for

our system of equations. One is based on a flat prior and one is based on the Sims-Zha

prior, with the selection of hyperparameters discussed earlier. Figure 4 compares the

conditional and unconditional forecast results for the flat and Sims-Zha prior VAR

models. These conditional forecasts and their density summaries were generated using the

Gibbs sampling algorithm in the appendix. The summaries are based on a burn-in of 3000

iterations and a final posterior of 5000 values for each series forecasted. There are two

−93

6

I2P

−81

10

I2P

−31

2

P2I

−33

6

P2I

Fig. 4 U.S. policy counterfactual for A2I in the 12 weeks following Arafat’s agreement to U.N.

Resolutions 242 and 338. Conditional forecasts using flat and Sims-Zha priors, 1988:51–1989:10.

Results are based on the six variable BVAR models described in the text. The first row of graphs

compares the 12 period conditional (dashed) and unconditional (solid) forecasts using the flat prior.

The second row compares the conditional forecasts with the reference prior (solid) to the conditional

forecasts with the flat prior (dashed). Confidence regions are the 0.68 probability region, computed

pointwise. Dashed lines indicate the value of each series on 1988:50 (last period of the estimation

sample).

29Advances in Bayesian Time Series Modeling

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
03

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpi035


important comparisons: the effects of the prior and the effects of conditioning the fore-

cast of A2I. The first row of graphs presents the I2P and P2I forecasts based on the

conditioning of A2I versus no conditioning—both with a flat prior. Here we can see that

the forecast condition leads to a modest decrease in the level of conflict between the

Israelis and the Palestinians. However, the results are rather diffuse and the confidence

regions heavily overlap. Note also that the impact of the ‘‘hard’’ A2I condition has

a larger impact on the Israeli actions toward the Palestinians than on the Palestinian

actions toward the Israelis.

The second row compares the conditional forecasts with and without the Sims-Zha

prior. The first thing of note is that the Sims-Zha prior smoothes out the forecasts con-

siderably (as we would expect from a shrinkage prior like the Sims-Zha prior). In addition,

the confidence region for I2P variable includes much more of the positive (cooperative)

region when the reference prior is used. Further, after the initial forecast periods, the mean

forecast for I2P using the prior is more positive (cooperative) than that without the prior.

The failure to employ the reference prior leads one to understate the policy impact of the

U.S. policy change.

One counterclaim is that the prior effectively biases the forecasts. In general this could

be the case, since the prior is centered near the mean or equilibrium level of the data.

However, this alleged bias in the I2P series is in the wrong direction, since the mean value

of I2P over the sample period is much lower than the forecasted values. Therefore, we

should take the results here as strong evidence that a U.S. policy change in the last weeks

of 1988 and early weeks of 1989 could have had a sizable impact on the level of

cooperation between the Israelis and Palestinians.

Another way to analyze these forecasts and see the impact of the prior is to look at the

conditional distribution of the I2P and P2I series at a specific time point. Here we choose

the twelfth or final forecast period, 1989:10. Figure 5 presents several views of the joint

distribution of the conditional forecasts of the I2P and P2I series on this date. We refer to

this collection of plots as a ‘‘mountain plot’’ because it compares the two bivariate con-

ditional densities (mountains) produced by the flat and Sims-Zha priors. Starting with the

bottom right plot and working counterclockwise, we see four views of the densities from

the two models. The three-dimensional plot shows that the conditional forecast density for

the flat prior model (red hill) sits to the back and right of the Sims-Zha prior conditional

forecast (black hill). Since this plot has been rotated so that more pacific Goldstein scores

are at the front edges, this plot indicates that the reference prior model forecasts a more

pacifying effect for U.S. intervention than the flat prior model.

The two plots on the left show the projection of the forecast densities. The P2I (I2P)

figure compares the Sims-Zha prior (black) and flat prior (red) conditional forecasts on the

P2I (I2P) dimension. We see that the effect of U.S. intervention is asymmetric insofar as

the impact of sustained cooperation from the United States to Israel appears to be greater

on I2P than on P2I.45 For the I2P directed actions, the mean forecasted Goldstein score for

the twelfth week is -13 for the reference prior model and -31 for the flat prior model. For

the P2I directed dyad, the mean forecasted Goldstein score for the twelfth week is -6

for the (black) Sims-Zha prior model and -11 for the (red) flat prior model.

Finally, the upper right plot shows the contours of the densities. Here we see that the

conditional forecast density based on the flat prior model indicates more conflict than that

based on the reference prior model because it is lower and slightly more to the left. The

45Think of these two figures as the projections created by shining a light on one side of the three-dimensional
densities in the lower right graph of Fig. 5.
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reference prior model shows that the conditional forecasts are nonspherical in the sense

that most of the variance in the joint forecasts of I2P and P2I is in the I2P dimension. In

contrast, the choice of the prior has little impact on the estimated amount of variation in the

P2I variable.

5 Conclusion

Multi-equation time series models have become a staple in political science. With the tools

we present here, the Bayesians among us can use these models much more effectively. The

Bayesian shape (eigenvector decomposition) method for constructing error bands for our

impulse responses gives us a means, for the first time, to gauge the serial correlation over

time of uncertainty about our inferences. The modified Sims-Zha prior we outline here is

a first step toward developing informed priors for short- and medium-term political

forecasting in international relations. The use of such priors will help analysts anticipate

outbreaks of violence in places like the Middle East. Finally, we reviewed why, because of

politics, policy counterfactuals can be meaningfully evaluated. And we showed how

a Bayesian multi-equation model with a modified Sims-Zha prior can be used to gauge

the potential impact of third-party intervention in an important international conflict.

When further developed, such demonstrations should be of much interest to government
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Fig. 5 Mountain plot of the conditional forecast densities for I2P and P2I for 1989:8. The black

lines/densities are for the reference prior model. The red lines/densities are for the flat prior model.

The red (black) hill is the bivariate density for the flat (reference) prior model. Variables are labeled

on the respective axes.
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agencies and international (non)governmental organizations. Software to facilitate these

methodological innovations will be available.46

There are important topics for future research in each of the three areas. Unit roots and

cointegration, as we have noted, pose major challenges for causal inference in both the

frequentist and Bayesian frameworks. The Sims-Zha prior gives us a starting point for

addressing these challenges. We need to explore its usefulness in models that contain

variables that we know are first-order integrated either because of theory or our experience

analyzing the relevant series. This is part of the focus in the sequel to this article (Brandt

and Freeman 2005). In it, we use a macro political economy example to discuss the

problem of overfitting in more detail and apply a Sims-Zha reference prior with provisions

for unit roots and cointegration. Among the important issues regarding forecasting is the

measurement of fit. Econometricians have developed for this purpose concepts like

generalized mean square error (Clements and Hendry 1998) and probability integral

transform goodness-of-fit tests (Diebold et al. 1998; Clements 2004). The latter, for

example, are used to determine if entire forecast densities could have been produced by the

respective data generating process. In addition, decision theory needs to be incorporated in

evaluations of the kind of Bayesian forecasts of political time series we have illustrated

here (see Ni and Sun 2003; Clements 2004).

As for the models themselves, they can be enriched in several ways. Allowing for

cointegration leads naturally to Bayesian vector error correction models. And, as suggested

by Williams’s (1993) original work on the subject, parameters might be time varying. In

fact, the I.M.F. is exploring this possibility in its analyses of the impacts of the European

Monetary Union (Ciccarelli and Rebucci 2003). When combined with theoretically

informed identification of the contemporaneous correlation matrix (A0), Bayesian time

series methods facilitate modeling large-scale systems. In fact, Leeper et al. (1996) show

how systems of 13 and 18 variables can be used to study the nature and impact of U.S.

monetary policy. Leeper et al.’s approach could prove useful for studying large-scale

international conflicts like those in the Levant and Bosnia. Model scale is also discussed in

the sequel (Brandt and Freeman 2005). Finally, there is the possibility that, because of

recurring changes in the decision rules employed by agents, parameters switch in values

between different ‘‘regimes.’’ Bayesian Markov switching multi-equation time series

models have been developed to account for this possibility (Sims and Zha 2004). Such

models may be able to capture the conflict phase sequences and conflict phase shifts

international relations scholars have uncovered. If so, we could produce Bayesian conflict

phase-contingent impulse responses, forecasts, and contingent forecasts. Work is underway

to develop and apply Bayesian Markov switching multi-equation models to the Israeli-

Palestinian and several other important international conflicts.47

Appendix: Gibbs Sampling Algorithm for Constructing Forecasts

Here we describe the algorithm for calculating conditional forecasts under hard policy

counterfactuals. This parallels the discussion in Waggoner and Zha (1999) but with

slightly more detail about the steps and the computations for BVAR models with the

Sims-Zha prior. We then detail how this algorithm can be used to construct unconditional

forecast densities.

46Details about the software can be found on the Political Analysis Web site or by contacting the first author.
47Evidence of such switching has been found in the analyses of the impact of politics on currency markets by
Freeman et al. (2000) and Hays et al. (2003).
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Waggoner and Zha (1999) show that conditional on Eq. (33) in the text and the

parameter vector of the VAR (a), the joint conditional h-step forecast distribution is

Gaussian with

pðyTþn j a;YTþn�1Þ ¼ / c þ
Xp

l¼1

yTþn�lBl þMð�TþnÞA�1
0 ; A�19

0 Vð�TþnÞA�1
0

 !
ðA1Þ

where YTþn�1 is the data matrix up to T þ n � 1. M(�Tþn) and V(�Tþn) are the mean and

variance of the constrained innovations under the conditional forecast:

pð�t j a;RðaÞ9� ¼ rÞ ¼ /ðRðaÞðRðaÞ9RðaÞÞ�1rðaÞ; I � RðaÞðRðaÞ9RðaÞÞ�1RðaÞ9Þ ðA2Þ

With these distributions, the Gibbs sampling algorithm of Waggoner and Zha (1999)

becomes:

Let N1 be the number of burn-in draws and N2 the number of Gibbs samples after the

burn-in. Then:

1. Initialize the values of a0 and aþ for the VAR, as defined in Eq. (3). This can be

done using either a BVAR or other estimator. These values should come from the

peak of p(a jYT).

2. Generate an unconditional forecast yTþ1 . . . yTþh based on the draw of a0 and aþ.

3. For this unconditional forecast, compute the related impulse responses for the

coefficients in Eq. (1). These provide the Ci impulse responses.

4. Using the impulse responses that correspond to the unconditional forecast, compute

the mean and variance of the constrained innovations and sample the constrained or

conditional forecast innovations sequence from the density in Eq. (A2). Note that at

each iteration one must recompute the value of the mean of �, which depends on r,
which in turn depends on a, which is sampled in the Gibbs iterations.

5. Using these constrained innovations, construct the constrained forecasts using the

unconditional forecasts according to the reduced form representation in Eq. (31) in

the text.

6. Update estimates of a0 and aþ for the sample augmented by the h forecast periods.

This ensures that the joint density of the (B)VAR parameters reflects the forecast

uncertainty. The same estimator should be used at this stage as is used to initialize

the sequence of VAR parameters.

7. Repeat the previous steps until the sequence

a1; y1Tþ1; . . . ; y1Tþh; . . . ; a
N1þN2 ; yN1þN2

Tþ1 ; . . . ; yN1þN2

Tþh

� �
is simulated.

8. Keep the last N2 draws.

As Waggoner and Zha note, the crucial part of the computation is updating the VAR

parameters to account for the forecast uncertainty. This then accounts for both the

parameter uncertainty and the structural shocks that are constrained for a conditional

forecast. Most existing forecasting inference and forecasting procedures (particularly those

that are non-Bayesian) ignore this critical step and therefore take the innovations as the

only source of uncertainty.
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This same algorithm can be modified to produce unconditional or unconstrained

forecasts. that account for both forecast and parameter uncertainty. To construct

unconditional forecasts, replace steps 3–5 with a draw from the unconstrained forecast

innovations, �t ; N(0, �). These innovations are used to construct the unconstrained

forecasts. The remainder of the algorithm proceeds in the same manner.

Convergence of this Gibbs sampler for these forecasts can be evaluated using

standard Markov chain Monte Carlo (MCMC) convergence diagnostics. In particular, we

applied the Geweke convergence test for the means in the Markov chain to each forecast

period for each variable (Geweke 1992). These results indicated that the Markov chain

had converged. Similar conclusions were produced using the Heidelberger and Welch

run length control diagnostic test for MCMC convergence (Heidelberger and Welch

1981, 1983).

References

Beck, Nathaniel, Gary King, and Langche Zeng. 2000. ‘‘Improving Quantitative Studies of International Conflict:

A Conjecture.’’ American Political Science Review 94:21–36.

Beck, Nathaniel, Gary King, and Langche Zeng. 2004. ‘‘Theory and Evidence in International Conflict:

A Response to de Marchi, Gelpi, and Grynaviski.’’ American Political Science Review 98(2):379–389.

Box, George E. P., and George C. Tiao. 1973. Bayesian Inference in Statistical Analysis. New York: John Wiley

and Sons.

Box-Steffensmeier, Janet, and Renee Smith. 1996. ‘‘The Dynamics of Aggregate Partisanship.’’ American

Political Science Review 90(3):567–580.

Brandt, Patrick T., and John R. Freeman. 2002. ‘‘Moving Mountains: Bayesian Forecasting As Policy

Evaluation.’’ Presented at the 2002 Meeting of the Midwest Political Science Association, Chicago, Illinois.

Brandt, Patrick T., and John R. Freeman. 2005. ‘‘Modeling Macropolitical Dynamics.’’ Presented at the Annual

Meeting of the American Political Science Association, Washington, DC.

Brandt, Patrick T., and John T. Williams. 2001. ‘‘A Linear Poisson Autoregressive Model: The Poisson AR(p)

Model.’’ Political Analysis 9(2):164–184.

Brandt, Patrick T., and John T. Williams. Forthcoming. Multiple Time Series Models. Beverly Hills: Sage.

Brandt, Patrick T., John T. Williams, Benjamin O. Fordham, and Brian Pollins. 2000. ‘‘Dynamic Modeling for

Persistent Event Count Time Series.’’ American Journal of Political Science 44(4):823–843.

Buckley, Jack. 2002. ‘‘Taking Time Seriously: The Dynamic Linear Model and Bayesian Time Series Analysis.’’

Unpublished manuscript, SUNY Stony Brook.

Ciccarelli, Matteo, and Alessandro Rebucci. 2003. ‘‘Bayesian VARs: A Survey of the Recent Literature with an

Application to the European Monetary System.’’ Technical report IMF Working Paper WP/03/102

Washington, DC: International Monetary Fund.

Clements, Michael. 2004. ‘‘Evaluating the Bank of England Density Forecasts of Inflation.’’ Economic Journal

114:844–866.

Clements, Michael, and David Hendry. 1998. Forecasting Economic Time Series. New York: Cambridge

University Press.

Cooley, Thomas F., Stephen F. LeRoy, and Neil Raymon. 1984. ‘‘Econometric Policy Evaluation: A Note.’’

American Economic Review 3:467–470.

DeBoef, Suzanna, and James Granato. 1997. ‘‘Near Integrated Data and the Analysis of Political Relationships.’’

American Journal of Political Science 41(2):619–640.

deMarchi, Scott, Christopher Gelpi, and Jeffery D. Grynaviski. 2004. ‘‘Untangling Neural Nets.’’ American

Political Science Review 98(2):371–378.

Diebold, F. X., T. A. Gunther, and A. S. Tsay. 1998. ‘‘Evaluating Density Forecasts with an Application to

Financial Risk Management.’’ International Economic Review 39:863–883.

Doan, Thomas, Robert Litterman, and Christopher Sims. 1984. ‘‘Forecasting and Conditional Projection Using

Realistic Prior Distributions.’’ Econometric Reviews 3:1–100.

Edwards, George C., and B. Dan Wood. 1999. ‘‘Who Influences Whom? The President and the Public Agenda.’’

American Political Science Review 93(2):327–344.

Fair, Ray C., and Robert J. Shiller. 1990. ‘‘Comparing Information in Forecasts from Economic Models.’’

American Economic Review 80(3):375–390.

Fearon, James. 1991. ‘‘Counterfactuals and Hypothesis Testing in Political Science.’’ World Politics 43:161–195.

34 Patrick T. Brandt and John R. Freeman

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
03

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpi035


Freeman, John R., and James E. Alt. 1994. ‘‘The Politics of Public and Private Investment in Britain.’’ In The

Comparative Political Economy of the Welfare State, eds. Thomas Janoski and Alexander M. Hicks. New

York: Cambridge University Press, pp. 136–168.

Freeman, John R., Jude C. Hays, and Helmut Stix. 2000. ‘‘Democracy and Markets: The Case of Exchange

Rates.’’ American Journal of Political Science 44(3):449–468.

Freeman, John R., John T. Williams, Daniel Houser, and Paul Kellstedt. 1998. ‘‘Long Memoried Processes, Unit

Roots and Causal Inference in Political Science.’’ American Journal of Political Science 42(4):1289–1327.

Freeman, John R., John T. Williams, and Tse-Min Lin. 1989. ‘‘Vector Autoregression and the Study of Politics.’’

American Journal of Political Science 33:842–77.

Gerner, Deborah J., Philip A. Schrodt, Ronald A. Francisco, and Judith L. Weddle. 1994. ‘‘Machine Coding of

Event Data Using Regional and International Sources.’’ International Studies Quarterly 38:91–119.

Geweke, John. 1992. ‘‘Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior

Moments.’’ In Bayesian Statistics, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith. Vol. 4.

Oxford: Clarendon, pp. 169–194.

Geyer, C. J. 1992. ‘‘Practical Markov Chain Monte Carlo.’’ Statistical Science 7:473–511.

Gill, Jeffrey. 2002. Bayesian Methods: A Social and Behavioral Sciences Approach. Boca Raton, FL: Chapman

and Hall.

Gill, Jeffrey. 2004. ‘‘Introduction to the Special Issue.’’ Political Analysis 12(4):323–337.

Goldstein, Joshua, and John R. Freeman. 1991. ‘‘U.S.-Soviet-Chinese Relations: Routine, Reciprocity, or

Rational Expectations?’’ American Political Science Review 85(1):17–36.

Goldstein, Joshua. S. 1992. ‘‘A Conflict-Cooperation Scale for WEIS Event Data.’’ Journal of Conflict

Resolution 36:369–385.

Goldstein, Joshua S., and John R. Freeman. 1990. Three-Way Street. Chicago: University of Chicago Press.

Goldstein, Joshua S., Jon C. Pevehouse, Deborah J. Gerner, and Shibley Telhami. 2001. ‘‘Reciprocity,

Triangularity, and Cooperation in the Middle East, 1979–1997.’’ Journal of Conflict Resolution 45(5):

594–620.

Granger, Clive W. J. 1999. Empirical Modeling in Economics: Specification and Evaluation. Cambridge:

Cambridge University Press.

Hamilton, James D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

Hays, Jude C., John R. Freeman, and Hans Nesseth. 2003. ‘‘Exchange Rate Volatility and Democratization in

Emerging Market Countries.’’ International Studies Quarterly 47:203–228.

Heidelberger, P., and P. D. Welch. 1981. ‘‘A Spectral Method for Confidence Interval Generation and Run

Length Control in Simulations.’’ Communications of the A.C.M. 24:233–245.

Heidelberger, P., and P. D. Welch. 1983. ‘‘Simulation Run Length Control in the Presence of an Initial

Transient.’’ Operations Research 31:1109–1144.

Jackman, Simon. 2000. ‘‘Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain

Monte Carlo.’’ American Journal of Political Science 44(2):375–405.

Jackman, Simon. 2004. ‘‘Bayesian Analysis for Political Research.’’ Annual Review of Political Science 7:

483–505.

Kadiyala, K. Rao, and Sune Karlsson. 1997. ‘‘Numerical Methods For Estimation and Inference in Bayesian

VAR-Model.’’ Journal of Applied Econometrics 12:99–132.

Kilian, Lutz. 1998. ‘‘Small-Sample Confidence Intervals for Impulse Response Functions.’’ Review of Economics

and Statistics 80:186–201.

King, Gary, and Langche Zeng. 2004. ‘‘When Can History Be Our Guide? The Pitfalls of Counterfactual

Inference.’’ Unpublished manuscript, Harvard University.

Leeper, Eric M., Christopher A. Sims, and Tao Zha. 1996. ‘‘What Does Monetary Policy Do?’’ Brookings Papers

on Economic Activity 1996(2):1–63.

Litterman, Robert B. 1986. ‘‘Forecasting with Bayesian Vector Autoregressions—Five Years of Experience.’’

Journal of Business, Economics and Statistics 4:25–38.

Lutkepohl, H. 1990. ‘‘Asymptotic Distributions of Impulse Repsonse Functions and Forecast Error Variance

Decompositions in Vector Autoregressive Models.’’ Review of Economics and Statistics 72:53–78.

Martin, Andrew, and Kevin Quinn. 2002. ‘‘Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for

the U.S. Supreme Court.’’ Political Analysis 10(2):134–153.

McGinnis, Michael, and John T. Williams. 1989. ‘‘Change and Stability in Superpower Rivalry.’’ American

Political Science Review 83(4):1101–1123.

Mittnik, S., and P. A. Zadrozny. 1993. ‘‘Asymptotic Distributions of Impulse Reponses, Step Responses, and

Variance Decompoistions of Estimated Linear Dynamic Models.’’ Econometrica 20:832–854.

35Advances in Bayesian Time Series Modeling

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
03

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpi035


Morris, Benny. 2001. Righteous Victims: A History of the Zionist-Arab Conflict 1881–2001. New York: Vintage

Books.

Ni, Shawn, and Dongchu Sun. 2003. ‘‘Noninformative Priors and Frequentist Risks of Bayesian Estimators in

Vector Autoregressive Models.’’ Journal of Econometrics 115:159–197.

Ostrom, Charles, and Renee Smith. 1993. ‘‘Error Correction, Attitude Persistence, and Executive Rewards and

Punishments: A Behavioral Theory of Presidential Approval.’’ Political Analysis 3:127–184.

Robertson, John C., and Ellis W. Tallman. 1999. ‘‘Vector Autoregressions: Forecasting and Reality.’’ Economic

Review (Atlanta Federal Reserve Bank) 84(1):4–18.

Runkle, David E. 1987. ‘‘Vector Autoregressions and Reality.’’ Journal of Business and Economic Statistics

5:437–442.

Schrodt, Philip A., Deborah J. Gerner, Rajaa Abu-Jabr, Oemeur Yilmaz, and Erin M. Simpson. 2001. ‘‘Analyzing

the Dynamics of International Mediation Processes in the Middle East and Balkans.’’ Presented at the Annual

Meeting of the American Political Science Association, San Francisco.

Sims, Christopher A. 1980. ‘‘Macroeconomics and Reality.’’ Econometrica 48(1):1–48.

Sims, Christopher A. 1987a. ‘‘Comment [on Runkle].’’ Journal of Business and Economic Statistics 5(4):443–449.

Sims, Christopher A. 1987b. A Rational Expectations Framework for Short-Run Policy Analysis. In New

Approaches to Monetary Economics, eds. William Barnett and Kenneth Singleton. New York: Cambridge

University Press, pp. 293–310.

Sims, Christopher A., and Tao A. Zha. 1995. ‘‘Error Bands for Impulse Responses.’’ (Available from http://

sims.princeton.edu/yftp/ier/.)

Sims, Christopher A., and Tao A. Zha. 1998. ‘‘Bayesian Methods for Dynamic Multivariate Models.’’

International Economic Review 39(4):949–968.

Sims, Christopher A., and Tao A. Zha. 1999. ‘‘Error Bands for Impulse Responses.’’ Econometrica 67(5):1113–

1156.

Sims, Christopher A., and Tao A. Zha. 2004. ‘‘Were There Regime Switches in U.S. Monetary Policy?’’

(Available from http://www.princeton.edu/sims.)

Theil, Henri. 1963. ‘‘On the Use of Incomplete Prior Information in Regression Analysis.’’ Journal of the

American Statistical Association 58(302):401–414.

Waggoner, Daniel F., and Tao Zha. 1999. ‘‘Conditional Forecasts in Dynamic Multivariate Models.’’ Review of

Economics and Statistics 81(4):639–651.

Waggoner, Daniel F., and Tao Zha. 2000. ‘‘A Gibbs Simulator for Restricted VAR Models.’’ Working Paper

2000-3, Federal Reserve Bank of Atlanta.

West, Mike, and Jeff Harrison. 1997. Bayesian Forecasting and Dynamic Models, 2nd ed. New York: Springer-

Verlag.

Western, Bruce, and Meredith Kleykamp. 2004. ‘‘A Bayesian Change Point Analysis for Historical Time Series

Analysis.’’ Political Analysis 12(4):354–374.

Williams, John T. 1990. ‘‘The Political Manipulation of Macroeconomic Policy.’’ American Political Science

Review 84(3):767–795.

Williams, John T. 1993. ‘‘Dynamic Change, Specification Uncertainty, and Bayesian Vector Autoregression

Analysis.’’ Political Analysis 4:97–125.

Williams, John T., and Brian K. Collins. 1997. ‘‘The Political Economy of Corporate Taxation.’’ American

Journal of Political Science 41(1):208–244.

Zellner, Arnold. 1971. An Introduction to Bayesian Inference in Econometrics. New York: Wiley Interscience.

Zha, Tao A. 1998. ‘‘A Dynamic Multivariate Model for the Use of Formulating Policy.’’ Economic Review

(Federal Reserve Bank of Atlanta) First Quarter:16–29.

36 Patrick T. Brandt and John R. Freeman

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pi
03

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.princeton.edu/sims
http://sims.princeton.edu/yftp/ier/
http://sims.princeton.edu/yftp/ier/
https://doi.org/10.1093/pan/mpi035

